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i. INTRODUCTION 

Of particular importance in the design of laser systems aimed at energy transmission 
over large distances is the task of shaping an output beam having a small angular divergence. 
It is known from the theoretical and experimental studies elucidated, for example in mono- 
graphs [i, 2], that in a laser with a high-gain active medium it is advantageous to use un- 
stable cavities that permit us, if the medium is of good quality, to obtain radiation having 
an angular divergence close to the diffraction limit [3-7]. This is ensured by a number 
of properties of an unstable cavity, which were pointed out already by Siegman [8]: i) 
large mode volume; 2) natural selective discrimination of the angular modes; 3) possibility 
of using totally reflecting optical systems to extract the radiation and to organize the 
feedback. 

Solution of the general problem of producing high-efficiency laser systems calls for 
research into the choice of the optimal cavity design, aimed also at studying the influence 
of the spatial inhomogeneity of the active medium on the character of the laser emission 
[9-18]. Understandably, in the general case it is more effective to carry out the investi- 
gation by numerical means. This reduces in essence to the self-consistent problem of the 
mutual influence of the field in the cavity and the physicochemical processes that form the 
active medium. In the case of a cw chemical HF laser, the pertinent calculations are made 
complicated by the multilevel character of the excitation of the working molecules, and also 
of the substantial role of the effects of mixing of a large number of chemically active jets. 

Undoubtedly the most general and rigorous mathematical model for the calculation of 
the magnetic field in a cavity should be taken to be the system of Maxwell equations and, 
for an active medium, the Navier-Stokes system of equations with allowance for physicochemi- 
cal kinetics. This method, however, is too complicated and laborious in practice. We must 
therefore choose simplified approaches by starting from the specific features of the problem. 

The scientific literature has described by now a wide spectrum of computation methods 
that have become classical and are contained in textbooks and monographs [i, 2, 19-27]. The 
choice of the method must therefore be justified on the basis of the aims pursued and the 
problems to be solved. 

An advantage of analytic methods [i, 2, 28-43] is that they make it possible to obtain 
the solution in the most general form and to understand its physical meaning. Final ana- 
lytic solutions, however, are frequently attainable only in some particular or limiting cases. 
Therefore, if specific numerical results are needed, computer methods turn out to be more 
useful. 

The known published numerous geometric-optics [i, 2, 20, 25, 44-56], ray-matrix [i, 
23, 57-64], opticogeometric [65-70], etc., methods, including the eikonal method [21, 24, 
71-72], while relatively simple and sufficiently effective for the solution of a definite 
group of problems, can nevertheless not represent in the general case completely the phase 
structure of the radiation field in a cavity with a free-flowing optically inhomogeneous 
medium. Principal attention is therefore paid in this review to the description and mutual 
comparison of various methods of wave optics [73-163] and also to methods of calculating 
active-medium characteristics [164-198], aimed at choosing a working method of solving com- 
plex comprehensive problems of the ratio of the parameters of a cw HF chemical laser with an 
unstable telescopic cavity, so as to improve the directivity pattern of its radiation. 
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2. METHODS OF DESCRIBING AN ELECTROMAGNETIC FIELD 

As noted in the Introduction, the most consistent approach to the study of the posed 
problem can be based only on wave-optics methods. They can be arbitrarily divided into two 
main groups: i) methods using the solution of integral equations that serve as a scalar 
expression of the classical Huygens-Fresnel principle on the basis of the known Fresnel- 
Kirchhoff integral [i, 2, 73-99]; 2) methods using the solution of partial differential wave 
equations for the electromagnetic field [27, 100-153]. These two groups of methods, while 
outwardly different, are closely related, as indicated already in [31, 32], since all are 
different mathematical forms for expressing the physical nature of one and the same phenom- 
enon. Let us consider briefly the gist of these methods and compare their main advantages 
and shortcomings, so as to make a well-founded choice of the working method. 

2.l. Methods Based on the Fresnel-Kirchhpff Integral. An integral method was de- 
veloped by Fox and Li and first used in a paper [73] that can be regarded as pioneering in 
investigations for the field structure in a cavity. According to this method, if the mirror 
dimensions greatly exceed the radiation wavelength (A), and if the electric and magnetic 
field vectors vary in a plane almost perpendicular to the field propagation direction, the 
complex function of the field of a surface B illuminated by a surface A is expressed in terms 
of the surface integral 

ik -ikr l+cosO 
~B = - ~  ~A e r dSa' ( i )  

where & A,B is the complex amplitude of the field on the corresponding surface, r is the 
distance between the radiation point and the observation point, @ is the angle between the 
vector r and the normal drawn to the surface of the point through the radiating point, k = 
2v/% is the wave number, and ds a is an element of the radiating surface. If the control 
surfaces are taken to be the cavity-mirror surfaces, one can expect the following static 
field distribution to set in after a certain number q of reflections from each of the mirrors 

& q = (l/?)qG, ( 2 )  

where G is the field distribution and does not vary from reflection to reflection, while 
y is a complex constant independent of the coordinates. Substitution of (2) in (i) yields 
an integral equation of the form 

G = 7f KGds a ( 3 ) 
A 

with a kernel K = (ik/4vr)(l + cos 0)e -ikr. The field distribution function G, which satis- 
fies Eq. (3), is taken as the transverse mode of the cavity, defined on the mirror surface, 
while the complex coefficient ~, which incorporates the gain of the signal and the phase 
shift per pass, is called the propagation constant of this mode. The integral equation (3) 
is solved numerically by successive approximations, and this is the gist of the method of 
Fox and Li. 

Undisputed advantages of the integral method are the simplicity and clarity of its mathe- 
matical formulation and the good adaptivity to arbitrary mirror configurations. The method 
has maximum economy from the point of view of consumed computer memory, since it requires 
knowledge of the field distribution only within the limits of the radiation-source aperture. 

The integral method was widely used approximately up to the mid-1970s [73-80] as the 
only numerical method for the solution of cavity problems in a rigorous formulation, without 
the need for any significant simplifications. It gave way then to no less rigorous but more 
effective methods. The integral method is ineffective because it requires ~N 4 computation 
operations for each transfer, from one surface to another, of a field described by an N x N- 
point matrix of discrete values. Nonetheless, it continues to be used in recent work [37, 
81-85] in cases when the use of other methods is difficult, and since its undisputed accuracy 
has caused it to be included among the standards. 

It was used for extensive investigations of the mode structure of a field and of the 
influence exerted on the mode by various misalignments of the mirrors, both for stable [73- 
75] and unstable [76-80] cavities. Not being very effective, the integral method was used 
mainly in a two-dimensional formulation, but was used in [80] to calculate the mode structure 
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of a field in an empty three-dimensional unstable cavity. This method was even used in [75, 
79] to solve the problem of self-consistency of the interaction of a field with an amplifying 
saturating medium. 

An important trend in the development of the integral method was the Prony method, the 
gist of which was to expand the solution G of integral equation (3) in competing transverse 
modes G k 

G = EiTkG k, (4) 
k 

each of which has its own propagation constant ~k" This made it possible to investigate 
the behavior of the losses of each transverse mode separately, and to show that these modes 
replace one another alternately to assume the role of the fundamental highest-Q mode. 

In the case of a cylindrical coordinate system the solution can be sought in the form 
of an expansion of the field in Bessel functions [88]. That paper contains an interesting 
reference to a report by Siegman [89], in which it is proposed to expand in Hankel rather 
than Bessel functions, since the former permit the use of the last Fourier transformation 
(FFT). 

One of the most successful approximate methods of calculating the field in a cavity 
by solving an integral equation is assumed to be that developed by Paul Horwitz for an empty 
symmetric unstable cavity with rectangular mirrors. According to this paper, the integral 
equation (3), assuming the total-reflection mirror to be infinite, reduces to an equation 
of the form 

z e_inMNf(y_ x/M) 2 3'v(x) =X/~f  f v(y)dy, (5) 
-I 

in which are used the traditional expressions introduced in Siegmann's papers on unstable 
cavities [45, 76] 

Nf I 
v(x) = &(x)e inNefx=', Nef=Nfv/g - ' f -1 = - - ( M - - 2  --) 'M ' 

~/g + '1 + ~ a2 
M = ~ _ ~ ; g=-2g ,g=- l ;  Nf=---~ /(2g=); 

gi = 1 -  L/Ri; R i -- mirror curvature radii. 

The gist of the method is that the integrand in (5) is expanded in terms of the small 
parameter �9 = (~MNf) -!/2 in the limit as Nf + ~. The expansion extends to terms of order 
i/Nf and includes, besides the term corresponding to the geometric-optics approximation, 
also the terms that describe the effects of diffraction by the edges of the feedback mirror. 
Although the method was developed for large Fresnel numbers, its results are in sufficiently 
good agreement with those obtained by direct solution of the integral equation even at low 
values of the Fresnel numbers, all the way to ~i. 

The asymptotic method was further developed by Paul Horwitz himself, who somehow was 
unable to present a physical interpretation of his brainchild. This was accomplished later 
by Butts and Avizonis, as well as by others. In [91], for example, was considered a two- 
dimensional misaligned cavity; in [92] the Horwitz method was extended to include a three- 
dimensional symmetrical cavity; while in [93-96] the elements of this method were extensively 
used to develop a theory of an unstable cavity with an active medium. The interest attached 
to asymptotic theory at the present time [97] points to its large potential and promise, 
especially in calculations for large-aperture cavities. 

An advantage of Horwitz's method is that the problem, typical of the eigenvalues of 
a matrix, which is a feature of the integral method, is replaced by the problem of finding 
the roots of the polynomial, so that the computation is substantially accelerated. A short- 
coming of the method is that it is difficult to adapt to complicated boundary and intracavity 
conditions, since the analytic expressions become then s cumbersome and nonuniversal, and 
also that its results agree less with the "exact" solutions of the "brute force" methods, 
apparently because the asymptotic expansion is crude. 
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Noteworthy among the methods using expansion of the integrand of Eq. (3) is also a method 
proposed by Siegman and Sziclas [98] for unstable three-dimensional cavities (UTC). The 
expansion in this method is in Hermite-Gauss polynomials, which are eigenfunctions of the 
field in stable cavities [28-30]. The method was developed and used for a numerical calcula- 
tion for a UTC with the free-flowing optically inhomogeneous medium of a CO 2 laser. 

The speed of this method turned out to be approximately the same (-N ~ operations per 
field-propagation act) as of the method of direct integration of a parabolic wave equation, 
using the explicit difference schemes to be discussed below. It was therefore possible to 
determine by this method the mode structure of the field only for cavities with Fresnel num- 
bers on the order of several units. For large Fresnel numbers, this method calls for reten- 
tion of a large number of expansion terms and, apparently due to its sluggishness, cannot 
compete with the more consistent finite-difference method, judging from the exceedingly scanty 
number of succeeding publications, e.g., [99]. 

