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Swelling and shrinking of a polyelectrolyte gel 
induced by a salt solution 

R. Rydzewski 

The stability of a polyelectrolyte gel in solution results from a delicate balance 
between several competing thermodynamic forces, viz. 

(i) osmotic pressure of  free ions in the gel, 
(ii) molecular interaction of solvent and polymer molecules, 

(iii) network elasticity, 
(iv) Debye-Htickel interaction of ions. 

That  balance may be upset by a decrease of temperature and by the addition 
of salt to the solvent. This results in a decrease of osmotic pressure and 
collapse of the gel to a small fraction of the initial volume. The effect can 
be reversed by increasing temperature and by removing salt from the solution. 
This paper presents an attempt to describe swelling and shrinking quanti- 
tatively and to understand the nature of the opposing forces. The volume of 
a particular polyacrylamide gel in a water acetone solution is represented 
as a function of the salt content and of temperature. 

1 Introduction 

A gel consists of  a network of polymer molecules which are surrounded by a 
solvent. The molecules move easily through the solvent and thus, macroscopically, 
the gel appears as a soft, elastic solid with little compressibility. The mass of the 
solvent in the gel may be several hundred times as big as the mass of the polymer. 

The polymer network may be endowed with ionizable groups of molecules. 
In the presence of the solvent such groups will split into network ions, bound 
to the network, and counterions, that move freely in the solvent. The gel as a 
whole will be electrically neutral; it is called a polyelectrolyte gel. 
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If  the gel is immersed in a bath of solvent of the same type that is contained 
in the gel, solvent molecules may be exchanged between the bath and the gel. 
The counterions, however, are constrained to the network by electrostatic forces. 
In their tendency to reach equidistribution over the whole system of  gel and bath 
they exert an osmotic pressure that expands the gel. The expansion is counteracted 
by the network elasticity. 

When salt is added to the solvent of the bath, the salt ions have a tendency 
to migrate into the gel. The migration comes to an end when the so-called "Don- 
nan equilibrium" is reached. That equilibrium does not mean equal distribution 
of salt ions through the system. The distribution of ions has a considerable effect 
on the volume of the gel: an increase of salt makes the gel shrink. Usually the shrink- 
ing process occurs smoothly. But under proper conditions the process may be 
discontinuous in that a tiny addition of salt leads to a collapse of the gel, i.e. a 
drastic decrease of volume to a fraction of 1/100 (say) of its initial value. This 
process is reversible; a decrease of  the salt concentration makes the gel swell 
again. The onset of shrinking and swelling depends strongly on tempera- 
ture. 

All these phenomena are akin to thermodynamic phase transitions in other 
branches of physical chemistry. Accordingly in this paper we construct a free 
energy as a function of salt concentration in the bath and of temperature. This free 
energy has a nonconvex character in the proper range of variables and thus it 
identifies competing ionic equilibria and the corresponding volumes. 

In contrast to previous works on the same subject (e.g. [1], p. 584ff.; [9]) we 
do not simplify the problem excessively. Therefore an analytic exploitation of 
the equilibrium conditions is impossible and we have to enlist the help of a proper 
numerical method. However, we shall put particular emphasis on suggestive inter- 
pretation of the results by trying to identify the competing effects which set 
themselves into equilibrium in this complex system. 

2 Composition 

A typical polyelectrolytic gel consists of an acrylamide-sodiumacrylate-NN'- 
methylenebisacrylamide copolymer network in a water-acetone mixture as sol- 
vent. The network ions are carboxylate groups COO- and the counterions are 
Na + ions. A network junction consists of  a covalent binding of four chain mole- 
cules to a NN'-methylenebisacrylamide molecule. 

The salt added to the bath surrounding the gel will here be taken to be NaC1. 
Note that thus the counterions and the cations of the salt are identical. 

We shall ignore the small concentration of H3 0  +- and OH--ions present in 
the water, so that the whole system contains only two types of movable ions, viz. 
Na + and CI-. Sodium chloride and sodium acrylate are taken to be fully ionized. 

We know that the gel and the bath are electrically neutral to an excellent 
approximation. Therefore the cations Na + and the anions CI- can pass the inter- 
face gel-bath only in pairs. 
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3 Free energy 

3.1 Constituents of the system. Contributions to the free energy 

We envisage a gel in a bath whose pressure is kept constant at the value Po by a 
piston, see Fig. 1. The temperature is constant in time and throughout the system. 

