
In principle, we can construct a computer model of the conscious, a model of our model of thinking, a kind of a 

"derivative" of the individual adaptation function, i.e., we can model thinking in a metric in which the conscious adequately 

reflects the objective reality. 
If we start with two-level thinking, the subject should have at least two sources for testing the adequacy of the 

reflection: conscious experience and unconscious experience, the latter transmitted to the conscious through "lattice" operators 

as a component of the discretized models. The semantics of these models (and equally our classification of the objects) falls 

outside the scope of the conscious; it is the function of the "lattice" operators. 

Since the computer cannot model the subject as a whole, it is devoid of a source of unconscious experience and is thus 

incapable of independently modeling the classification and the semantics, not to say the motivation of the actions, i.e., survival, 

which evidently falls beyond the conscious. 
We thus assert that computers only can be used to realize conscious models of thinking, and moreover only to the 

extent that we can transmit to the computer our conscious sense of motivation and semantics. 
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A CLASS O F  " A G I N G "  D I S T R I B U T I O N S  

V. Yu. Kotlyar UDC 519.21 

New definitions of aging are introduced and their properties are examined. Two-sided reliability bounds are 

obtained for a number of shock models in classes of distribution functions with these properties. 

INTRODUCTION 

The study of faults in technical elements whose failure rate is time or "age" dependent and also depends on the 

reliabiiity of other elements in the complex system leads to a class of distribution functions (d.f.s) of time to failure with 
specific "aging" properties. While knowledge of the d.f. is sufficient for testing the ordinary aging properties, the analysis of 
these classes requires additional information about some other d.f.s that are related with the given d.f. This constitutes a natural 
direction of research in reliability theory, because in practice complex systems with independent elements are an exception 

rather than the rule. 
One of the approaches to formulating "aging" principles is by extension of existing concepts. Thus, the class of 

distribution functions with "increasing failure rate" (IFR) has been successfully extended to the class of distribution functions 
with "increasing failure rate relative to the d.f. G" (G-IFR) [1]. We will consider the extension of another traditional property, 

"new better than used," to "new better than used relative to the d.f. G" (G-NBU). We say that the d.f. F is G-NBU if for all 

x, y E R+ we have the inequality 
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? ( x  + v) ~< P(x)  ~(y),  ,~ho~a = 1 - - a .  

This property naturally arises in the model of a standby replacement pool, in which a single operating element is backed 

up by a sufficiently large pool of identical standby elements ("cold" redundancy). We know (see, e.g., [2]) that the reliability 

of a new element in the system is not equal to the reliability of a new element from the standby replacement pool (in terms 

of the theory of stochastic processes, this is a renewal process "with delay"). This difference may have a substantial effect on 

the behavior of the system, but it is difficult to determine numerically due to the lack of good statistical data. The G-NBU 
property is introduced to soften this difficulty insofar as it relies on the following natural assumption: the probability of failfree 

operation of an element from the standby replacement pool during the time y is not less than the probability of failfree operation 

of a system element that has already functioned without failure during the time x. 
The G-NBU property is also widely used in reliability. Let us give some examples. 
1. Consider the class of d.f.s F for which lim[F(x)/x] as x --, 0 exists and has a fixed value X ~ 0. Then the property 

~'(x + y) <- F0c)exp{-Xy} defines the class of "new better than used failure rate" (NBUFR) distribution functions. 

2. Let the d.f. G be an NBU distribution in a traditional form [4]. Then the following assertions hold: 

a) the d.f. S o is G-NBU; 
b) if the d.f. F is G-NBU, then the d.f. S v is also G-NBU, where S F is the residual life distribution function, i.e., S F = 

(1/0) ~ 0 ~ [~(u)du, e = S o °0 [r(u)du; 
c) a nonnegative mixture of G-NBU distributions is also a G-NBU distribution; 
d) the nonstationary residual life d.f. N(t, u) generated by the d.f. F E {G-NBU} is also G-NBU. 
These simple facts are stated without proof, and only the last assertion is proved. The d.f. N(t, u) is expressed in terms 

of the underlying d.f. F and the renewal function H that it generates: 

Since F E {G-NBU}, we have 

Xr(l, u) = 7"(1 + u) + ( ? ( t - - x + u ) d H ( x ) ,  
6' 

t 

i¢ (t, ~ + u) <~ ~ (y) ? (f + u) + ~ (y) .i 7: (t - -  x + u) d g  (x) = -d (y) ~ (t, u). 
0 

Thus, N(t, u) is G-NBU. 