2.2. Methods Based on Soiution of Wave Equations. Another trend in the evolution of 
methods of field calculation in cavities is based on describing the field by differential 
wave equations directly derived from suitably simplified electrodynamics equations [36, i00]. 
A direct solution of the Maxwell equations is very complicated and unjustified for cavity 
problems, in which one can successfully use what is known as the paraxial approximation [36]. 
This implies small angles of the beams with a certain general direction of their propagation, 
and also a large excess of all the linear dimensions of the optical system over the radiation 
wavelength. 

Differential equations permit solution of the problem in the most general form, for 
example with allowance for the temporal nonstationarity and spatial distribution of the dielec- 
tric constant of the medium[101-108]. For stationary problems, however, most frequent use 
is made of a wave equation of the form [i00, 114] 

~• V~ &• An" g - p 
• = - -  • k(-- -i )a • (6) 

8z 2k n o 2k 

where  & • a r e  t h e  complex a m p l i t u d e s  o f  t h e  f i e l d  o f  t h e  f o r w a r d  and backward waves ;  V i i s  
the Laplace operator with respect to the transverse coordinates; &n = n - n o is the deviation 
of the refractive index from its mean value; g and p are the gain and absorption coefficient 
of the medium, respectively; and k = 2~/~ is the wave number. 

Direct integration of the wave equations was used mainly in the two-dimensional [i00, 
109-114] formulation, but also in the three-dimensional one [27, 115-117], to investigate 
the influence of optical inhomogeneities and of active-medium (AM) saturation effects on 
the characteristics of the radiation field in the near and far zones. This method was used 
to investigate amplifying single-pass [i00, 109] and multipass [113] systems, as well as 
UTC [110-112]. The appropriate method used together with the AM model: of a 
solid-state laser [Iii], of a fast-flowing medium of a CO 2 gasdynamic laser (GDL) 
[109, 117] with allowance for density discontinuities in the flow [116], and also of the 
quasi-two-dimensional multilevel medium of an HF cw chemical laser (CCL) [112, 113]. Use 
was made here of both simplified AM models [ii0, iii] and of models that take into account 
real pumping mechanisms [109, 112, 113, 116, 117]. Questions involving the correction of 
the phase front of a beam thermally spreading in an absorbing medium were considered in the 
framework of this method in [115]. 

In the papers cited above the field inside the cavity is represented as a rule by a 
superposition of two counterpropagating fields connected on the mirror surfaces with allow- 
ance for the laws of reflection and the change of the form of the wave front. The problem 
is solved as a rule by a method using the Fox-Li iteration scheme [73]. The parameters of 
the medium and of the field are made self-consistent in the approximation of relatively sparse 
thin layers, in which are concentrated all the properties of the AM, and the propagation 
of the field between the layers is assumed to be similar to its propagation in free space 
[116, 117], i.e., is described by a parabolic wave equation of the type 

8 
[2ik (--~'z) + V~ & i(x, y, z) = O. ( 7 ) 

The description of the f i e ld  in the cavity with the aid of d i f fe ren t ia l  equations makes 
possible the use of curvilinear spatial coordinates and of Computation grids with variable 
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mesh, and also highlights the advantages of this method, such as rigor and generality of 
the approach, good adaptivity and flexibility of the numerical algorithms that realize it 
(in the sense of their possible application under a large group of boundary conditions), 
and effective use of a possible symmetry of the problem. 

The speed of calculations in the integration of the wave equation is higher by an order 
of magnitude than when an integral equation is solved. Thus, for a single act of field prop- 
agation from layer to layer it is necessary to perform ~N 2 • N Z operations for one and the 
same matrix with N • N points. The number N Z of trial steps needed for this purpose along 
the principal direction of radiation propagation depends on the distance between the layers 
and also on the employed finite-difference scheme. 

The use of implicit schemes [112, 117] makes it possible to increase substantially the 
longitudinal pitch of the integration, and also to lower the sensitivity of the numerical 
algorithm to abrupt discontinuities of the field function on the edges of the mirrors, which 
calls frequently for artificial amplitude smoothing of the edges. The latter can lead to 
a substantial smoothing of the obtained solutions through suppression of the converging wave 
in the UTC. Finite-difference methods require also additional broadening of the computation 
grid to ensure correctness of the boundary conditions g (• z) = 0. 

The increased computation speed notwithstanding, complete realization of the method 
of numerical integration of the wave equation, just as of the integral method, requires high- 
power computation technology, not yet attainable here or abroad, and it is necessary to oper- 
ate at the limit of the available resources. It is indeed the need to "extricate ourselves" 
on account of the great decrease of the number of computation points that explains the crude 
character of the three-dimensional solutions obtained in [116, 117] for large Fresnel numbers. 
Head-on numerical solutions of three-dimensional complex problems in the context of this 
method are therefore as yet difficult for technical reasons. 

The large technical difficulties encountered in a direct numerical integration of wave 
equations have always served as a strong stimulus for the development of approximate solution 
methods. An exact solution of a wave equation is frequently sought only in the region near 
the cavity axis [28-30, 49], while the peripheral part is considered as a multipass amplifier, 
frequently in the geometric approximation (combined methods). 

A simple and lucid diffraction method of calculating the mode structure of the field 
in an empty cavity was proposed already at the dawn of laser research by u [19]. 
In this theory the cavity is regarded in the transverse direction as an open waveguide in 
which differently propagating modes (usually called waveguide functions, which are solutions 
of the wave equation for the field between infinite mirrors) are interconnected at the discon- 
tinuity point corresponding to the edge of the mirror. This method, quite extensively used 
in the 1960s in calculations for stable and planar cavities, for example in [118], was subse- 
quently developed by Lyubimov et al. [119, 120] and also by Felsen et al. [121-123] as ap- 
plied to unstable cavities. From among the later publications, in which the open-waveguide 
method was used (qausioptical approximation), one can cite a paper [124] devoted to an in- 
vestigation of lens-like phase distortions of the field in a misadjusted cavity. A shortcom- 
ing of this method is that it is suitable for the calculation of only empty cavities, since 
it takes no account of the distribution of the gain over the volume of the active medium. 

To solve wave equations, just as integral ones, one frequently resorts to a preliminary 
expansion of the field function in terms of some previously selected system of eigenfunctions, 
and a corresponding transformation operator is applied directly already to the expansion 
terms, followed by a reverse convolution into a single solution. While these methods may 
be no less accurate than direct integration methods, they must still be regarded as approximate, 
since one always encounters the problem of a reasonable limitation of the expansion spectrum. 
Included among these methods is that of Suchkov, used in papers cited above [101-107], accord- 
ing to which the solution of the nonstationary wave equation is sought in the form of a series 
of eigenfunctions that satisfy this equation and the boundary conditions, while for the complex 
amplitudes, which are time-dependent expansion coefficients, there is obtained a system of 
numerically solvable equations. Unfortunately, however, this method has so far been used 
only in a formulation that is one-dimensional in the coordinates. 

As already noted, the method of expansion in Hermite-Gauss polynomial proposed by Sieg- 
mann and Sziclas, is not widely used. On the other hand, their other attempt [125] to develop 
an effective method of the UTC field calculation was indeed brilliantly successful and revo- 
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lutionized the development of cavity calculations. We refer here to the method of expanding 
the field function in plane waves and using for this purpose the FFT procedure [199-202], 
which made it possible to lower by one more order of magnitude the number of computation 
operations needed to implement a single act of field transport over an arbitrary distance, 
to a value -N 2 log 2 N for a two-dimensional N x N matrix. Postponing the detailed description 
of this method, we note that its high efficiency attracts great attention to this day [126- 
153]. A characteristic feature of its use is the ever greater complexity of the problems 
that it can treat, i.e., the shift of the center of gravity to investigations, jointly with 
the cavity, of such processes and phenomena which are either complicated problems by them- 
selves, or place the cavity under conditions that are extremal for the calculations. All 
this is made possible by the fact that the calculation of the radiation-transport itself 
ceases to be decisive in the sense of the consumed time. Therefore, in addition to tradi- 
tional calculations of the mode structure of empty UTC and those filled with ideal active 
medium [125, 127, 132, 136, 149, 150, 153], which have more readily a control-and-test char- 
acter, UTC with more realistic AM models are considered, with account taken of the character- 
istic features of free-flow gas media of CO 2 lasers [125, 130] and, in particular, HF-CCL 
[131-135]. Also investigated was the effect exerted on the operation of a UTC by such per- 
turbing factors as its misalignment [127] and distortion of the field on mirrors with non- 
ideal surfaces [136], the presence in AM of large-scale [125, 131, 132] and small-scale period- 
ic [126, 128, 129] and random [142, 148] phase inhomogeneities, as well as various methods 
for their compensation, including the use of intracavity adaptive optics [137, 138, 152] 
and the use of pseudowave front reversal (pseudo-WFR) methods [145-148]. The FFT method 
was used to study cavities with strong configuration of the mirrors [151] or of the cavity 
itself [137, 138, 152], while in [141] the FFT method was invoked to solve problems involving 
visualization of the flux by the phase-contrast method. 

The FFT method, however, is likewise not free of shortcomings of its own. Its precision, 
while not worse than that of the integral method, calls for sufficient accuracy in its use, 
dictated by the singularities of the discrete Fourier transformation. It is possible, for 
example, to use in the calculations only a rectangular uniform grid and vary the number of 
its nodes only by multiplying by an arbitrary power of the number 2. This entails the same 
dependence of memory and computer-processing time loss on the dimensionality of the problem, 
and comes particularly into play if many computation points must be used. A rectangular 
grid hinders the exact description of curvilinear boundaries, for example of round mirrors 
[125, 132] or apertures in them [151]. The method can likewise not be regarded as effective 
when it comes to a field-function definition region that must include appreciable "empty" 
protective sidebands, where there is practically no field, but which are essential to ensure 
calculation accuracy and sufficient resolution of the space-frequency spectr[un of the radia- 
tion. Attempts are therefore made to use other Fourier-transform algorithms, for example 
the continuous one [150], which makes it possible to obtain, on account of the nonuniform 
distribution of the computation points, the same accuracy with a smaller number of points, 
but at the expense of the operating speed. 

A shortcoming of the FFT method, more accurately of all the wave-optics methods, is 
the rather crude simulation of the interaction of the field with the AM in the approximation 
of large-mesh amplitude-phase screens. Indeed, on the one hand each screen should have a 
sufficiently detailed distribution over the transverse coordinates (in principle, the same 
as the field itself) and, on the other hand, the very number of the screens should be suffi- 
cient to follow up with specified accuracy the variation of the field as it goes through 
an extended amplifying or inhomogeneous medium. Just as in any other numerical method, the 
accuracy problem can in principle be solved by increasing the number of computation points, 
but since the calculation of the functions of these screens consumes the bulk of the computer 
time and memory, it becomes necessary, even if the FFT method is used, to employ all the 
possibilities, and sometimes also forego accuracy within reasonable limits so as to reduce 
the number and sizes of the screens to a minimum determined by the technical characteristics 
of the employed computation technique. 