Under those circumstances thermodynamic stability requires that the free 
enthalpy F + Po V have a minimum in equilibrium. However, in the case under 
consideration we may as well say that the free energy F be minimal, because 
the exchange of solvent and ions between the gel and the bath occurs isochorically 
to an excellent approximation. 

Quantities referring to the gel and the bath will be characterised by ' and " 
respectively. We have three constituents: solvent, polymer and salt and we 
assume that the salt is fully ionized. Therefore the gel consists of 

n~ moles of solvent, 
ni, moles of polymer chains, 
n~ moles of mobile anions, (3.1) 

l 

n x moles of cations, 

and the bath consists of 

I t  nr moles of solvent, 
hA' moles of anions, (3.2) 

I t  nK moles of cations. 

There are three contributions to the free energy of the gel and they are due to 
mixing, electrostatic interaction and network elasticity. In the bath of course the 
network contribution is missing. Thus we write 

F ' =  FM-F FE + FN, F " =  F~ 4- F). (3.3) 

We proceed to calculate the contributions to the free energy in terms of the mole 
numbers of the constituents. 

3.2 Free energy of mixing 

The free energy of mixing will be given in two parts. The first one is based on the 
entropy of mixing of an ideal mixture and the second one accounts for the non- 
ideal character of the mixture. 

T, Po 

I 
, !_, , _ , _ , , , , , ,  _,., ,_, ,_, | 

Fig. 1. Gel and bath 
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The first term has the conventional form 

t , I l K  , I l A  
- - T S M = R T  II~ln + Ilx m- - r  + IlA ln-- r  

I l  I l  

B L  tt I l K  t l  
+ n~' In --77 + nK in --77 + nA In , (3.4) 

I l  I l  

where n stands for nL + nK + n~ + Xnp. R is the gas constant. Although this expres- 
sion is familiar to everybody who knows the basics of physical chemistry, it 
merits a remark in the present context, because there is no term representing the 
polymer network. Indeed, in a mixture containing unlinked polymer chains of 
x monomeric segments each, there should be a contribution of the form (see [1], 
p. 502) 

x n e  ( 3 . 5 )  
- - R n e  inn--- 7- 

to the entropy of mixing. However, if the chains are linked together in a network 
-- as they are in the gel --  the polymer constituent consists of one big macro- 
molecule and the mole number ne tends to zero (see again [1], p. 577). Therefore 
the network contribution becomes negligible and we ignore it. 

The second part of the free energy of mixing is due to the change of inter- 
molecular potential energy of the van der Waals forces and to the small-scale 
arrangement of adjacent molecules. We assume that only pairs of the xn  e polymer 
segments and the n~ solvent molecules provide a sizable contribution of this type. 
Therefore we take this part of the free energy of mixing to be proportional to the 
expected number 

�9 xnp  
IlL n' 

of such pairs and write 

F ~  , xnp SM 
or by (3.4) R T  = ZIlL n' R ' 

i ! t 
F M , x n p  I l L  t I l K  t I l A  

R T  = znL 7 -t- n'L In ~ q- n K In -n-7- + nA In -Tn 

I l L  t t r l K  , t 
-[- n}' In ~77 + nK In ~77 + na in . (3.6) 

The coefficient Z consists of two terms, one constant and the other one inversely 
proportional to temperature. We write 

Z~ (3.7) 
Z = Z~ + R T  " 

Ze determines the heat of mixing of polymer segments and solvent molecules 
and Zs determines the decrease of entropy associated with the formation of a 
pair of such particles. 
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Ze and Xs must  be measured. For  polyacrylamide in a 30 % aceton-water 
mixture Z has a value of  about  0.5 at 30 ~ (see [3]). On the other hand  the measur- 
ed values o f  Zs are known to range f rom 0.1 to 0.4 for  any polymer  solution (see 
[2]). For  the calculations o f  this paper  we choose Xs = 0.2 and Z =  0.65 for  
T = 300 K, implying that  the solvent contains more  than 30 % acetone. These 
values will be seen to provide qualitative agreement with the observed phenomena.  
Thus we have 

135 K 
Z = 0.2 -k ----f--- (3.8) 

In  the calculations o f  (3.4) th rough  (3.6) one assumes that  the ions, the polymer  
segments and the solvent molecules all have approximately the same size (see 
[1], p. 498). In  the sequel we shall refer to these ions, segments and molecules as 
particles, and we shall assume that  they have the molar  volume 

VM = 1 . 8 . 1 0  -5 ma/mol ,  (3.9) 

which is the value for  water. 