A similar extension for other "aging" principles also can be highly fruitful. In this paper, we investigate a 

generalization of the property "new better than used average" (NBUA). All the results can be almost automatically extended 

to the class of so-called "rejuvenating" distributions (this is achieved by simply inverting the inequalities). The notion of NBUA 

is further generalized to multivariate distributions. Such generalizations have been attempted previously. Thus, several 

multivariate analogs of the NBUA property have been introduced in [5]: NBUA-A, NBUA-B, NBUA-C. So far, however, no 
methods have been developed that utilize these properties to obtain specific reliability bounds. In this paper, we introduce a 

multivariate NBUA property based on a multivariate analog of residual life and apply it to derive new reliability bounds for 
some known systems. 

1. THE CLASS OF p-NBUA DISTRIBUTION FUNCTIONS 

Definition 1. The d.f. F(x), x E R+, F(0 +) = 0, isp(')-NBUA, wherep(x) ,  x E R+, p(0-)  = 0, is a nonnegative 
function if: 

a) there exists a unique number ~ such that 
oo 

S exp {×x} p (x) dF (x) = 1; (1) 
0 

b) the d.f. Ire(t) = I o t exp{toc}p(x)dF(x) is an NBUA distribution [1], i.e., SF#(X) <_ b-~t(x) for all x >_ 0, where 
oo 

SF~ (x) = (1/O *~) ~ 7 "~* (x) dx, 
x. 

O*t = ~*t (x )dx  = .f xp  (x) exp {nx} cIF (x). 
0 O 
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Let p(x) - p = const, p > 0. Consider some properties of the class {p-NBUA}: 

1) the d.f. F E {1 - NBUA} ** the d.f. F E {NBUA}, r = 0; 

2) i f p  > 1, then the d.f. F C {p-NBUA} ** the d.f. F # E {NBUA}, r < 0; 

3) i fp  < 1, then the d.f. F E {p-NBUA} ~ the d.f. F # C {NBUA}, K > 0, and J o °° exp{et}dF(t) is convergent 

for some c > 0. 

These assertions make it possible to simplify part a) of the definition. The class {NBUA} is the set of d.f.s with specific 

"aging" properties. In practice, the study of "aging" properties usually focuses on the original d.f. F, and it is therefore relevant 

to consider how the "aging" properties of the d.f. F are related with those of the d.f. F #. We state the following result. 

THEOREM 1. Let the function p(x)f(x), wheref is  the density of the d.f. F, be a Polya function of 2nd order (PF2), 

i.e., ln[p(x)f(x)l is concave on R+. Then F E {p(')-NBUA}. 

Proof The conditions of the theorem imply that the densi tyf  # of the d.f. F # is also PF2, and thus (by Lemma 3.5.8 

[41), F # ~ {IFR} C {NBUA}, where {IFR} is the class of "increasing failure rate" distribution functions. Q.E.D. 

In many important cases, the density function f is PF 2. Thus, the gamma-distribution density r(X, c~; t) = 

x~m-lexp{-xt}/r(a) for ~ _> 1 is PF 2. By Theorem 1, a sufficient condition for the gamma-distribution to be {p(')-NBUA} 

is that p( ')  is PF 2. A similar argument applies to the following distributions: 

Weibull 
o (x) = a~ (;~xff -z exp {-- (~,xff}, x ~ 0, c~ ~ 1; 

truncated normal 

n o (x) = (1/a -I/ f f~) exp {-- (x - -  a)2/2~2}, 

normal 

x ~ 0 ,  ~ > 0 ,  - - o o < a < o o ;  

Laplace 

n (x) = (1/-[/2-~) exp {-- (x - -  a)2/202}, - -  ~ < x < oo. 

l(x) =- 0 .5exp{-- Ix[} ,  - -  oo < x < co. 