Concluding the survey of methods of computing the field in a cavity, we wish to note 
two more nontraditional methods, discrete-ray [154] and statistical [155-163]. The only 
publication in which the first of these methods was used, in a three-dimensional formulation, 
to compute the field in the cavity of an optically pumped solid-state laser, attests to the 
fact that it did not attract much attention, being apparently too unwieldy. It is curious 
nonetheless, since it is similar to the method of "large particles" in gasdynamics, i.e., 
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it uses Lagrange variables to describe the generated radiation. To this end, the active 
body of the cavity is broken up into N~ • N r parts in cross section and N z parts in length. 
The noise radiation of each elementary volume at the generation frequency is simulated by 
rays uniformly distributed over a unit sphere. Each ray consists of Nf averaged "photons," 
constituting radiant-energy fractions that propagate in the direction of the corresponding 
ray, and characterized by an initial energy and coordinates and directions vector. It is 
assLuned that the "photons" move for some time t without interacting with one another and 
with the medium, after which their new coordinates are determined and the average energies 
of the "photons" landing in one and the same elementary volunle are given, with allowance 
for the properties of the medium and for the boundary conditions. The averaged character- 
istics of the "photons" should, by assumption, correspond to the parameters of the radiation 
field in the corresponding region of the active medium at the current instant of time. The 
process is then repeated. We see that the method is suitable for optically dense media and 
for nonstationary processes. It is, however, very cumbersome and laborious, inasmuch as 
sufficient accuracy of the local parameters calls for sufficiently extensive statistics of 
the "photons" in each elementary volume, the number of which must also ensure the required 
accuracy of the spatial distribution of the local parameters. 

The second of the above methods is aimed mainly at determining the radiation directivity 
pattern of a cavity with a medium containing small-scale phase inhomogeneities. It is based 
on averaging over the realizations of these inhomogeneities and on a determination of what 
is known as the field coherence (correlation) function, knowledge of which suffices to deter- 
mine the angular distribution of the laser-emission intensity. After its publication [155, 
156] the statistical method was developed by Lyubimov [157-160] for the calculation of the 
modes in an unstable cavity, A generalization of this method to include spatial confinement 
of light beams, and the determination of the validity limits of the geometric approximation 
to determine the coherence function of the field in an unstable cavity was carried out by 
Sherstobitov et al. [161-163]. The statistical approach should apparently be regarded as 
the most promising way of finding and analyzing the laws governing the establishment of co- 
herent radiation in cavities~ under the condition that it take into account also temporal 
nonstationarity of optical inhomogeneities [43]. 

2.3. Fast-Fourier-Transform Method. We present in this section a brief exposition 
of the methodological part of the known paper of Sziclas and Siegmann [125], in which the 
FFT method is described in detail. Its complete analog can also be regarded to be the method 
part of [132]. 

Figure 1 shows schematically a b~C and the associated coordinate frame, as well as its 
main geometric parameters. We assume the X axis is directed along the AM stream, and the 
Z axis is directed along the optical axis of the cavity, from the convex to the concave mir- 
ror; in the case of a confocal cavity we have z0 = r/2, where r is the curvature radius of 
the convex mirror. 

In full accord with the procedures of the papers cited above, the inner volume of the 
cavity is segmented and the principle of separating the physical processes is used. The 
interaction of the UTC radiation field with the AM is modeled in the application of the thin 
active layers or amplitudewphase screens (APS), which are complex functions of the transverse 
coordinates and describe the integral action of the entire material layer that they replace. 
The APS have the form 

Fz(x'Y) = [ 2 ikArT(x,y)]Az (8) 

where g is the gain averaged over the thickness Az of the AM, and &~ is the deviation of 
the refractive index from its mean value, likewise averaged over the active-layer thickness. 
The cavity mirrors can also be regarded as APS that take into account the curvature, shape, 
and reflectances of their surfaces. 

The propagation of electromagnetic waves between the screens is regarded as similar 
to their propagation in free space. This means that the complex wave amplitude u(x, y, z) 
in the regions between the screens is a solution of the wave equation in the paraxial approxi- 
mation [36] 
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Fig. i. Computation scheme for a UTC filled with an amplify- 
ing medium and with symmetric bilateral extraction of radia- 
tion. 
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the solution of which can be written in the form of a product of a slowly varying traveling- 
wave complex amplitude ~ (x, y, z) and a rapidly oscillating factor 

U(X, y, Z) =& (X, y, Z) exp { iwt -- ik0z [ ,  ( 10 ) 

where  k0 = 2~/~ i s  t h e  wave number and ~0 i s  t h e  c y c l i c  f r e q u e n c y  o f  t h e  l i g h t .  

Le t  ~ o (x ,  y )  be t h e  f i e l d  d i s t r i b u t i o n  in  t h e  p l a n e  o f  one o f  t h e  s c r e e n s .  I t  can 
be r e p r e s e n t e d  by an i n t e g r a l  o v e r  t h e  s p e c t r u m  o f  t h e  s p a t i a l  f r e q u e n c i e s  

& o (x, y) = ff Pp(VxPy ) sxp {- i2~(VxX + Vyy) ~ dVxdVy. (ii) 

The distribution over the spatial frequencies Vx and ~y is determined in turn by the 
expression 

Po(Vx, Vy) = f f & o  (x, y) exp {i2~(VxX + Vy~ 1 dxdy. 
(12) 

Each space-frequency component (Vx, Vy) corresponds to a plane wave 

where (2~x)= + (2~Vy) = + kz 2 = k0 = = (u/c) =. 

The component Z of the wave vector of each plane wave can be written in the Fresnel 
approximation: 

kz(Px, Vy) = x/tk~ - (2nPx) a -- (2~py) '  ~ ko, - nX(v~ + v~). (14)  

The space-frequency distribution in the plane of the next screen is defined as follows: 

where Az is the distance between the considered screens. According to (ii), the expression 
for the wave arriving at the next screen is 
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&1 (X, y) = ]/Pl(Vx. Vy) exp {- i2~(VxX + Vyy) } dVxdVy , (16) 

and takes after the interaction with the screen the form 

s (x, y) =&, (x, y)exp {F(x, y)} (17) 

We have left out of (15) and (16) the factor exp (-ik0Az) , which is the same for all 
plane waves arriving at the screen. Expressions (li), (12), (15), (16) are Fourier trans- 
forms of the slowly varying complex amplitude of the field. They can be determined from 
the discrete values of the functions specified at the nodes of the spatial computation grid, 
using the FFT algorithm [199-202]. Proceeding in this manner from screen to screen we com- 
plete a full circuit of the cavity, requiring satisfaction, on the surfaces of the metallic 
mirrors, of the boundary conditions 

,47~+(x, y) § =0, (18) 

where r is the mirror reflection coefficient; &+ is the complex amplitude of the incident 
wave, and ~- of the reflected. The procedure described is repeated until agreement, at the 
specified accuracy, is obtained for two successive field distributions or of the integral 
of its intensity in the plane of the initial (total-reflection) mirror. 

Useful for the calculation of a spherically diverging wave is what is known as the lens 
or beam transformation of the coordinate frame, specified by the expressions 

a = (z - %) 
x/(x,z)  =ax/z,  y ~ y , z ) = a y / z ,  z t ( z ) =  (19) 

z z  o 

where a is an arbitrary scale factor. Choosing it in the form a = z 0 + L, we specify a co- 
ordinate transformation that converts divering or converging optical beams into equivalent 
collimated ones with the aperture of the beam exiting from the UTC (Fig. 2). 

The wave function u(x, y, z) on the diverging section is transformed in accordance with 
the expression 

�9 ( x  2 + y 2 )  . (2o) 

It is easy to verify that the transformed function v'(x', y', z') satisfies the same paraxial 
wave equation as the initial function u(x, y, z), but now already in a new coordinate space. 
Consequently, the same Fourier transforms (10)-(16) are valid for it, but in a new linearly 
diverging coordinate system. Nole that the transformation of the wave function (20) takes 
automatic account of the surface curvature of the mirrors, so that the use of the coordinate 
transformation reduces the problem to a calculation of an equivalent cavity with planar mir- 
rors. We get then a collimated Fresnel number connected with the traditional number by the 
relations 

a = M - 1 M 2 2M 2 
N= , N = N ~ ,  Nk=N = N , (21) 

kL ek 2 M + i ek M 2 -- 1 

where M is the coefficient of the geometric magnification of the UTC. 

The transformation of the coordinates leads to the need for interpolating between co- 
ordinate grids having different scales. This increases insignificantly the volume of the 
computations, but, on the other hand, the coordinate transformation permits a more effective 
utilization of the computation grid, and, in particular, a more accurate description of the 
field distribution over the surface of a convex mirror. 

Of great importance in calculations in which FFT is used are problems of false images, 
of the selection interval in the space-frequency region, and also of the limitation of the 
aperture of the discrete transformation. Since the use of the Fourier transform presupposes 
artificial periodic continuation of the field function to the outside of the region in which 
it is defined with respect to the transverse coordinates, a protective band must be intro- 
duced to limit the energy fraction that penetrates by diffraction into neighboring period, 
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Fig. 2. Elementary optical scheme for the calculation of one cycle of field propaga- 
tion in a UTC: a) without coordinate transformation; b) with coordinate transformation 
by a lens. 

and vice vera. According to estimates [125] based on consideration of the residual integral 
of the Cornu spiral that describes diffraction by an abrupt edge of a uniformly illuminated 
slit of width 2a 0, the dimension of the computation region should be 2Ga0, where the coeffi- 
cient of the protective band is given by 

G ~  1 + ( 2 ~ 2 e N k ) - I  ' ( 2 2 )  

in which ~ is the permissible energy fraction penetrating from the considered period into 
its neighbor. 

For a discrete Fourier transformation using a definiton region of width 2Ga 0 in physical 
space, the selection in the space-frequency region is effected with an interval Av = I/2Ga0. 
The largest spatial frequency for a discrete Fourier transform containing N T points is then 

Nx N T 
Vmax=--Av = - -  (23) 

2 4Ga o 

The number of computation points sufficient for a description of small-scale field pulsa- 
tions on the edge of the exit aperture, and also to limit to a specified value ~ the energy 
fraction cut off by the spatial-spectrum high-frequency part which becomes redistributed 
in the low-frequency region, is chosen on the basis of the following estimates. For a uni- 
formly illuminated slit, the space-frequency spectrum described by the function 

sin(x) 
P ( ~  = 2a o s ine  (2UaoV), where s ~ r  (x) = - - ,  ( 2 4 )  

x 

contains in the components v > ~max an energy 

1 ~ 2G 
e . . . . . . .  f IP(v)[ 2 dv ~ - -  

ao =2 NT Vmax 
(25) 

Hence 

2G 
(26) Nx> ~2 e 

To take into account the small-scale field pulsations that are produced on the opposite 
side of the aperture through diffraction by the edge of the exit mirror after a complete 
circuit through the cavity (Fig. 2), it is necessary to limit the space-frequency spectrum 
at a frequency not lower than 
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2Ma o 

Vmax> XL(M+I) ' 

from which it follows that 

(27) 

Nt>8GNk (28) 

The estimate (26) is of great value for small Fresnel numbers, when a major role is 
played by diffractive spreading of the beam. Relation (28), on the contrary, points to the 
need of increasing the number of computation points for large Fresnel numbers. Figure 3 
shows the total dependence of the needed number of points on the UTC collimated Fresnel number 
(21). It shows that for a given value of E there exists an optimal interval of the numbers 
N k within which the cavity problem can be solved using a definite minimum number N T of com- 
putation points; it is also seen that for each N k there exists a minimum N T needed to obtain 
the slightest reliable solution at all. 