3.3 Free energy of the network 

Flory  ([1], p. 464ff.) has calculated the entropy of  a homogeneously  strained 
polymer  network in isotropic deformat ion with the deformat ion gradient g. He 
obtains 1 

S N ~ 3  e 2 ~Rne(o~ - -  1 - -  2 In o 0 . (3.10) 

n~, is the number  o f  elastically effective polymer  chains; it is different f rom he, 
because there are always chains with free ends and closed loops. In  the subsequent 
calculations we shall take n}, = 0.5np. a 3 is the ratio o f  the actual volume V' 
of  the gel and of  the volume V0 which the gel had before it was in contact  with the 
bath. Since all particles are assumed to have the same molar  volume, it follows 
that  a 3 = V'/V'o may be written as n'/no, where n o is the number  o f  moles in the 
gel before immersion in the bath. Thus we have for  the free energy of  the network 

1 = - -  - -  1 - -  2-In . (3.11) 
RT k ~no ] 

3.4 Free energy of electrostatic interaction 

In  this paper  we assume that  the network ions o f  the polyelectrolyte contr ibute 
to the electrostatic interaction in the same manner  as would the free ions in a 
normal  electrolyte. In  view of  the fact that  the network is quite a flexible structure 

1 Flory has a factor 1, instead of 2, in front of the logarithmic term. That factor 
cannot be correct in our opinion, because it requires a non-zero stress in the reference 
state c~ ----- 1 
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this assumption may be justified, at least for the small fraction of 1.25 % of ionic 
network segments, on which subsequent calculations are based. 

The ions in an electrolyte interact by electrostatic fields and the energy of 
those fields must be taken into account in the internal energy of the electrolyte. 
In addition, as a result of the electrostatic interaction the particle distribution 
becomes ordered in the sense that each ion surrounds itself by a "cloud" of other 
ions, the net charge of that cloud being the negative of the charge of the central 
ion. Such small-scale order results in a decrease of entropy. The energetic and en- 
tropic contributions of the electrostatic field to the free energy are calculated in the 
Debye-HiJckel theory (e.g. see [4], p. 767ff.). That theory leads to a free energy of 
the form 

RrF~ _ 22ajc; ~ ~Saj + ~ )  In 1 + y aj , (3.12) 

An~(zJe)Z fi~ ~- 1 /  ekTV* 
C j - -  4:re ' r ' 4  Z nJ(zse) z" 

J 
The index j denotes the different types of ions of which we have three, viz. COO-, 
Na + and C1-. The index s refers to gel or bath (' or ") and aj are the radii of the 
ions. e is the elementary charge and zj are the numbers of elementary charges of 
an ion of type j. A is the Avogadro number and e the dielectric constant. ~ is 
called the Debye radius. Thus, if i is the number of ionized segments in one chain, 
we have 

nxz x + nAzA for the gel X ~ z _ ~ inez2e + ' 2 t 2 
n ) z ) - - /  - 2  . . . . .  2 (3.13) 

nKz K ~- nAzz for the bath. J 
V in (3.12) may be replaced by nVm. 

3.5 Sum of  all free energies 

Summing (3.6), (3.11) and (3.12) we obtain the total free energy of the system 
of gel and bath, viz2 

{ xn? ( lnn~,+ , n'x , lnnl~7,A F = R T  ZnL 7 + nL nK in ~ + nA 

t /  i t  i t ,  

" n~' In n~.. + n~ In nn-K , + nA In + 

, . 0 ,  1 

I ~ r  t'-~-J In 1 + ~ -  . 

There are 6 variables in this function, viz. 

. . . . . .  3 " (3.15) nL, nL~ nK, nK, n , hA,  
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but these are not all independent. Indeed, we have only two independent varia- 
bles, because 

. . . . . . . . .  (3.16) n L =  n L q : - n L ,  n K ~ -  n K +  nK,  nA = n A + nA 

are all constant and because both phases are electrically neutral so that we have 
the conditions 

# t t  t t  

inpZp -~ nKZ K -~- nIAZA ~- O, n K Z  K Jr- n A Z  A = O. (3.17) 

Note that one of the restrictions (3.17) is redundant, because the system as a whole 
must also be neutral. 