The assumption that the original d.f. F is {p(.)-NBUA} produces prelimit two-sided bounds of the sought characteristics 

in the following problems: 

- bounds on the termination probability of a terminating (generalized terminating) renewal process; 

- bounds on the mean number of direct descendants of a particle in a branching process (Bellman-Harris and 

Sevast'yanov models); 

- analysis of some particular stochastic systems (e.g., the problem of ruin, the problem of waiting for a first gap of 

prescribed length in a renewal process, etc.). 

In these problems, the sought characteristics are obtained by solving the "perturbed" renewal equation 

t 

V (t) = g (t) + .f p (u) V (t - -  u) dF (u), (2) 
0 

where g is a bounded measurable function, g(t) = O, t < O. 
Consider a scheme that generates two-sided bounds on the solution of Eq. (2) when F E {p(')-NBUA}. To each 

function z we associate a new function z # defined by the relationship z#(x) = exp{r,x}z(x). This reduces the "perturbed" equation 

(2) to an ordinary renewal equation 

V ~* = g~* + V~**F ~*. (3) 

with the proper d.f. F #. The canonical form of the solution of this equation is 

Va* = g~ , H  ~*, (4) 

where H a = I~n=0 °° F an* is the renewal function of the renewal process generated by the d.f. F #. We obtain the following 

bounds for the function Ha [1, 6.3.14]: 

rio *t ~ H *~ (l) ~ 1 + tlO *t. (5) 
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The monotone behavior of the function g# and the relationships (4)-(5) lead to exact upper and lower bounds on the 

function V # and the corresponding bounds on the original function V. Below we consider some examples of such bounds. 

1.1. Bound on Termination Probability of  

a Terminating Renewal Process 

Consider a terminating renewal process generated by a proper nonarithmetic d.f. F with its origin at zero and with 

termination probability q at each renewal instant (we say that the process is generated by an improper d.f. with a nonzero 

"defect"). For the termination probability P(t) of the process in the time interval [0, t] we have the following theorem. 

THEOREM 2. Let F ~ {p-NBUA}, where p = 1 - q. Then 

(qlO~*×) exp {--  ×t} + p - -  qlO~n ~ 70 (t) 

(q/On×) exp {-- xt} + I - -  qlO~n. (6) 

Proof  We write the renewal equation for the function P(t): 

t 

P (t) = q -k p I P ( t - -  u) dF (u). 
0 

Let us transform Eq. (7) following the scheme outlined above. Then ~ > 0 and 

t 

P*~ (t) = q exp {×t} + ~ P~* (t - -  u) dF ~* (u) 
0 

with the canonical form 

(7) 

(8) 

t t 

Pn (t) ---- q S exp {x (t - -  u)} dH v (u) ---- qH # (t) -6 q× S Hv¢ (t - -  u) exp (×u} du. 
0 - -  0 

We can now mechanically apply inequality (5) to obtain the bound (6), because P(t) = exp{-xt}P#(t) .  
COROLLARY 1. Let F C {p-NBUA}. Then 

ql~ ~ @:z ~ ql×p. (9) 

Proof  Let AP(t) = lP(t) - (q/K@#)exp{--Kt}. The simplest way to obtain the bound (9) is by applying the asymptotic 

bound for the probability P(t) [6, 11.6.2] 

fi  (t) ,,- (q/×O ~) exp { - -  rd}. 

By Theorem 2 for all t > 0 

p ~ q/×&* ~ AP (t) <.~ I - -  q/×O r;, 

and thus in the limit as t --, o~ we have AP(t) --, 0 and 1 - qlKO # >_ 0, p - q/O// <_ O. Hence we easily obtain inequality (9). 