Since the space-frequency spectrum of the Fourier expansion is limited, the weight of 
the high-frequency harmonics on its edges may be overestimated (the Gibbs effect). To sup- 
press this purely mathematical effect one usually introduces smoothed edges of the aperture 
window in frequency space [125]. This may also be unnecessary, however, if the role of these 
small-scale pulsations is small. 

3. METHODS OF SIMULATING AN ACTIVE MEDIUM 

The determination of the spatial distributions of the amplifying and optical properties 
in the volume of an AM is the problem that determines the extent to which the simulation 
of the lasing process as a whole can be realistically simulated and can acquire the charac- 
teristic features of an actual type of laser. The choice of the mathematical model of an 
AM is therefore dictated, on the one hand, by the need for taking into account the various 
features whose influence on the radiation field is of fundamental character and, on the other 
hand, by the available mathematical resources that determine the possibility of an adequate 
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simulation of these processes. It is therefore necessary frequently to seek compromise solu- 
tions and it is permissible, in those cases when an exact determination of the energy param- 
eters is unnecessary and their influence on the directivity pattern can be disregarded, to 
use simplified AM models in which the gain is determined from simple equations [65, 66, 71, 
75, 79, 96, 128, 129, 142-148, 151] or from simplified model equations [ii0, iii]. 

Extensive use is made in cavity calculation of the model of an ideal or uniformly amp- 
lifying medium, where account is taken of the important effect of amplification saturation 
of the radiation, with a gain g(x, y, z) determined by Eigrod's formula [i, 2, 26, 164, 165] 

go 
g ( x ,  y,  z) = , ( 2 9 )  

1 + Iz(x,  y, z ) / I  o 

where IE(x , y, z) is the distribution of the total intensity of the two opposing waves in 
the cavity, I 0 is the saturation intensity at which the gain decreases by one-half, and go is 
the weak-signal gain. 

Simultaneously with the simplified simulation of the AM gain, frequent use is made of 
the same model description of the phase inhomogeneities that result both from the nonuniform 
transverse distribution of the refractive index of the medium [i, 37, 40-43, 48, 50, 57, 
58, 62-64, 71, 72, 81, 82, 98, i01, 104, 106, 109, iii, 116, 117, 124-126, 128, 129, 137, 
139, 140, 142-148, 155-163], and from the nonideal character of the mirror surfaces or from 
the nonconfocal arrangement of the cavity [34, 39, 46, 51, 74, 78, 85, 91, 120, 124, 127, 
133, 136, 151]. This approach can be regarded as fully justified for the determination of 
the angular divergence of the laser radiation in the case of a statistical distribution of 
the weak phase inhomogeneities, which are not connected in practice with the real distribu- 
tion of the gain. It is possible to investigate in this manner hypothetical phase inhomo- 
geneities, or else take them from experiment or determine them by separate rigorous calcula- 
tions. The local value of the refractive index (n) in the case of a multicomponent gas 
medium can be easily determined from the known distributions of the gasdynamic parameters 
[21, 23] 

k N i 
n - 1  = Z (n i - 1 ) _ _  , ( 3 0 )  

i= 1 N L 

where n i is the refractive index of the i-th component, k is the number of mixture components, 
N i is the number of particles of the i-th component per unit volume, and N L is the Loh- 
schmidt number. 

Choosing in the same manner in the simplified equations (29) the values of the param- 
eters that determine the energetics, we can determine with sufficient accuracy the integral 
energy characteristics of the laser and the tendencies of their variation. In view, however, 
of the enhanced computation techniques and methods, it has become possible to carry out more 
interesting investigations of the field in a cavity with more realistic models. Therefore, 
the finite-difference method using implicit schemes, and especially the FFT method [98, 109, 
116, 117, 125, 130-132], dealing with high-power CO 2 lasers, were followed by more compli- 
cated models of flow-through AM, with account taken of both the real pump velocity determined 
by the kinetics of the physicochemical reactions in the stream, as well as gasdynamic ef- 
fects that influence the optical quality of such media. 

In all gaseous AM, the medium of a chemical laser, particularly that of an HF-CCL, is 
distinguished by the exceptional variety of physicochemical processes that determine its 
properties and the complexity of the mathematical simulation [2]. In an analysis of systems 
of this type it is necessary to solve many problems connected with thermo- and gas-dynamics, 
with diffusion, with the chemical, relaxational, and laser kinetics, and sometimes also with 
turbulence. The calculation of the characteristics of the AM of a cw chemical HF laser is 
complicated mainly because of two circumstances: i) all the kinetic processes in the cavity 
region evolve against a background of active mixing of reacting flows with variable gas- 
dynamic parameters, and hence with variable flow velocities; 2) chemical excitation of the 
products of the reactions has a multilevel cascade character. Moreover, in the case of the 
solution of a cavity problem of this type the calculation must be carried out repeatedly 
during the entire iteration process. It is this which makes it necessary to choose a suffi- 
ciently accurate and at the same time effective method of simulating the principal processes 
in the AM of HF-CCL. 
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In this context, rigorous calculations based on a solution of a system of Navier-Stokes 
equations [166-170], which is by itself undoubtedly a most consistent but very complicated 
and time-consuming task, is simply unthinkable in the case of a cavity, in view of immense 
time consumption. Even the presently most effective algorithms, such as in [170], can hard- 
ly be routinely employed in diagnostic programs. They serve, therefore, at present as sort 
of accuracy standards and are used mainly for individual computations aimed at obtaining 
the most complete information on the characteristic features of the AM flow, which can subse- 
quently already be used for the refinement of simpler AM models. 

In the bulk of the investigations of HF-CCL, AM are used, therefore~ two-dimensional 
and quasi-three-dimensional models involve the boundary-layer approximation, for example 
[131-133, 171-185]. This approach, based on a soluton of parabolic equations, is simplest 
to implement and allows at the same time for the transverse structure of the flow and the 
rate of mixing of the components. This permits a complete energywise calculation of HF-CCL 
with acceptable practical accuracy [131]. Even in this case, however, the most effective 
numerical methods that implement this approach [183-185] consume 5-10 min of EC-I045 computer 
time for one calculation of 5 cm of a laser region along the flow. Such an AM model for 
use in a cavity program is therefore suitable, at best, only for the design of a one-pass amp- 
lifier. Calculations for a two-dimensional cavity with allowance for lasing on the first 
two levels by means of this model require already one or several dozen hours. 

Further simplification of the description of the AM model using one-dimensional equa- 
tions [134, 135, 186-189], that can reflect only the role of kinetic processes but take no 
account of the finite rate of reagent mixing, is also unsuitable for the description of real 
laser systems, since the mixing factor is known to influence substantially the magnitude 
and the spatial distribution of the gain, and determines by the same token the energetics 

of cw chemical laser. 

In [190] is proposed a quasi-two-dimensional AM model, frequently called also quasi-one- 
dimensional (owing to different interpretations of the prefix "quasi"), based on the "flame- 
front" concept. It is shown there, in particular, that allowance for the finite reagent 
mixing rate limits the energy characteristics of a chemical laser when the pressure is in- 
creased. A generalization of this model to include a multilevel emitting medium was carried 
out in [191-198]. Note that the quasi-two-dimensional approach developed in [193, 194] takes 
into account the thermal and gasdynamic phenomena in the stream. The first quantitative 
calculations of a continuous HF(DF) laser in the context of a quasi-two-dimensional model 

of an AM were made in [193, 195, 196]. 

The very same model was used to analyze the distinguishing features of an HF-CCL with 
an unstable cavity. Thus, a qualitative analytic model of an HF-CCL was developed in [52] 
on the basis of a two-level radiation scheme. A quasi-two-dimensional AM model was used 
in [61] to investigate, in the geometric approximation, the energetics of an HF-CCL with 
a cylindrical nozzle block. Effective geometric-optics methods of calculating HF lasers 
and amplifiers with UTC were developed on the same basis of a quasi-two-dimensional AM model 
in [67-70], including also a quasi-three-dimensional [69] cavity geometry. Finally, an ap- 
proximate quasi-two-dimensional discription of an AM, in conjucntion with wave-optics methods, 
was used in [112, 113] for two-dimensional configurations of HF-CCL cavities. 

It should be noted that quasi-two-dimensional models are not closed, since the diffu- 
sion mixing length must be determined from supplementary conditions [194]. However, after 
such a model is properly adjusted in accord with experimental results or rigorous calculations 
[61], it can be used repeatedly in calculations for variants with close mixing parameters, 
since they are practically independent of the radiation intensity. The use of a quasi-two- 
dimensional "flame-front" model can already shorten the computation time for one typical 
laser-zone variant to several dozen seconds, and to 6-10 sec if the numerical algorithm is 
well optimized. This, in turn, imposes practically no limitation on calculations for two- 
dimensional cavities and makes it possible to calculate, in reasonable time, three-dimension- 

al cavity variants. 

In simulation of the interaction of the field with the AM one uses as a rule the approxi- 
mation of thin layers or of amplitude-phase screens (APS), which are characterized by param- 
eters averaged over the layer thickness [75, 79, 98, 116, 117, 125-153]. The number of such 
layers frequently reduces to one, that is furthermore located in the plane of one of the 
mirrors [128, 129, 133, 134]. Such a scheme, strictly speaking, cannot provide a true pic- 
ture of the radiation-field distribution in the cavity, since it ignores AM inhomogeneity 
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effects resulting from its interaction with the radiation, as well as effects connected with 
transformation of these inhomogeneities as the radiation is transported along the optic axis. 
If the AM layer is long enough, such effects can introduce into the field structure strong 
distortions that cannot be taken into account in the single APS approximation, especially 
in those cases when the inhomogeneity scale is small enough. More consistent in this case 
are therefore approaches that take into account the spatial distributions of the inhomo- 
geneities in natural fashion [101-114], or those using several SPS [98, 116, 117, 125, 126, 
131, 132]. 