4 Equi l ibr ium condi t ions  

4.1 Formulation 
# ! 

As independent mole numbers we choose na and rig, the mole number of solvent 
molecules in the gel and the mole number of cations (viz. Na +) in the gel. Necessary 
conditions for an equilibrium then read 

(~) ~:~ - -7  , = 0 and , = 0. (4.1) 
~gn L n K \ O n K /  n L 

More explicitely from (3.14) through (3.17) we obtain 

{ {xn, , xn 4 . ;  . ;  x . ,  .~ [(.o~,,~ ";ll 
R T  Z ~ n--;-- -- nL -~-2 ] + ln-n-;--- ln~-77 +--~-+-Tno [ \-~7 ] -- n' ] ) 

+~a-a - - 2 - - 1 n  1 +  + - - a  "-a-" n --7 
a 1 + ~  

2a 1 - - 2  fl ' ' ln l + + a a ~ = 0 ,  (4.2) 
a l + ~ w  

v / 

t ~"-"( ~) ,,,,,, . ,.,~,,< ,.,,,r,,,,o.~,,3_,ol/ 
R T  2--~- 1- -X-- f i  r + l n n ~ / n , - - - - 7 + l n ~ + n - ~ l \ , ,  ] n ' J j  

4~ea 1 - - 2 - - I n  1 + + - -  n' 
a l + a  a 

" a 1 fl" nL 
- -  1 - - 2 : - - - - I n  1 +  + - n" 

a l + a  a 

+~0~+o (~;l~0 +~)) ~(~ ~ +(~)~o (a)) i 
In 1+~-~  = 0 .  

(4.3) 
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For simplicity we have set all ionic radii equal in these formulae, so that aK = 
aA = aN = a. In the numerical calculations below we have used the value for a 
sodium ion: a = 2 .4 .10  - l~  m. For  the ionic charges we have assumed z~; = 
- - Z  A .  

4.2 Discussion 

The equilibrium conditions (4.2) and (4.3) express in explicit form the requirement 
that the chemical potentials of the solvent and of the cations are equal in the gel 
and the bath in equilibrium. Apart from the Debye-Hiickel term the condition 
(4.2) has already been written down by Flory ([t], p. 587) and subsequently by 
many authors. The condition (4.3) on the other hand appears here for the first 
time to my knowledge in its full generality. That condition is normally truncated 
to contain only the two underlined terms (e.g. see [9]) and it is usually written in 
the form 

t t t p  r  

n K n A  n K R A  

n, ~ -- n,,------ T (4.4) 

Equation (4.4) is known as the Donnan equation (e.g. see [5]); it describes the 
equilibrium of mobile cations and anions at a membrane in the presence of a 
third ionic constituent that cannot pass the membrane, here the ionic segments of  
the network. 

Comparison of (4.3) and (4.4) shows that the following items are missing from 
(4.4) 

(i) the Debye-Htickel term, 
(ii) the network elasticity, and 

(iii) the effect of the intermolecular potential energy. 

It cannot a priori be decided weather the additional terms give negligible contribu- 
tions. Only a comparison of the results from the exact formula and from the trun- 
cated one can decide that question. 

5 Exploitation of equilibrium conditions 

5.1 Graphical representation o f  the solutions of  the eqs. (4.2) and (4.3) 

The system of eqs. (4.2), (4.3) was solved numerically for many different salt 
concentrations in the bath and for many different temperatures. For  the graphical 
representation of the results we introduce normalized variables as follows. 

The normalized salt concentration in the bath is defined as 

Oft t O! t 
nK/n 

Cs - -  0 t O, " 
iVlK/n 

O, t O,r 
nK, n are the mole numbers of cations Na + in the bath and the mole numbers of 
particles at all in the bath respectively before the bath is in contact with the gel. 
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0 t  0 r 
nK, n are the corresponding mole numbers in the gel. In order to give some 
understanding of the significance of this variable we note that bs ~--- 1 means that 
the cation concentration in the bath and the concentration of counter ions in the 
gel was equal before contact was established. We shall see that the interesting 
phenomena occur for ~s < 1. 

The normalized mole number of the solvent in the gel is defined as 

n; 
X t l p  " 

For  a better understanding of this value we note thiat h / =  1 means that the 
number  of solvent molecules in the gel equals the number of  polymer segments 
in the gel. We shall see that the interesting range of h L is the one between 1 and 
100. 