In a number of well-known problems (such as insurance, inventory management, service of patients) the determination 

of R(t) (the probability of ruin, the out-of-stock probability, etc., in the time interval [0, t)) reduces to a renewal equation of 

the form 
t 

R (0 = t~o + (cz/c) ~ p, ( t - -  x) -P (x) dx, 
(10) 

0 

where F is a proper d.f. with the mean O; a and c are fixed parameters, such that aO/c  < 1, and R o = 1 - o~@/c. 
We write this equation in operator form 

R = Ro + (I - -Ro )R*SF ,  

where S F is the residual life d.f. generated by the d.f. F, i.e., SF(X) = (1/0) j o x F(u)du. 
Now, using Theorem 2, we can easily estimate the function R. 
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COROLLARY 2. Let the d.f. S F E {(o~O/c)-NBUA}. Then 

(Ro/O~*×) exp {-- x/} + (1 - -  Ro-- Rol~0 ~*) <~ 

R (t) ~ (Ro/O*~×) exp {-- ×t} + (1 - -  Ro/~O*~), (11) 

where r is the solution of the equation (c~O/c) I o °* exp{rt}dSF(t) = 1 or (c~/c) ~ o ~* exp{rt}F(t)dt = 1, 0 # = 
(~/c) I 0 °~ texp{Kt}Ir(t)dt. 

In this case, we can relax the sufficient condition (Theorem 1) of membership in the class {p-NBUA}, specifically: 

if the d.f. F has an increasing failure rate (F is IFR), which is obviously weaker than the requirement that F has a Polya density 

of 2nd order, then S F E {p-NBUA}. 

Note that the function R(t) also can be estimated in the framework of traditional "aging" properties. Thus, if the d.f. 
F has the property "harmonic new better than used average" (HNBUA) (i.e., F is from the class of HNBUA distributions [7]), 
then 

R (t) ~.~ Ro ~_] (1 - -  Ro)"E~ ~ (t) = R o + (1 - -  Ro)(1 - -  exp {-- tRolO}), 
rt~O 

where bS 0 = exp{-t/O}. 

Here we have used the relationship for HNBUA distributions SF(t) <_ Eo(t); if the d.f. F has the property "new better 
than used failure rate average" (NBUFRA) (i.e., F is from the class of NBUFRA distributions)and XFO + R o ~ 1, where 

k F = -limr_, o In F(t)/t, then 

R ( t ) ~  Ro + (1 - -  Ro) [1 - -  exp {-- t (Xj,-- (1 - -  Ro)/e)}]/?o!()~F@ - -  1 + Ro). 

(F E {NBUFRA} implies that F(t) <_ exp{,XFt } and SF(t ) <_ (1 -- exp{-Xfl})/OX F. 

Consider another example: a renewal equation that arises in models with self-repairing assemblies, models of 
elementary particle counters, population growth models, etc.: 

~+ (12) 
v(t)= ~'(~)+ Svq-v)dF(~), t>~, 

0 

v(t) = o, t<~,  

where ~ > 0 is a fixed number. 

This equation reduces to an ordinary renewal equation 

with the d.f. 

V = g + V,G, 

6(x) = {FF(x), x~<~, 
(~), x~>~, 

0, x < ~, 
g(x)= ?(~), x~>~. 

COROLLARY 3. If the proper d.f, 

D(x) = {O F(x)/F(~)' X ~x~ ~' 

is from the class {F(~j)-NBUA}, then 

IF (~)/gO ~*] I I - -  exp {-- :~ (t - -  ~)}] ~ V (t) ~ F (~) + 

+ IF (~)/xO ~1 [1 - -  exp {-- × ( t - -  ~)}1, (13) 

where r > 0 is the solution of the equation ~ o f exp{~u}dF(u) = 1, O # = ~ o f uexp{~u}dF(u). 

174 



A sufficient condition of  membership in the class {F(()-NBUA} is the existence of  a PF 2 density for the original d.f. 

F at least on the interval [0, (). 

Proof  Since g#(t) is a nondecreasing function (g#(t) = g(t)exp{~t}), we have (t/@#)g#(t) <_ V#(t) <_ (t/O # + 1)g#(t). 
Transforming the principal part in these bounds, we obtain 

(t/OtZ)g v; (t) = S (t ~ u) [×g (u) -t- ~" (~) 8 (u - -  ~)] exp {×u} du/&*, 
0 

where 6 (x) is the Dirac function. 