As a result of the foregoing analysis of the wave methods of field calculation in laser 
cavities, we chose the method of expanding the fleld in plane waves with the aid of the FFT. 
In spite of its shortcomings, it ensures, when correctly applied, a high accuracy of the 
solution in a wide range of variation of the UTC parameters, and also a high computation 
speed. We propose to use it for calculations of HF-CCL jointly with the quasi-two-dimensional 
model of an active medium in the "flame front" approximation and of rotational equilibrium 
of the working molecule (direct calculations [134, 135, 198] have shown that under typical 
conditions of a "cold-reaction" cw HF laser allowance for the finite rate of the rotational 
relaxation decreases the laser power by not more than 20-30%). 

LITERATURE CITED 

i. Yu. A. Anan'ev, Optical Cavity and the Problem of Laser-Radiation Divergence [in Russian], 
Nauka, Moscow (1979). 

2. R. W. F. Gross and J. F. Bott (eds.), Chemical Lasers, Wiley, New York (1976). 
3. E. T. Gerry, "Gasdynamic lasers," IEEE Spectrum, i, No. ii, 51-58 (1970). 
4. Yu. A. Anan'ev, V. N. Chernov, and V. E. Sherstobitov, "Laser with high spatial radia- 

tion coherence," Kvantovaya Elektron. (Moscow), No. 4, 112-113 (1971). 
5. D. N. Mansell, J. A. Love, and W. L. Shell, "Investigations of an unstable confocal 

resonator on a chemical laser system," IEEE J. Quant. Electr., Z, No. 4, 177 (1971). 
6. R. A. Chozko, H. Mirels, F. S. Roehrs, and R. J. Pedersen, "Applications of a single- 

frequency unstable cavity to a cw HF laser," IEEE J. Quant. Electr., 9, No. 5, 523-530 
(1973). 

7. V. P. Borisov, S. D. Velikanov, V. D. Kvachev, S. B. Kormer, M. V. Sinitsin, G. V. 
Tachaev, and Yu. N. Frolov, "Chemical DF laser with diffractive divergence of the radia- 
tion," Kvantovaya Elektron. (Moscow), 8, No. 6, 1208-1213 (1981). 

8. A. E. Siegman, "Unstable optical resonators," Appl. Optics, 13, No. 2, 353-367 (1974). 
9. A. i. Zaretskii, G. A. Kirillov, S. B. Kormer, and S. A. Sukharev, "Dependence of radi- 

ation divergence of optical quantum generators and amplifiers on the optical inhomo- 
geneity of the medium," Kvantovaya ~lektron. (Moscow), i, No. 5, 1185-1190 (1974). 

I0. S. I. Zavogorodneva, V. i. Kuprenyuk, V. V. Sergeev, and V. E. Sherstobitov, "Measure- 
ment of spatial gain distribution in infrared lasers," Kvantovaya Elektron. (Moscow), 
~, No. 5, 1124-1126 (1976). 

Ii. R. L. Varwig and M. A. Kwok, "Cw HF chemical laser flowdiagnostic measurements," AIAA 
J., 12, No. 2, 208-212 (1974). 

12. R. A. Chodzko, D. J. Spenser, H. Mirels, S. B. Mason, and D. H. Ross, "Zero-power-gain 
measurements in cw HF (DF) laser by means of a fast scan technique," IEEE J. Quant. 
Electr., 12, No. Ii, 660-664 (1976). 

13. K. T. Yano and H. M. Bobitch, "Small-signal gain measurements in a cw chemical laser," 
IEEE J. Quant. Electr., 14, No. I, 12-16 (1978). 

i4. H. Mirels, "Gain anisotropy in low-pressure chemical lasers," Appl. Optics, 22, No. 
9, 1281-1283 (1983). 

15. S. W. Zelazny, W. A. Chambers, W. F. Van Tassell, and W. F. Brandkamp, "Medium induced 
phase aberrations in continuous wave (cw) hydrogen fluoride chemical lasers," SPIE 
293, Wavefront Distortions in Power Optics (1981), pp. 126-132. 

16. A. V. Berdyshev, A. A. Stepanov, and V. A. Shcheglov, "Saturation of active medium in 
cw chemical lasers," Kvantovaya Elektron. (Moscow), I0, No. 12, 2473-2477 (1983). 

17. V. I. L'vov, A. A. Stepanov, and V. A. Shcheglov, "Sat--uration in multilevel laser media," 
Kvantovaya Elektron. (Moscow), ii, No. i0, 1975-1983 (1984). 

18. J. Stricker and K. Waichman, "Effects of shock waves on the performance of a cw super- 
sonic HF-chemical laser," J. App!. Phys., 56, No. 5, 1301-1308 (1984). 

19. L. A. Vainstein, Open Cavities and Waveguide [in Russian]. Soy. Radio, Moscow (1966). 
20. V. I. Stepanov (ed.), Calculation Methods for Lasers [in Russian], Nauka i Tekhnika, 

Minsk (1968). 

139 



21. M. Born and E. Wolf, Principles of Optics, Pergamon (1970). 
22. D. Marcuse, Optical Waveguide [Russian translation], Mir, Moscow (1974). 
23. A. Gerard and J. M. Birch, Introduction to Magnetic Optics [Russian translation], Mir, 

Moscow (1978). 
24. M. B. Vinogradova, D. V. Rudenko, and A. P. Sukhorukov, Wave Theory [in Russian], Nauka, 

Moscow (1979). 
25. E. F. Ishchenko, Open Optical Cavity. Some Questions of Theory and Calculation [in 

Russian], Soy. Radio, Moscow (1980). 
26. A. Yariv, Quantum Electronics [Russian translation], Soy. Radio, Moscow (1980). 
27. K. Smith and R. Tompson, Computer Modeling of Gas Lasers, Plenum, New York (1978). 
28. G. D. Boyd and J. P. Gordon, "Confocal multimode resonator for millimeter through opti- 

cal wavelength masers," Bell Syst. Techn. J., 40, No. 2, 489-508 (1961). 
29. G. D. Boyd and H. Kogelnik, "Generalized confocal resonator theory," Bell Syst. Tech. 

J., 41, No. 4, 1347-1369 (1962). 
30. A. Yariv and J. P. Gordon,"The laser (Review)," Proc. IEEE, 51, No. i, 4-27 (1963). 
31. L. Bergstein and T. H. Zachos, "Fabry-Perot resonators in uniaxially anisotropic media," 

IEEE J. Quant. Electr., ~, No. i0, 677-690 (1966). 
32. L. Bergstein, "Modes of stable and unstable optical resonators," Appl. Optics, Z, No. 

3, 495-504 (1968). 
33. Yu. A. Anan'ev and V. E. Sherstobitov, "Influence of edge effects on the properties 

of unstable cavities," Kvantovaya ~lektron. (Moscow), No. 3, 82-89 (1971). 
34. A. N. Chester, "Mode selectivity and mirror misalignment effects in unstable laser reso- 

nators," Appi. Opt., ill, No. ii, 2584-2590 (1972). 
35. M. Lax, W. H. Louisell, and W. B. McKnight, "Transverse-mode discrimination in three- 

mirror resonators," J. Opt. Soc. Am., 63, No. 12, 1544-1549 (1973). 
36. M. Lax, W. H. Louisel!, and W. B. McKnight, "From Maxwell to paraxial wave optics," Phys. 

Rev., AII~ No. 4, 1365-1370 (1975)o 
37. K. E. Oughstun, "Intracavity adaptive optic compensation of phase aberrations," J. Opt. 

Soc. Am., 71, No. 7, 862-872 (1981). 
38. V. G. Marchenko, "Self-reproducing fields," Kvantovaya ~lektron. (Moscow), 8, No. 5, 

1027-1036 (1981). 
39. V. G. Marchenko, "Investigation of fields of wide-aperture planar cavities," Kvantovaya 

~lektron. (Moscow), 8, No. 5, 1037-1044 (1981). 
40~ V. E~ Sherstobitov,"Possibility of compensating for small-scale inhomogeneities with 

the aid of a Zernike cell," Kvantovaya ~lektron. (Moscow), 12, No. i, 91-95 (1985). 
41. S. I. Kliment'ev, V. I. Kuprenyuk, V.V. Lyubimov, and V. E. Sherstobitov, "Oscillation 

modes of a cavity with a selector based on phased Fourier collector," Kvantovaya ~lek- 
tron. (Moscow), 16, No. i, 112-i18 (1989). 

42. A. S. Biryukov, E. M. Kudryavtsev, A. N. Logunov, and V. A. Shcheglov, "Spatial eigen- 
frequencies and scattered-radiation spectrum in a planar cavity with spatially inhomo- 
geneous active medium," FIAN Preprint No. 130, Moscow (1989). 

43. E. M. Kudryavtsev, A. N. Logunov, and V. A. Shcheglov, "Factors influencing the power 
angle spectrum of radiation generated in a planar cavity with optically inhomogeneous 
active medium," Moscow FIAN Preprint No. 165 (1089). 

44. S. A. Collins, "Analysis of optical resonators involving focusing elements," Appl. Optics, 
~, No. ii, 1263-1275 (1964). 

45. A. E. Siegman, "Unstable opticall resonators for laser applications," Proc. IEEE, 53, 
No. 3, 277-287 (1965). 

46. W. F. Krupke and W. R. Sooy, "Properties of an unstable eonfocal resonator CO 2 laser 
system," IEEE J. Quant. Electr., ~, No. 12, 575-586 (1969). 

47. Yu. A. Anan'ev, G. N. Vinokurov, L. V. Koval'chuk, N. A. Sventsitskaya, and V. E. Shersto- 
bitov, "Laser with telescopic cavity," Zh. ~ksp. Teor. Fiz., 58, No. 3, 786-793 (1970). 

48. Yu. A. Anan'ev, "Unstable cavities and their applications," Kvantovaya ~iektron. (Moscow), 
No. 6, 3-34 (1971). 

49. Yu. A. Anan'ev, L. V. Koval'chuk, V. P. Trusov, and V. E. Sherstobitov, "Procedure for 
calculating the efficiency of lasers with unstable cavities," Kvantovaya Eiektron. (Mos- 
cow), !, No. 5, 1201-1211 (1974). 

50. L. A. Vasil'ev, V. K. Demkin, Yu. A. Kalinin, and Yu. I. Kruzhilin, "Calculation of angu- 
lar distribution of the emission of a laser with an inhomogeneous active medium and a 
telescopic cavity," Kvantovaya Elektron. (Moscow), ~, No. I, 51-56 (1975). 

51. Yu. B. Konev and V. A. Feofilaktov, "Effect of mirror deformation on the characteristics 
of lasers with unstable cavities," Kvantovaya ~lektron. (Moscow), ~, No. II, 2449-2452 
(1977). 

140 



52. H. Mirels, "Interaction between unstable optical resonator and cw chemical laser," AIAA 
J., 13, No. 6, 785-791 (1975). 

53. A. A. Paxton and L. M. Gutheinz, "Unstable optical resonators: some design considera- 
tions," Electro-optical Systems design, 14, No. 5, 31-38 (1982). 