We also introduce a normalized mole number  of  the cations Na  + in the gel by 
the definition 

nb ^ t  
F / K ~  "7--" �9 

IFt p 

30 i 

2s4 
20 15 \ 
10 

5 .~_~..---.-- 

0 02~ 022 0:3 02~ ois 026 027 oia 029 e~ 

30 

25 "~%--,~-J 

20'  

15 

10 

0 
b 0 0:1 0:2 0:3 0:~ O:S o:6 0:7 oia Oig 
Fig. 2. a Number of solvent molecules in the gel versus salt concentration of the bath. 
b Same as a but with Debye-HiJckel term in Eq. (4.2) omitted and Eq. (4.3) truncated 
to contain only the underlined terms 
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If  h~r equals 1, the number of Na + ions equals the number of ionized polymer 
segments. This is of course the situation before the gel is immersed in the bath. 
Therefore we shall be interested in values of h~: that exceed 1, and it will turn out 
that the interesting range of h~ is between 1 and 1.15. 

The Figs. 2a and 3a represent the solutions of Eqs. (4.2) and (4.3). Curve 
parameter is the temperature which ranges over the values T = 21 ~ 25 ~ 29 ~ 
33 ~ and 37~ 

The Figs. 2b and 3b give an impression of the importance of the terms of  
Eqs. (4.2) and (4..3) that are neglected in most parts of the relevant literature. 
As was mentioned before, the Debye-Htickel term in Eq. (4.2) usually is missing 
and the Eq. (4.3) is usually truncated to contain only the two underlined terms. 
This simplification has a drastic qualitative and, of course, quantitative effect 
on the predicted values of the equilibrium concentrations hl and ~;. Comparison 
of the curves of Fig. 2a and b and of Fig. 3a and b illustrates this point. 

An interpretation of the curves of Figs. 2a and 3a will follow in Sect. 6.1. 

~k 
1.12 r ~  j 

1 10 J ~ " " "  ~ ' ~  �9 / \ j  
1.o8 , / / ~ ~  . ~ , /  

1.06 ////I/ 

a 0 o11 012 023 oi~ o16 016 o17 018 0i9 e'2 

~k 
1.12 

1.10 

1.08 

1.06 

1.0/. 

1.02 
i 

1.0C / 
b 

Y \ 

\ J 

0'.1 012 013 014 0'.5 016 017 018 019 s 

Fig. 3. a Number of cations in the gel versus salt concentration of the bath. b Same as 
a but with Debye-Htickel term in Eq. (4.2) omitted and Eq. (4.3) truncated to contain 
only the underlined terms 
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5.2 Graphical representation of the free energy 

Inspection of Figs. 2a und 3a shows that in a certain range of temperature T 
and salt concentration is  we have three equilibrium values of solvent mole num- 
ber h i and cation mole number fi). The question arises which one of these 
solutions are stable. 

Geometrically the solutions of (4.2) and (4.3) may be minima, maxima or saddle 
points of the free energy as a function of hl  and h~:. Only the minima correspond 
to stable equilibria. 

The Fig. 4a -g  shows contour diagrams of the free energy as a function of 
h), h i for different salt concentrations bs and for T = 25 ~ The position of the 
deepest minimum is marked by a dot which thus identifies the stable minimum. 
In many of the figures we see two minima seperated by a saddle point and we also 
see that the stable position ~ ,  n)c shifts at is  = 0.24, because the minimum 
for large values of hl  loses its role as the deeper one to the minimum for small 
values of h);. 

Note from Fig. 4a that at is  = 0.1 the gel contains 24 times as many solvent 
molecules as polymer segments. On the other hand from Fig. 4g we conclude that 
for is  = 0.3 most of the solvent has been pushed out of the gel. It contains only 
4.5 times as many solvent molecules as polymer segments. 

Figure 4e shows that the switch between the minima, which occurs at bs ~ 0.24 
is associated with a drop in hl  from 17 to 4.6. This drop is connected with a 
collapse of the gel to roughly 30 % of its volume, because it is essentially h)~ which 
determines the size of the volume. The collapse has great similarity with a thermo- 
dynamic phase transition in that it occurs at a fixed value of a parameter, here bs. 

Since two minima coexist over a wide range of is, it is conceivable that meta- 
stable states might be observed. I.e. the gel might stay in a minimum although 
there exists a deeper one which, however, cannot be reached, because the saddle 
point is too high. To my knowledge such metastable states have not been observed. 

The Fig. 5 a - f  represents contour lines of the free energy in the same range 
of salt concentrations as in Fig. 4a -g  but for 37~ We see now that there is no 
"phase transition"; rather the transition from the swollen state with h i large to 
the shrunken state with h): small occurs continuously as is  grows. 