After some elementary simplifications we obtain the expression 

IT" (~)/×O~*l [exp {×t} - -  exp {×~}1. 

Using the relationship V(t) = exp{-~t}V#(t) to return to the sought bounds on the function V(t), we obtain (13). 

1.2. Bound on the Mean Number  of Descendants 

in the Sevast'yanov Model 

The mean number of descendants A(t) during the time t in a Sevast'yanov branching process satisfies the renewal 
equation (for references see [8]) 

A (t) = F (t) -t- ~ A ( t - -  u) p (u) dF(u), (14) 
0 

where F is the life d.f. of  a single particle, p(u) is the conditional mean number of direct descendants of a single particle given 

that its transformation occurred at the age u. 

The function p(u) may be fairly complex, because Sevast 'yanov's model allows an arbitrary dependence between the 

life of a single particle and the number of its direct descendants. The above equation is a particular case of Eq. (2) and 

therefore the previous scheme may be applied to obtain bounds on the function A(t) for the case when F E {p(.)-NBUA}. To 

avoid purely formal mathematical complications, we will consider a particular example, which is also of  applied value. We 

assume that the function p(u) is arbitrary and F is the gamma distribution: 

t 

R (~, ~: tt = f r (×, ~; u) du. 

T H E O R E M  3. In Sevast 'yanov's model let F(t) = R(X, a;  t). If K < 0, then 

(×0~* 4- × 4- 1 - -  ×t)/~(~, a; t)/×@ *~ + (1/×O "~) ~1 (t) ÷ exp {-- ×t} X 

× (1 -',- I/×@ ~) ~< A (t) ~< - -  (×t - -  × - -  1) R(Z, a; t)/zO = + 

4- (1/×O~) *1 (Q + (1 - -  1/×(3 ~) exp {-- xi}; 

i f 0  < K -< × , then  

- -  (×t - -  × - -  1) R (~, c~; Q/n&* -k- (1I×(3 ~* - -  1) r I (t) - -  exp {-- ×L}I×O ~* ~ A(t) 

(×O *~ - -  ×t + × + 1) R (X, a; t)/×O # + (1/×O *~) exp {--×t} +(1 -+- 1/×O ~*) n (t), 

where ~(t) = [X/(X - ~)]~exp{-Kt}R(X - ~, c~; t). 

Proof  As we have noted above, the d.f. R(X, c~; t) for c~ _> 1 is p( ' ) -NBUA. Therefore for the auxiliary function A#(t) 
we can easily establish the following inequalities: 

i f~  < 0, then 

exp {×t} P (t) 4- t/O ~ - -  I - -q )  (t) ~ A ~* (t) ~ exp {'×t} F (t) -t- 
t 

4- t / &  t - -  q) (t) 4- I exp {×u} [dY (u) - -  x-F (u) du], 
d 
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where ¢(t )  = j o t (t - u)exp{Ku}[dF(u) - ~F(u)dullO#; 

ifK > O, then 
t 

exp {×t} F (t) + t/O** - -  1 - -  ap (t) - -  × ~ exp {xu} ? (u) du 
0 

t 

<~ A ~* (t) ~< exp {xt} ? (0 + r io  *~ - -  e~ (t) + ~ exp {xu} de (u). 
0 

The final form of the inequality is established using the following relationships: 

f 

exp {×u} dF (u) = [M(Z, - -  x)leR (5~ - -  x, a; t); 
0 

t 

.f u exp {xu} dF (u) = (al~) [XI(~, -- ×)]c~+~R (~, -- ×, a + 1; 1); 
0 

t 

x S exp {×u} F (u) du = exp {×t} R (;~, a; l) - -  1 + [;~/(X-- x)]C*R (X - -  x, a; 1); 
0 

t 

×= S u exp {×u} T (u) du ----- (xt -- 1) exp {×t} /~ (~,, a; t) + 1 + (xa/)~) X 
0 