54. R. S. Ga!eev and S. !. Krasnov, "Approximate method of calculating unstable telescopic 
cavities," Kvantovaya Elektron. (Moscow), 9, No. 6, 1267-1269 (1982). 

55. N. A. Konopiev, A. Ao Stepanov, and V. A. Shcheglov, "Energy characteristics of annular 
model of a chemical supersonic DF-CO~ laser with unstable telescopic cavity," Kvanto- 
vaya ~lektron. (Moscow), i0, No. 6, 1145-1150 (1983). 

56. J. P. Gordon and R. L. Fork, "Optical resonator with negative dispersion," J. Opt. Soc. 
Am., Optics Letters, 9, No. 5, 153-155 (1984). 

57. H. Kogelnik, "Imaging of optical models - resonators with internal lenses," Bell Syst. 
Techn. J., 44, No. 3, 455-494 (1965). 

58. H. Kogelnik and T. Li, "Laser beams and resonators," Appl. Optics, ~, No. i0, 1550-i567 
(1966). 

59. W. K. Kahn, "Unstable optical resonators," Appi. Optics, 5, No. 3, 407-413 (1966). 
60. A.E. Siegmam, "A canonical formulation for analyzing multielement unstable resonators, ~' 

IEEE J. Quant. Electr., 12, No. i, 35-39. 
61. T. T. Yang, "Modeling of cw chemical laser with annular unstable resonator," AIAA J., 

18, No. i0, 1223-1232 (1980). 
62. V. I. Kuprenik and V. E. Sherstobitov, "Calculation of mirror system of an unstable cav- 

ity with field rotation, ~' Kvantovaya Elektron. (Moscow), i, No. 4, 787-794 (1980). 
63. I. M. Bel'dyugin and E. M. Zemskov, "Contribution to the calculation of fields in cavities 

with wave-front inverting mirrors," Kvantovaya ~lektron. (Moscow), 9, No. 4, 817-8i9 
(1982). 

64. V. G. Doronin, V. I. Novikov, V. P. Pinchenko, and V. A. Stepanov, "Influence of inhomo- 
geneity of the active medium and of diaphragms on the parameter of the output beam of 
a CO 2 laser," Kvantovaya Elektron. (Moscow), 9, No. 5, 876-882 (1982). 

65. A. F. Mamzer and V. S. Rogov, "Numerical method of investigating the energy character- 
istics of a laser with an unstable cavity," Preprint No. 2449, IAE, Moscow (1974). 

66. A. F. Mamzer, V. S. Rogov, and A. S. Rumyantsev, "Calculation of energy parameters of 
a laser with unstable cavity," Kvantovaya Elektron. (Moscow), i, No. i, 142-147 (1977). 

67. I.M. Vel'dyugin, Ya. Z. Virnik, and E. M. Zemskov, "Stabilization of regime of genera- 
tion of the first Stokes component in a Raman laser with unstable cavity," Kvantovaya 
~lektron. (Moscow), i, No. i0, 2138-2142 (1974). 

68. Ya. Z. Virnik, V. G. Krutova, A. I. Mashchenko, A. N. Oraevskii, A. A. Stepanov, and 
V. A. Shcheglov, "Theoretical investigation of a cw chemical HF laser with a telescopic 
cavity," Kvantovaya ~lektron. (Moscow), ~, No. I0, 2234-2245 (i977). 

69. Ya. Z. Virnik, V. G. Krutova, A. A. Stepanov, and V. A. Shcheglov, "Calculation for a 
cw HF laser with spherical telescopic cavity," Kvantovaya ~lektron. (Moscow), ~, No. 
Ii, 2480-2484 (1977). 

70. Ya. Z. Virnik, V. G. Krutova, A. I. Mashchenko, A. N. Oraevskii, A. A. Stepanov, and 
V. A. Shcheglov, "Calculations for multipass telescopic amplifiers for a cw chemical 
HF laser," Kvantovaya ~lektron. (Moscow), ~, No. 4, 883-890 (1978). 

71. V. S. Rogov and M. M. Eikenglaz, "Numerical investigation of the influence of optical 
inhomogeneities of the active medium on the operation of an unstable telescopic cavity," 
Kvantovaya ~lektron. (Moscow), i, No. i, 35-41 (1977). 

72. P. V. Korolenko and V. G. Makarov, "Influence of active medium on the spatial charac- 
teristics of the waveguide lasing regime in gas lasers," Kvantovaya ~lektron. (Moscow), 
14, No. !, 76-79 (1987). 

73. A. G. Fox and T. Li, "Resonant modes in a maser interferometer," Bell Syst. Techn. J., 
40, No. 2, 453-488 (1961). 

74. A. G. Fox and T. Li, "Modes in a maser interferometer with curved and tilted mirrors," 
Proc. IEEE, 51, No. i, 80-89 (1963). 

75. A. G. Fox and T. Li, "Effect of gain saturation on the oscillating modes of optical 
masers," IEEE J. Quant. Electr., ~, No. 12, 774-783 (1966). 

76. A. E. Siegman and R. W. Arrathoon, "Modes in unstable optical resonators and lens wave- 
guides," IEEE J. Quant. Electr., ~, No. 4, 156-163 (1967). 

77. R. L. Sanderson and W. Streifer, "Unstable laser resonator modes," Appl. Opt., 8, No. 
i0, 2129-2136 (1969). 

78. R. L. Sanderson and W. Streifer, "Laser resonators with tilted reflectors," Appl. Optics, 
8, No. ii, 2241-2248 (1969). 

141 



79�9 D. B. Rench and A. N. Chester, "Iterative diffraction calculations of transverse mode 
distributions in confocal unstable laser resonators," Appl. Opt., 12, No. 5, 997-1010 
(1973)�9 

80. A. N. Chester, "Three-dimensional diffraction calculations of laser resonator modes," 
Appl. Opt., 12, No. i0, 2353-2366 (1973). 

81. K. E. Oughstun, "Intracavity compensation of quadratic phase aberrations," J. Opt. Soc. 
Am,, 72, No. ii, 1529-1537 (1982). 

82. V. I. Kuprenyuk, u E. Semenov, L. D. Smirnova, and V. E. Sherstobitov, "On the wave- 
approximation calculation of an unstable cavity with field rotation," Kvantovaya ~lek- 
tron. (Moscow), IO, No. 12, 2478-2484 (1983). 

83. I. M. Bel'dyugin, B. Ya. Zel'dovich, M. V. Zolotarev, and V. V. Shkunov, "Lasers with 
wave-front-inverting mirrors (Review)," Kvantovaya ~lektron. (Moscow), 12, No. 12, 2394- 
2421 (1985). 

84. R. W. Jones and J. F. Perkins, "Transverse mode properties of UR90 beam rotated un- 
stable resonators for free electron lasers," AIAA Paper, No. 87-1277 (1987). 

85. S, H. Chao and D. L. Shealy, "Theoretical analysis of stable and unstable aspherical 
laser cavities," Appl. Opt., 21, No. i, 75-79 (1988). 

86. Yu. A. Anan'ev, V. V. Lyubimov, and I. B. Orlova, "Mode deformation in open cavities 
with flat mirrors," Zh. Tekh. Fiz., 39, No. i0, 1872-1880 (1969). 

87. A. E. Siegman and H. Y. Miller, "Unstable optical resonator loss calculations using the 
Prony method," Appl. Opt., 9, No. 12, 2729-2736 (1970). 

88. W. D. Murphy and M. L. Bernabe, "Numerical procedures for solving nonsymmetric eigenvalue 
problems associated with optical resonators," Appl. Opt., 17, No. 15, 2358-2365 (1978). 

89 A. E. Siegman~, "A quasi-fast Hankei transform using the fast Fourier transform," Stanford 
Univ. Tech. Report (1976). 

90. P. Horwitz, "Asymptotic theory of unstable resonator modes," J. Opt. Soc. Am., 63, No�9 
12, 1528-1543 (1973)�9 

91. P. Horwitz, "Modes in misaligned unstable resonators," Appl. Opt., 15, No. I, 167-178 
(1976). 

92. R. R. Butts and P. V�9 Avizonis, "Asymptotic analysis of unstable laser resonators with 
circular mirrors," J. Opt. Soc. Am., 68, No. 8, 1072-1078 (1978). 

93, G. T. Moore and R. J. McCarthy, "Theory of modes in a loaded strip confocal unstable 
resonator," J. Opt. Soc. Am., 67, No. 2, 228-241 (1977). 

94. M. O. Scully, G. T. Moore, and R. J. McCarthy, "Unstable resonator theory," Final 
Report of Air Force Weapons Laboratory, New Mexico (1977) 

95. S. H. Cho, S. Y. Shin, and L. B. Felsen, "Ray optical analysis of cylindrical unstable 
resonators," J. Opt. Soc. Am., 69, No. 4, 563-574 (1979). 

96. M. J. Smith, "Mode properties of a strip confocal unstable resonator with saturable 
gain," Appi. Opt., 20, No. 9, 1611-1620 (1981). 

97. C. C. Sung, Y. Q. Li, and M. E. Smithers, "Mode-medium instability in an unstable reson- 
ator," Appl. Opt., 27, No. i, 58-65 (1988). 

98. A. E. Siegman and E. A. Sziclas, "Mode calculations in unstable resonators with flowing 
saturable gain. I. Hermite-Gaussian expansion," Appl. Opt., 13, No. 12, 2775-2792 (1974). 

99. G.-Sh. Zhou and L�9 W. Casperson, "Modes of a laser resonator with a retroreflective mir- 
ror," Appl. Opt., 20, No. 9, 1621-1625 (1981). 

i00. V. N. Lugovoi and A. M. Prokhorov, "Theory of propagation of high-power laser radiation 
in a nonlinear medium," Usp. Fiz. Nauk, i!I, No. 2, 203-247 (1973). 

i01. A. F. Suchkov, "Influence of inhomogeneities on the operating regimes of solid-state 
lasers," Zh. ~ksp. Teor. Fiz., 4-9, No. 5, 1495-1503 (1965). 

102. V. S. Letokhov and A. F. Suchkov,"Dynamics of generation of a giant coherent-light pulse," 
Zh. ~ksp. Teor. Fiz., 50, No. 4, 1148-1155 (1966)�9 

�9 . Q-switchlng, 103 V. S. Letokhov and A. F Suchkov, "Dynamics of laser with instantaneous " " 
Trudy FIAN SSSR, 43, 169 (1968). 

104. A. F. Suchkov, "Eiectrodynamics of lasers having inhomogeneously filled open cavities," 
Trudy FIAN SSSR, 43, 161 (1968). 

105. A. V. Butkovskii, "Calculation of mode structure of planar optical cavity of a solid-state 
laser," Kvantovaya ~lektron. (Moscow), ~, No. 4, 729-733 (1980). 