6 Discussion of results 

6.1 The (h~, ~s)-isothermes 

A little reflection is needed to see the connection between Figs. 4a -g  and the 
(h~;, bs)-isotherm of Fig. 2a for 25~ The isotherm describes the ordinates of  
the minima and of the saddle point of the free energy for a given value of i s. 
The parts of the isotherm that have negative slopes correspond to minima and 
the part with a positive slope corresponds to the saddle point. 
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We ignore the unstable saddle points and the metastable minima and connect 
the two branches of  the isotherm corresponding to stable minima by a vertical 
line at the value of i s  where the minima exchange their roles as deepest minima. 
This has been done in Fig. 6 for T : 21 ~ 25 ~ and 29~ The isotherms for 
T : 33 ~ and 37~ have no unstable or metastable parts. 

1 0 Z ~ _  

~s=0.22 ~ = 0.23 
c d 

10 o . . . . . . . . . . . . . .  . . . . . . . . . . . . . .  

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14. 1.00 1.02 1.04. 1.06 1.08 1.10 1.12 1.14. 
^ ,  ^ !  
n K ~ /3 K 

Fig. 4a-d 
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< ~  

e cs 024 
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c~=0.3 
100 g . . . . . . . . . . . . . .  

1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 
^ t  
n K 

Fig. 4e--g 

1.00' 1.02' 1.0L' 1.06' 1.08'1J0' 1.12' 1.14 
^ t  
/3 K 

Fig. 4a-g.  Contour lines of the free energy F(h),  rT~;) at T = 25 ~ The lower mini- 
mum is marked by a dot. The first 5 contour lines around the dot have a difference of 
AF, the following 5 have the difference 2AF, and the ones, that follow after that, have a 
difference of 4AF 
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Also in Fig. 6 there is a second ordinate giving the values of the volume V 
of the gel normalized by Vo, the volume of the gel before it made contact with the 
bath. As we had already anticipated, V increases with hl, nearly linearly, albeit 
not quite, because there is also some migration of  salt ions into the gel as we can 
see from Fig. 3. 

Inspection of Fig. 6 shows that in a bath with i s ~ 0.01 at a temperature 
of T = 2 1 ~  the volume ratio V/Vo is roughly 2, while at i s ~  1 we have 

10 0 __ b ^..,=0.2 

^ t  ^ t  
n K ~ n K 

Fig. 5a--d 
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Fig. 5a-f .  Contour r 

lines of the flee energy F(nx, nL) at T -  37 ~ The differences 
of  F for the different lines are as in Fig. 4 

v,% ~L l 

1.5025301 ~ r 

0,50 10 
5 - -  

0.05 
o o.I o:2 o~.a 0!:4 o15 015 0.7 o18 ~'~ 

Fig. 6. Gel volume and number of  solvent moles in the gel versus salt concentration 
of  the bath 
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1 V/Vo ~ y .  Thus the volumetric swelling ratio is 12. Much bigger swelling ratios 
are reported in the literature. But the present calculations are valid for weakly 
ionized networks and for a fairly small solvent content during polymerisation. 

0 ,  

The values chosen are ine/xnp = 1.25-10 -2 and nL/xnl, = 19. This makes 
for only moderate swelling. 

In analogy to the terminology of phase transition we may call the isotherms 
for T = 21 ~ 25 ~ and 29~ subcritical while the isotherms for T = 35 ~ and 37~ 
are supercritical. The critical isotherm lies somewhere between T = 29~ and 
T = 33 ~ The subcritical isotherms run through a two-phase region in which 
the gel consists of swollen and shrunken domains that are in equilibrium. The 
two phase region is bounded by the dashed curve in Fig. 6. 

6.2 The Donnan exclusion effect 

In the previous section we have seen that the increase of the salt concentration of 
the bath lets the gel shrink, either smoothly or discontinuously in the way of a 
phase transition, depending on the temperature�9 We shall now attempt a suggestive 
interpretation of the acting mechanisms. 

For  that purpose it is appropriate to introduce the number n~ of movable 
anions C1- in the gel. Figure 7 shows the relative numbers n~/n s in the gel and the 
bath for 5 different temperatures. Note that n~ is also the surplus of the number of 
cations in the gel over the number ine of ionized polymer segments: this is so 
since the salt ions Na + and CI- can only enter the gel jointly because of electro- 
neutrality. 