X 1~/(~, - -  ×)]c~+ZR (X - -  ×, c~ + 1; t) - -  [X/(;~ - -  x)l~R (X - -  ×, ct;/); 
t 

x S (t -- u) exp {×u} [dF (u) - -  x F  (u) du] = ~t + I + { tx - -  ~ --'4) X 
0 

x exp {×t} ~ (~, c,; t) - -  R (~.-- ×, cz; t) [~,/(X - -  x)l% 

2. M U L T I V A R I A T E  p-NBUA P R O P E R T Y  (Mp-NBUA) 

Definition 2. Let s n = ~k = I n xk, where {xk} is a sequence of jointly independent nonnegative m-dimensional random 

vectors, such that the random vectors xk, k >_ 2, are identically distributed with the multivariate distribution function (m.d.f.) 

P(x),  x @ R+ m, and nonzero marginal means b i = 1/ixi, i = 1 , . . . ,m  and the random vector x 1 follows the m.d.f.  Po(x), 

x E R+ m, with means a i = 1/~,i, i = 1,.. . ,m. The random process v(t) = Sup{hiS  n <_ t, t @ R+rn} is called a generalized 

multivariate renewal process, or GMRP (if Po(x) =- P(x),  then this is simply a multivariate renewal process, or MRP). It is 
easy to note that v(t) = lCn=l *° l(s n <_ t), where 1(,4) is the indicator of the event A. 

The renewal function Ho(t) of  a GMRP (resp., the renewal function H(t) of an MRP) is defined as the mean number 

of renewals (jumps of the stochastic process v(t)) in the m-dimensional parallelepiped 

At =i,.~lt<~u<~t; 6,u, tC P,7_}, 

i.e., Ho(t ) = M / t ) ,  Ho(0 ) = 0. Ho(t) can be obtained as an m-fold convolution of P and Po: 

. 

H o (t) = po,p,~(,n). (15) 
n = 0  

T H E O R E M  4. The renewal function H(t) of a GMRP has a lower bound 

H 0 (t) i> (#)rain - -  (~a)ma~' (16) 

and in particular for an MRP 

m (t) > (~t)min - -  1, (17) 

where ( / Z t ) m i n  = mJn(tziti, 1 <_ i <-- m), ( / Z a ) m a x  = max(xlziai, 1 <_ i < m). 

Proof. Consider the coordinates of the first renewal outside the region A t. This is the random vector sv(0+ 1 = 

(Slv(0+l .. . . .  stay(O+1), where Sly(t)+ 1 ~-~ ~k=l v(t)+l Xik , X k = (Xlk  . . . .  ,Xmk ).  If the vector sv(0+ 1 is outside At, this means that 
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the difference Sir(t)+ 1 -- tj is nonnegative for at least one of the coordinates j ,  i.e., max 1 <_j<_m {sjv(t)+l - 9} ~ 0. By Wald's 

identity, 
v(t)+l 

Msi~(t)+i = M ~ xm = bjMv (t) + aj = bjH (t) + aj. 

Now, passing to expectations, we obtain in the last condition 

0 ~ max fbjH (t) + a i - -  tj} ~ max bi {H (t) + a jb j  - -  (l~/)mi,}, 
1<~ i<~ ra 1 <~ j<<.m 

and since b > 0, we also have H(t) + (pa)max - (kC0min -_- 0. Hence trivially follows inequality (16). 
We introduce a multivariate analog of the residual life distribution by associating to the m.d.f. P another m.d.f. Sp 

with a multivariate Laplace-Stieltjes transform (MLST) of the form 

Sp (s) ---- [I --~)(s)]/(O, s), (18) 

where (b, s) is the scalar product of the random vectors b = (bl,.. . ,b m) and s = (s 1 .... ,s,0; Re s i > O, i = 1 ... . .  m. It is easy 
to see that all univariate marginal distributions have the usual form of a residual life d.f. 