106. A. V. Butkovskii, "Influence of nonlinear active medium on the structure of the natural 
modes of a Fabry-Perot cavity," Kvantovaya ~lektron. (Moscow), 9, No. i0, 1977-1982 (1982) 

107. I. L. Koroleva and A. P. Napartovich, "Numerical investigation of stimulated scattering 
in a laser unstable cavity," Kvantovaya ~lektron. (Moscow), 16, No. 12, 2469-2474 (1989). 

142 



108. M. V. Pyatakhin and A. F. Suchkov, "Methods of controlling small-scale structure and 
depolarization of radiatlon," " Kvantovaya ~lektron. (Moscow), 15, No. 2, 288-292 (1988) 

109. A. F. Mamzer and Yu. N. Moshin, "Calculation algorithm for a CO 2 laser in the amplifi- 
cation regime with allowance for the influence of optical inhomogeneity of the active 
medium," IAE Preprint No. 3169, Moscow (1979). 

ii0. Yu. M. Karamzin and Yu. B. Konev, "Numerical investigation of the operation of un- 
stable telescopic cavities with allowance for diffraction and saturation in the active 
medium," Kvantovaya ~lektron. (Moscow), 2, No. 2, 256-264 (1975). 

iii. Yu. F. Kir'yanov, G. G. Kochemasov, and V. D. Urlin, "Investigation of the radiation 
divergence of a laser with inhomogeneous active medium in the gain-saturation regime," 
Kvantovaya Elektron. (Moscow), ~, No. i0, 2161-2170 (1976). 

112. Ya. Z. Birnik, A. K. Piskunov, A. A. Stepanov, and V. A. Shcheglov, "Diffraction effects 
in a cw chemical HF laser with unstable telescopic cavity," Kvantovaya Elektron. (Mos- 
cow), 6, No. I, 236-248 (1979). 

113. A. A. Stepanov and V. A. Shcheglov, "Diffraction calculation of a cw chemical HF ampli- 
fier with multipass telescopic cavity," Zh. Tekh. Fiz., 49, No. 3, 581-587 (1979). 

114. 0. Yu. Nosach and E. P. Orlov, "Influence of refraction losses on the characteristics 
of laser emission," Kvantovaya Eiektron. (Moscow), iO, No. 5, 932-943 (i983). 

115. L. C. Bradley and J. Herrmann, "Phase compensation for thermal blooming," Appl. Opt., 
13, No. 2, 331-334 (1974). 

116. D. B. Rensch, "Three-dimensional unstable resonator calculations with laser medium," 
Appl. Opt., 13, No. ii, 2546-2561 (1974). 

117. A. T. Jones, "Near- and far-field laser modes produced by confocal unstable resonators. 
I. Free-space and saturable gain media," J. Phys. D: Appl. Phys., Ii, No. 6, 871-890 
(1978). 

118. H. Kogelnik, "On the propagation of Gaussian beams of light through lenslike media in- 
cluding those with a loss or gain variation," Appl. Opt., ~, No. 12, 1562-1569 (1965). 

119. G. N. Vinokurov, V. V. Lyubimov, and I. B. Orlova, "Investigaton of selective proper- 
ties of open unstable cavities," Opt. Spektrosk., 34, No. 4, 741-751 (1973). 

120. V. V. Lyubimov, N. N. Pevgenen, and V. F. Petrov, "Asymmetric unstable cavities," Opt. 
Spektrosk., 35, No. 6, 1132-1137 (1973). 

121. L.-W. Chen and L. B. Felsen, "Coupied-mode theory of unstable resonators," J. Opt. Soc. 
Am., 63, No. i0, 1321-1322 (1973). 

122. C. Santana and L. B. Felsen, "Unstable open resonators: two-dimensional and three- 
dimensional losses by waveguide analyses," Appl. Opt., 15, No. 6, 1470-1478 (1976). 

123. C. Santana and L. B. Felsen, "Mode losses in unstable resonators with rounded edges," 
Appl. Opt., 17, No. 14, 2239-2243 (1978). 

124. A. Y. Beshkaev and V. M. Grimblatov, "Misadjusted optical cavity with lenslike medium," 
Kvantovaya ~lektron. (Moscow), Z, No. 6, 1168-1179 (1980). 

125. E. A. Sziclas and A. E. Siegman, "Mode calculations in unstable resonators with flowing 
saturable gain. II. Fast Fourier transform method," Appl. Opt., ~, No. 8, 1874-1889 
(1975), 

126. A. E. Siegman, "Effects of small-scale phase perturbations on laser oscillator beam 
quality," IEEE J. Quant. Elect., 13, No. 5, 334-337 (1977). 

127. J. F. Perkins and C. Cason, "Effects of small misalignment in empty unstable resona- 
tors," Appl. Phys. Letters, 31, No. 3, 198-200 (1977). 

128. L. V. Koval'chuk and V. E. Sherstobitov, "Influence of small-scale phase inhomogenei- 
ties on the properties of unstable cavities," Kvantovaya ~lektron. (Moscow), i, No. 
i0, 2166-2172 (1977). 

129. L. V. Koval'chuk, V. V. Sergeev, and V. E. Sherstobitov, "Properties of a laser with 
an unstable cavity containing small-scale phase inhomogeneities," Kvantovaya Elektron. 
(Moscow), 6, No. 6, 1164-1170 (1979). 

130. P. W. Milonny and A. A. Paxton, "Model for the unstable resonator carbon monoxide elec- 
tric-discharge laser," J. Appl. Phys., 49, No. 3, 1012-1027 (1978). 

131. W. L. Hendricks, S. C. Kurzius, and R. R. Mica,arian, "Comparison between LAMP theo- 
retical predictions and experimental spectroscopic and chemical laser performance," 
AIAA Paper, No. 77-656 (1977). 

132. W. L. Hendricks and J. Thoenes, "Mode calculations in chemical lasers with unstable 
resonators and a flowing participating gain medium," AIAA Paper No. 78-67 (1978). 

133. W. J. Glowacki, K.-Y. Chien, and W. P. Altman, "Some effects of unstable resonators 
on performance of cw chemical lasers," AIAA J., 16, No. i0, 1112-1114 (1978). 

143 



134. L. H. Sentman, "Chemical laser power spectral performance: a coupled fluid dynamics 
kinetics and physical optics model," Appl. Opt., 17, No. 14, 2244-2249 (1978). 

135. L. H. Sentman and W. Rushmore, "Computationally efficient rotational nonequilibrium 
cw chemical laser model," AIAA J., 19, No. i0, 1323-1332 (1981). 

136. S. B. Bunkin and Yu. B. Konev, "Characteristics of unstable cavities with field dis- 
tortions in their elements," Kvantovaya Elektron. (Moscow), Z, No. Ii, 2416-2426 (1980). 

137. A. Hardy, "Sensitivity of phase-conjugate resonators to intracavity phase perturba- 
tions," IEEE J. Quant. Electr., 1-7, No. 8, 1581-1585 (1981). 

138. A. Hardy, P. A. Belanger, and A. E. Siegman, "Orthogonality properties of phase con- 
jugate optical resonators," Appl. Opt., 21, No. 6, 1122-1124 (1982). 

139. K. E. Oughstun, "Intracavity adaptive optic compensation of phase aberrations. II. 
Passive cavity study for a small Neq resonator," J. Opt. Soc. Am., 71, No. i0, 1180- 
i192 (1981). 

140. K. Eo Oughstun, "Intracavity adaptive optic compensation of phase aberrations. III. 
Passive and active cavity study for a large Neq resonator," J. Opt. Soc. Am., 73, No. 
3, 282-302 (1983). 

141. R. C. Anderson and M. W. Taylor, "Phase contrast flow visualization," Appl. Opt., 21, 
No. 3, 528-535 (1982). 

142. V. E. Semenov, "Influence of field rotation on the angular characteristics of emission 
of a laser with an active medium containing random small-scale inhomogeneities," 
Kvantovaya Elektron. (Moscow), 9, No. 5, 1005-1009 (1982). 

143. V. E. Sherstobitov, "Angular divergence of radiation of free-flow gas lasers," Izv. 
~kad. Nauk SSSR, Ser. Fiz., 46, No. i0, 1905-1914 (1982). 

144. L. V. Koval'chuk, A. Yu. Rodionov, and V. E. Sherstobitov, "Numerical simulation of 
intracavity adaptive system," Kvantovaya Elektron. (Moscow), iO, No. 8, 1564-1571 
(1983). 

145. S. I. Kliment'ev, V. V. Kononov, V. I. Kuprenyuk, L. D. Smirnova, V. V. Sergeev, and 
V. E. Sherstobitov, "Compensation for small-scale phase distortions with the aid of 
a phased Fourier corrector," Kvantovaya Elektron. (Moscow), 12, No. 12, 2501-2504 (1985). 

146. S. I. Kliment'ev, u I. Kuprenyuk, and V. E. Sherstobitov, "Numerical simulation of 
linear wave-front-reversal system using a spatial phase filter," Kvantovaya ~lektron. 
(Moscow), 14, No. 5, 1009-1013 (1987). 

147. S. I. Kliment'ev, V. I. Kuprenyuk, and V. E. Sherstobitov, "Numerical simulation of cav- 
ity with phase-conjugating mirror, using a Fourier phase corrector in the case of a 
low Fresnel number," Kvantovaya Elektron. (Moscow), 15, No. i, 161-163 (1988). 

148. S. I. Kliment'ev, V. I. Kuprenyuk, V. V. Lyubimov, and V. E. Sherstobitov, "Numerical 
simulation of unstable ring cavity with a Fourier phase corrector," Kvantovaya Elek- 
tron. (Moscow), 16, No. 4, 825-831 (1989). 

149. H. Sugawara and S. Takemori, "Transverse mode calculations in unstable resonators using 
fast Fourier transform method," Review Laser Eng., 13, No. 2, 171-179 (1985). 

150. M. Lax, G. P. Agrawal, M. Belic, B. J. Coffey, and W. H. Louisell, "Electromagnetic 
field distribution in loaded unstable resonators," J. Opt. Soc. Am., ~, No. 5, 731-742 
(1985). 

151. S. i. Zagorodneva, L. V. Koval'chuk, and A. Yu. Rodionov, "Investigation of unstable 
cavity with perforated mirror," Kvantovaya ~lektron. (Moscow), 13, No. 5, 924-931 (1986). 

152. A. S. Biryukov, E. M. Kudryavtsev, and A. N. Logunov, "Radiation field in a system of 
two confocal telescopic cavities," FIAN Preprint No. 235 (1986). 

153. A. V. Bondarenko, E. V. Dan'shchikov, N. N. Elkin, F. V. Lebedev, V. V. Likhanskii, 
A. P. Napartovich, and V. N. Troshchieva, "Angular selection of regeneratively amplified 
radiation in a laser with an unstable cavity," Kvantovaya ~lektron. (Moscow), 15, No. 
i, 30-36 (1988). 