Comparison of the curves for n'j/n" and n~/n' shows that the anions are not 
distributed evenly over the gel and the bath: while in the bath the curve n'a'/n" 

�9 ! ! - . 

versus is  is linear, the fraction nA/n starts out very flat. This observation represents 
the Donnan exclusion effect which was first described in 1911 by F. G. Donnan [8] 
for ionic equilibria at membranes that are impermeable for one ionic constituent�9 
The effect occurs here, because the ions on the polymeric network cannot leave the 
gel. 

n ~ / n  s i 

0.00020- 

0.00015 

0.00010- 

0.00005. 

0 

,/ , /  
/ T / 

/ Beth ./.-~'///4~," 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ~s 

Fig. 7. Concentrations of anions C1- versus salt concentration 
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An intuitive understanding of the Donnan effect can be gained as follows. 
The anions C1- of  the salt added to the solvent have the tendency to migrate 
into the gel, because the gel is devoid of them. But to do so they have to carry 
along a cation Na  + because of electroneutrality. However, there are already many 
cations as counterions in the gel, many more than in the bath. Therefore the cations 
that migrate into the gel along with the anions are unwelcome and develop a 
tendency to return to the bath taking along the anions, again for electroneutrality. 
Thus the anions are effectively barred from the gel, at least as long as the salt 
concentration is small. 

For higher salt concentrations the exclusion is less effective for two reasons: 
(i) the anions push more strongly into the gel when more are present, and (ii) 
the surplus of cations in the gel over the bath becomes less pronounced. Therefore 
the curves nA/n' pick up for higher values of  Cs as can be seen in Fig. 7. Also we 
see in Fig. 7 that the collapse of  the gel enhances the Donnan exclusion. This is 
easily understood, because the collapse increases the density of  counterions, i.e. 
cations in the gel and those are the ones that are responsible for the exclusion. 

6.3 Influence o f  van der Waals interaction, network elasticity, osmotic pressure 
and electrostatic interaction on the volume o f  the gel 

6.3.i On the van der Waals interaction 

The van der Waals term in the free energy of the system is 

t XHp  
fv.d.W. = RTznL -~7 �9 

Differentiation of this expression with respect to V' = n'VM for a fixed number 
ntc of  cations gives 

an n' n 

This expression has the dimension of a pressure and we therefore call it the van 

der Waals pressure in the gel. For  g > 0 we have/c~Fv a w \ ~ ) > 0  so that a decrease 

of  the gel volume decreases the part  of the free energy that is due to van der Waals 
interaction. Another way of saying this is that the van der Waals forces are con- 
tractive. 

The interpretation is clear: The polymer molecules have the tendency to stick 
together because of the attractive van der Waals forces and to force the solvent 
out of the gel. The van der Waals pressure is inversely proportional to n '2 and there- 
fore inversely proportional  to the square of the volume of the gel. This too is 
easy to understand, because in a swollen gel most of the polymer chains are 
beyond the range of their van der Waals forces. 
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6.3.2 On network elasticity 

The network contribution to the free energy of the system is 

2 
FN= RT 2 [3(n',13/2--3 - 2 In n',] . 

L \ no/ n0_l 

Differentiation of this expression with respect to V' gives 

( OFN~ RT n~ [[ns n~] 

" g - U  V L k n' ) - " 

We call this expression the network pressure: its sign determines whether the 
network forces tend to increase the volume of the gel or decrease it. We distin- 
guish three cases 

( FN [> 0 for .' > . ; ,  
~ r  0 ]  for n'=n'o, 

0 for n ' < n 0 .  

Therefore the network elasticity is contractive for the swollen gel. In fact 
the network elasticity aims at keeping the gel in the state which it had before con- 
tact with the bath. 

6.3.3 On osmotic pressure 

The term in the free energy of the system that is due to the entropy of mixing reads 

v I t 

n L  , n K  , n.A. a 
FM = RT n'z In ~-  + nK In ~ + n A In n' 

n L , ,  n K t ~ n A  
+ n~' In ~Tr + nx In -n-77 + na In 

and we obtain upon differentiation 

(~FMI R T (  n'z n'i: xne~ RT ( n ) +  n'A n~4-n'~) 
- - ~ - 7 } , ) = - - ~  ln-n-r--ln~7;-+ n, ] ~ -- - ~  n' n" " 

The latter approximate equation holds for n) ~ n', n} ~ n ~. We denote the 
two terms on the right hand side by P'osm. and P'o'sm. respectively and call them the 
osmotic pressures of the gel and the bath. 