Definition 3. The m.d.f. P has the multivariate NBUA property (MNBUA) if for all t E R+ m we have the inequality 

Sp (t) ~ P (t). (19) 

In this case we say that the m.d.f. P(t) is MNBUA, or P E {MNBUA}. 
THEOREM 5. Let the m.d.f. P E {MNBUA}. Then the renewal function H(t) of the corresponding MRP has the 

bound 

H (t) ~< (~t)m~,. (20) 

Proof For P E {MNBUA} we have 

P""~' (0 = ~ P (t - . ) d P  '~-''"~' ( . )  <~ ~ S~ ( t - -  ~)dP `"-')~'~, (~) = 
A t &! 

= S p * P  ~ - ~ * ~  (t), 

and the renewal function H(t) thus can be bounded from above by the series H(t) <_ ]~n=0 °° Sp ,rn pn(*m)(t) ' which is the 

renewal function H 0 of the GMRP with Po(t) = Se(t ). The simplest way to find Ho(t) is by using the MLST. In operator form, 

(15) is rewritten as Do(S) = Po(S)/[1 - ['(s)]. Substituting the MLST of the m.d.f. Sp(t), we obtain t~lo(s) = 1/(b, s) and a 

direct check shows that the inverse MLST ofI;to(s ) is the function (/~/)min" 

From Theorems 5 and 4 for the m.d.f. P E {MNBUA} we obtain the two-sided bound on the renewal function: 

(~tt)min - -  1 ~ H (t) ~ (p2)min. (21) 

Example. A shock model with damage accumulation. Consider the following functional over an MRP: 

n~0 

It can be interpreted as the reliability of the shock model in the time interval [0, q). The shock model is generated by a 
univariate renewal process; each renewal induces damage by (m - 1) parameters; for each parameter j ,  there is a maximum 
admissible level of accumulated damage tj (2 < j <_ m). 

The function B(t) is the solution of the multivariate renewal equation (MRE) 

B (t)---- g(t) + B.~P, (22) 

where g(t) = F{xll  >_ tl, X2o <_ t2, ..., Xmo <_ tin} , or in canonical form B(t) = g .m {H(t) + 1}. 
Using inequality (21), we obtain a two-sided bound on the reliability of this shock model for P E {MNBUA}: 

(~t/)min*e,~ - -  ~ (g) < B (t) ~ (~t)min*g. (23) 
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A few comments concerning MNBUA distributions. 

I. We have not used the explicit form of the residual life m.d.f., but it may be useful in some cases. 

THEOREM 6. The d.f. defined by the MLST (18) for any k (1 < k < m) has the form 

tt~ 

Sp ( t )  = ( ~ ) m i n  - -  [ lh I P (Xlh ((o) . . . . .  x m k  (co)) d~o, ( 2 4 )  
0 

where .¢ik(¢o) = t i - bi/zkt k + bi/zkoo, i = 1 .... ,m. 

Proof It is helpful to use the apparatus of generalized functions. The equality (18) contains two factors, 1 - P(s) and 

(b, s). For definiteness, fix the integer k (1 < k _< m). It remains to note that in the region y <_ tj - bj/zktjc, 

P (xxi (11) . . . .  , Xraj (Y)) dy = O, 

since for the k-th argument max{t k - t3t/zjti + bkXjy } = t k - bk/zj9 + b k / z j ( 9  - bj/z~t~) = O. 

2. Let us consider an example of a distribution with the MNBUA property: E(x) = IIi=l m (1 - exp{-/z/xi}). This 
distribution plays an important role in the analysis of complex technical systems. 

THEOREM 7. The m.d.f. E E {MNBUA}. 

Proof The inequality S E >_ E is proved by induction on the dimension m of the space R+ m. For m = 1, the inequality 

holds trivially (S E -- E). Assuming that the inequality holds in the space R+/c for any k < m, consider the residual time m.d.f. 

xrl m 

Se ..~ ~,~x n -  ~t.~ S H (1 - e x p { -  ~ix~ -1-lanx n - -  ~. ~(o})dto, 
0 ¢~1 

where rt = arg(pdC)min (this representation is also feasible by the previous result). Now fix the indexj  ;e 7: 

xr I 

o i ~ l  

xv I 

+ ~exp  {-- ~jxj +/~nxn} j" H (1 - exp {~  ~ixi + .snx ~ - ~n~o) x 
0 i=/= t 

X exp t ~  ~tn~o } do. 