154. V. A. Gerasimov, V. M. Zverev, A. A. Mak, M. V. Filippov, and A. A. Shcherbakov, "Method 
for self-consistent energy calculations for solid-state optically pumped lasers," 
Kvantovaya Elektron. (Moscow), iO, No. 9, 1806-1812 (1983). 

155. I. A. Deryagin, A. P. Pogibel'skii, A. D. Ustinov, and i. A. Fedulov, "Spatial coherence 
of emission of a laser with a cavity filled with a randomly inhomogeneous medium," 
Kvantovaya Elektron. (Moscow), Z, No. 4, 888-890 (1980). 

156. I. M. Bel'dyugin and A. P. Pogibel'skii, "Influence of random inhomogeneities of the 
refractive index of a medium on the forms of the fields in a laser cavity with wave- 
front-reversing mirrors," Kvantovaya Elektron. (Moscow), ~, No. i0, 2194-2197 (1980). 

157. V. V. Lyubimov, "Influence of light scattering on the directivity of the emission of 
unstable cavities," Opt. Spektrosk., 53, No. 5, 916-918 (1982). 

144 



158. V. V. Lyubimov, "Influence of small-scale perturbations on the field correlation func- 
tion in an unstable cavity," Kvantovaya Elektron. (Moscow), iO, No. 9, 1897-1899 (1983). 

159. V. V. Lyubimov, "Influence of light scattering on the oscillations of unstable cavities. 
Cavity with cylindrical mirrors," Opt. Spektrosk., 56, No. 3, 497-501 (1984). 

160. A. S. Eremenko, V. V. Lyubimov, V. E. Semenov, A. I. Stepanov, and I. A. Yachnev, "In- 
fluence of small-scale inhomogeneities on the energy directivity pattern of the emission 
of lasers with unstable cavities," Kvantovaya Elektron. (Moscow), 12, No. 8, 1705-1708 
(1985). 

161. O. G. Bol'shukhin, I. B. Orlova, V. E. Sherstobitov, "Statistical analysis of natural 
oscillations of an unstable cavity with a weakly inhomogeneous medium" Kvantovaya Elek- 
tron. (Moscow), Ii, No. 4, 720-729 (1984). 

162. O. G. Vol'shukhin, I. B. Orlova, and V. E. Sherstobitov, "Influence exerted on the coher- 
ence function of the laser-emission field by spatial confinement of light beams in an 
unstable cavity containing a randomly inhomogeneous medium," Kvantovaya ~lektron. (Mos- 
cow), 13, No. i, 15-24 (1986). 

163. O. G. Bol'shukhin, I. B. Or!ova, and V. E. Sherstobitov, "Use of geometric approximation 
to determine the field-coherence function in an unstable cavity with randomly inhomo- 
geneous medium," Kvantovaya ~lektron. (Moscow), 13, No. I, 159-162 (1986). 

164. W. W. Rigrod, "Gain saturation and output power of optical masers," J. Appl. Phys., 
34, No. 9, 2602-2609 (1963). 

165. W. W. Rigrod, "Saturation effects in high-gain lasers," J. Appl. Phys., 36, No. 8, 2487- 
2490 (1965). 

166. A. A. Stepanov and V. A. Shcheglov, "Method of consistent calculations for a diffusion- 
type cw chemical HF laser using the Navier-Stokes equations (planar and cylindrical 
geometry of the nozzle block)," FIAN Preprint No. 182, Moscow (1976). 

167. A. P. Kothari, J. D. Anderson, and E. Jones, "Navier--Stokes solutions for chemical laser 
flows," AIAA J., 15, No. I, 92-100 (1977). 

168. J. D. Ramshaw, R. C. Mjolsness, and O. A. Farmer, "Numerical method for two-dimensional 
steady-state chemical laser calculations," J. Quant. Spectr. Radiat. Transfer, 17, No. 
2, 149-164 (1977). 

169. Yu. V. Lapin, M. Kh. Strelets, and M. L. Shchur, "Numerical simulation of processes 
in the cavity of a cw HF chemical laser, using the Navier-Stokes equations," Phys. Comb. 
Explosion, 18, No. 5, 89-96 (1982). 

170. M. Kh. Strelets and M. L. Shchur, "Method of scaling the compressibility to calculate 
stationary flows of a viscous gas at arbitrary Mach numbers," Zh. Vychisl. Mat. Mat. 
Fiz., 28, No. 2, 252-266 (1988). 

171. W. S. King and H. Mirels, "Numerical study of a diffusion-type chemical laser," AIAA 
J., iO, No. 12, 1647-1654 (1972). 

172. J. Thoenes and A. W. Ratliff, "Chemical laser oscillator analytical model," AIAA Paper 
No. 73-644 (1973). 

173. A. W. Ratliff and J. Thoenes, "Mixing reacting flows in chemical laser cavities with 
lateral pressure gradient effects," AIAA Paper No. 74-225 (1974). 

174. V. K. Baev, V. I. Golovinchev, and V. A. Yasakov, Two-Dimensional Turbulent Flows of 
Reacting Gases, R. I. Soloukhin (ed.), [in Russian], Nauka, Siberian Div., Novosibirsk 
(1976). 

175. A. A. Stepanov and V. A. Shcheglov, "Energetic capabilities of a chemical cw HF laser 
with chainlike excitation," FIAN Preprint No. 269, Moscow (1978). 

176. A. A. Stepanov and V. A. Shcheglov, "Ring model of autonomous chemical cw HF laser with 
one-shot and chainlike excitation mechanisms, FIAN Preprint No. 59, Moscow (1979). 

177. A. A. Stepanov and V. A. Shcheglov, "Influence of mixing effects on the energy charac- 
teristics of an autonomous cw chemical HF laser," Kvantovaya Elektron. (Moscow), 6, 
No. 4, 747-758 (1979). 

178. A. A. Stepanov and V. A. Shcheglov, "Chain mechanism of exciting a cw chemical HF laser 
with a cylindrical nozzle block," Kvantovaya ~lektron. (Moscow), 6, No. 7, 1476-1483 
(1979). 

179. A. A. Stepanov and V. A. Shcheglov, "Suppression of thermal crisis under conditions 
of resonant interaction of high-power laser radiation with a gas flow," Kvantovaya ~lek- 
tron. (Moscow), 6, No. ii, 2476-2478 (1979). 

180. A. A. Stepanov and V. A. Shcheglov, "Features of the ring model of a chemical cw HF 
laser in a 'cold' reaction," Zh. Tekh. Fiz., 50, No. 3, 557-563 (1980). 

181. A. A. Stepanov and V. A. Shcheglov, "Emission spectrum of a ring chemical cw HF laser 
with chain mechanism of excitation," Zh. Tekh. Fiz., 50, No. 3, 623-625 (1980). 

145 



182. A. V. Lavrov and V. A. Pospelov, "Mixing of planar laminar jets of a relaxing gas, with 
allowance for radiation," Mekh. Zhidk. Gaza, No. 3, 137-142 (1978). 

183. A. V. Lavrov, V. A. Pospelov, A. V. Fedotov, and M. L. Shchur, "Numerical analysis of 
the lasing regime of a cw chemical HF laser," Fiz. Goreniya Vzryva, 15, No. i, 89-97 
(1979). 

184. I. A. Vassina, V. L. Dorot, and M. Kh. Strelets, "Calculation of boundary layer in the 
nozzle of a continuously acting supersonic chemical laser," Mekh. Zhidk. Gaza, No. 3, 
120-126 (1979). 

185. V. A. Pospelov, "Effective difference scheme for the calculation of the characteristics 
of a cw chemical HF laser, ChMSSO, 13, No. 3, 99-105 (1982). 

186 G. Emanuel, "Analytical model for a continuous chemical laser," J. Quant. Spectr. Radiat. 
Transfer, ii, No. i0, 1481-1520 (1971). 

187 G. Emanuel, N. Cohen, and T. A. Jacobs, "Theoretical performance of an HF-chemical cw 
laser," J. Quant. Spectr. Radiat. Transfer, 13, No. 12, 1365-1393 (1973). 

188 J. G. Skifstad, "Theory of an HF-chemical laser," Combust. Science and Technology, 6, 
287-306 (1973). 

189 V. A. Pospelov, "Calculation of flow in a cw chemical laser using a mixture of hydrogen 
and fluorine," Mekh. Zhidk. Gaza, No. 2, 203-205 (1978). 

190 H. Mirels, R. Holland, and W. S. King, "Simplified model of cw diffusion-type chemical 
laser," AIAA Paper, No. 72-145 (1972). 

191 H. Mirels, "Simplified model of continuous wave diffusion-type chemical laser - an ex- 
tension," AIAA J., 14, No. 7, 930-939 (1976). 

192 J. E. Broadwell, "Effects of mixing rate on HF chemical laser performance," Appl. Opt., 
13, No. 4, 962-967 (1974). 

193 S. W. Zelazny, R. J. Driscoll, J. W. Raymonda, J. A. Blauer, and W. S. Solomon, "Model- 
ing DF/HF cw lasers: an examination of key assumptions," AIAA Paper No. 77-63 (1977). 

194. A. A. Stepanov and V. A. Shcheglov, "Quasi-one-dimensional approach to the calculation 
for a cw chemical laser of the diffusion type on the basis of the flame-front model," 
Zh. Tekh. Fiz., 46, No. 3, 563-573 (1976). 

195. V. G. Krutova, A. N. Oraevskii, A. A. Stepanov, and u A. Shcheglov, "Numerical analysis 
of cw chemical laser of diffusion type for an arbitrary degree of dissociation of molecu- 
lar fluorine," Kvantovaya Elektron. (Moscow), ~, No. 9, 1919-1931 (1976). 

196. A. N. Oraevskii, V. P. Pimenov, A. A. Stepanov, and V. A. Shcheglov, "Efficiency of 
diffuse-type cw chemical amplifier," Kvantovaya Elektron. (Moscow), ~, No. 9, 1896- 
1902 (1976). 

197. H. Mirels, "Multimode low-pressure cw chemical laser performance including source flow 
effects," Appl. Opt., 20, No. 14, 2379-2388 (1981). 

198. H. Mirels, "Effects of transitional and rotational nonequilibrium on cw chemical laser 
performance," Appl. Opt., 27, No. i, 89-102 (1988). 

199. J. W. Cooley and J. W. Tukey, "An algorithm for the machine calculation of complex 
Fourier series," Math. Comput., 19, 297-301 (1965). 

200. S. Sorella and S. K. Ghosh, "Improved method for the discrete fast Fourier transform," 
Rev. Sci. Instrum., 55, No. 8, 1348-1352 (1984). 

201. N. G. Bakhvalov, Chislenaye Metody, Part i, Nauka, Moscow, 218-225 (i975). 
202. K. Enslein, E. Ralston, and G. S. Wilf (eds.), Statistical Methods for Computers [Rus- 

sian translation], Nauka, Moscow (1986), pp. 373-433. 

146 