In Fig. 8 we have plotted (nS~ § n})/n ~ versus Cs. Inspection shows that 
this expression is bigger for the gel than for the bath for all values of Cs. There- 
fore P~sm. is greater than P'o'sm., and we conclude that the osmotic pressures always 
act expansively upon the gel. 
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Fig. 8. Concentrations of movable ions in the gel and the bath versus salt concentration 
in the bath 

6.3.4 On the electrostatic interaction 

The Debye-Htickel term in the free energy is given by equation (3.12). Differen- 
tiation with respect to V' leads to 

~--~]n~=2a 1--2--1n 1 4- + ~  T 7 
a 1 +  ' 

- - 2 - - 1 n  1 +  + - - - - - -~  --~ n-- 7 .  
2 a 1-t- 

We denote this expression the Debye pressure; once again we realize that its 
sign determines in which direction it acts on the gel. Thus, if FD decreases with 
decreasing V' we conclude that the electrostatic forces act contractively upon the 
gel; if FD increases with decreasing V' they tend to expand the gel. We proceed 
to find out which of these possibilities infact occurs. 

First of all we have 

c; 
J 

and 

AeZ w, n~ 2 Ae2 in? + n~: + n'A 
4~rs j~ ~ -  z) = 4:re n' 

i t  t t  Cj' _ _  Ae z ni< + na 
�9 I ~  t t  4 ~  n tr J 

Inspection of Fig. 8 shows that (n) + n~)/n s is bigger in the gel than in the bath, 
therefore 

cj c;' 
-n-T > ~] ~;r .  (6.2) 
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Secondly 

1+-r 

can be shown to be a monotonically decreasing function in the relevant range 
where {)/a > 1 holds. On the other hand because of the definition of{) [Eq. (3.12)] 
and because of 

! t t  

Z,7> .,, 
/ 

(see Fig. 8), we have 

[eF X 
From (6.1) through (6.3)we conclude that ~-5-~n~ > 0 holds, so that the Debye 

contribution to the free energy represents a contractive effect on the gel. 
This result merits a short discussion which is motivated by the frequent remark 

in the literature (e.g. see [1], p. 584f.; [6], [7]) that the dramatic swelling of poly- 
electrolyte gels is due to the electrostatic repulsion of the network ions. In contrast 
to this the Debye-Hiickel thory shows that the electric field of a network ion is 
effectively shielded by the oppositely charged cloud consisting of all other ions, 
and that there is an attractive force between the network ion and this cloud. Hence 
a contractive effect of the electrostatic interaction is plausible and that is what 
our formal calculation has indeed given. 

6.4 Influence of salt concentration on the volume of the gel 

Among the 4 pressures which we have identified in the previous section the 
osmotic pressure is the only expansive one. Therefore, since swelling may be 
induced by lowering the salt concentration, we should like to obtain an intuitive 
understanding of how the decrease of the salt concentration affects the osmotic 
pressure. 

For  that purpose we consider a gel in equilibrium with a bath consisting of 
the pure solvent at the supercritical temperature T = 37~ (say). This equili- 
brium we propose to disturb by adding salt to the bath so that is  assumes the value 
0.05. This starts a process which consists of two interconnected parts. 

A part of the salt ions migrates into the gel, but that par t  remains small be- 
cause of the Donnan exclusion, This means that at the end of the migration the 
concentration of salt ions in the gel is much smaller than in the bath. For illustra- 
tion see Fig. 7. 

The salt ions in the bath exert an osmotic pressure on the gel which we call 
the external osmotic pressure. Therefore the gel shrinks. In the process of shrink- 
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ing the density of  movable ions in the gel increases and so does their osmotic 
pressure, which we call the internal osmotic pressure. The shrinking proceeds 
until a new equilibrium with the changed osmotic pressures is established. 

Figure 8 shows that the internal osmotic pressure has risen by practically the 
same amount  as the external one. This follows from the fact that the initial slopes 
of (n~v + n~)/n ~ are roughly equal in the gel and in the bath. Indeed, the osmotic 
pressure is proportional  to (n )  47 n})/n s as we have seen in Sect. 6.3.3 for small 
concentration of ions. 

Next we disturb the new equilibrium by adding enough salt to make is  equal 
to 0.9. There upon the same process occurs again but with a new ingredient. 
As the mean distance of the polymer molecules shrinks the van der Waals inter- 
action between them grows. The resulting contractive van der Waals pressure 
gains influence and enhances the shrinking. Figure 8 shows that now the osmotic 
pressure of  the gel must increase more rapidly so as to be able to counteract the 
effect of  the van der Waals pressure (for simplicity the Debye pressure and the 
network pressure have not been mentioned here). 
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