(25) 

The first two terms may be considered as the residual life m.d.f, in the space R+ m-I , the last term is nonnegative, and 
therefore SE(x ) > I l ie  j (1 - exp{-/z/x/}) - IIie j (1 - exp{-/z/xi})exp{-/zjxj} = E(x). 

Definition 4. The m.d.f. P(x), x E R+ m, is Mp-NBUA with p > 0 if: 

a) there are numbers K, j (1 _< j < m) such that J R+ m exp{~xj}dP(x) =- 1/p; 

b) the m.d.f. Pig(t) = p J At exp{r, xj}dP(x) is MNBUA, i.e., Spa(t ) >_ P#(t) for all t E R+ m. 

The properties of the class Mp-NBUA are similar to the properties 1-3 previously introduced for the univariate class 

p-NBUA. The Mp-NBUA property may be extended by treating p as the function p(x), x E R+ m, as in the univariate case. 

The class Mp-NBUA is nonempty. An example of an m.d.f, with the Mp-NBUA property is the m.d.f. E (from Theorem 6), 

because E#(x) = IXi¢ j (1 - exp{-/z/xi})(1 - exp{-/zjpxj}), ~ = tzj(1 - p). 

Consider the thinned multivariate renewal process generated by the m.d.f. P(x) and the "imaginary" renewal probability 

p (q = 1 - p). Such processes arise in the analysis of shock models where some shocks do not necessarily cause damage. The 

m.d.f. G between neighboring renewal coordinates of the thinned process is the solution of the multivariate renewal equation 
(MRE) 
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G = q + p G .  P. (26) 

The scheme that generates two-sided bounds on the solution of the MRE in the multivariate case remains as before. 

To each function of the MRE we associate a new function superscripted #, which is defined as 

z ~ (x) = exp {×x j} z (x), 

This reduces the original MRE to the ordinary form 

m :I¢ 
G ~* = q exp {×x j} + G :~ * P • 
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rr~ 

If P E {Mp-NBUA}, then with an appropriate ~ function P# is an m.d.f.; canonical representation is G ~ = (qexp{~)}) ,/ 

(H # + 1), where H # is the multivariate renewal function of the MRP generated by the m.d.f. P#. Since P# E {MNBUA}, the 

bound (21) holds for H # and for the m.d.f. CA we have the bound 

--q  exp {x/j} ~ G ~ (t) - -  q ~ exp {× (t i - -  u j)} ~ l-I 6 (uz - a~lx~uj) du , ~  O. 
A t i ~ /  

To simplify the integral in both bounds, we introduce the new means ai ° = aig[.zj#/t¢ and the corresponding/z? = l/ai O, 

i = 1,...,m. Then 

q ~  S exp {-- xui} I-'[ 6 (u~ - -  a~Ix~uj) du = ( q ~ / × )  × 
A t i~]  

×/X~ S exp {[xyu~} - -  I-I 6 (u i - -  a °~u j )  du. 
At t':~] 

The integrand in braces is the multivariate exponential density. Thus, passing back from the m.d.f. C A to G, we obtain the 
following result. 

T H E O R E M  8. Assume that the thinned MRP is generated by the m.d.f. P E {Mp-NBUA} and the probabilityp (0 < 
p < 1, q = 1 - p). Then the m.d.f. G of the events in the thinned process satisfies the bound 

- -  q ~ G ( l ) - -  (q~t~/×) (1 - -  exp {-- (t~°t)m~}) ~ O, (27) 

where/z ° ( O, 0 = ai#1~j#/K, o = ]A 1 . . . .  [,Z m ), ai 0 txi = 1/ai O, ai # = p ~ R +  m uiexp{~uj}dP(u), i = 1 .... ,m; the number ~ is the 
solution of the equation ~ R+ m exp{~uj}dP(u) = 1/p. 
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