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It is the aim of this paper to demonstrate the significance of the diagram lattice. This lattice was 
defined in order to achieve structural insight into the phenomenon of chirality in chemistry. In this 
context, "Theorie der Chiralit~itsfunktionen" [1] may serve as reference. In the introduction of the 
present paper a summary of the relevant theorems and definitions is given and a few examples of the 
diagram lattice are graphically illustrated. Parts A and B can be read independently and presuppose 
knowledge only of the introduction. Part A is of special interest for mathematicians, Part B and [1] 
for physicists and chemists. 

In Part A theorems on the representations of the group ~n and certain subgroups of it and on the 
structure of the group algebra are developed. 

In Part B the concept "classification character" with the two complementary aspects of"identifica- 
tion" and "distinction" is derived. With the interpretation "mixing character" the partial order relation 
gains an interpretation through a mixing process, which can be expressed by a bistochastic matrix. 
This results in another equivalent definition of the diagram lattice. Interpreted as mixing character of a 
statistical distribution a diagram represents "statistical order" and "statistical disorder" by its row 
partition and column partition respectively. These concepts and the corresponding lattice structure 
lead to the hypothesis of growing mixing character as a criterion for the time evolution of isolated 
systems. The criterion of increasing entropy provides a much weaker condition. A discussion of the 
master equation leads to a proof of the principle of growing mixing character. 

Key words: Symmetric group Statistical order/disorder - Irreversible processes 

The Diagram Lattice 

In  c o l l a b o r a t i o n  wi th  A. S c h 6 n h o f e r  El l ,  the  a u t h o r  has  i n t r o d u c e d  a " g r e a t e r "  

r e l a t i o n  f o r  Y o u n g  d i a g r a m s ,  in o r d e r  to  answer  q u e s t i o n s  w h i c h  a p p e a r  in 
c o n n e c t i o n  wi th  the  t h e o r y  of  ch i r a l i t y  func t ions  d e v e l o p e d  there.  T h e  pa r t i a l  

o r d e r i n g  thus  de f ined  in the  set of  Y o u n g  d i a g r a m s  for  any  s y m m e t r i c  g r o u p  ~ ,  

appl ies  to  the  set o f  i r r e d u c i b l e  r e p r e s e n t a t i o n s  of  the  g roup ,  as he re  is a o n e - t o - o n e  
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correspondence, as well as to that of the partitions of the integer n, i.e. to the various 
decompositions of n into a sum of integers. With the aid of this greater-relation, 
one can derive a number of theorems about the chirality of isomers and isomer 
mixtures, and find answers to questions which have proved relevant to chemistry 
and which coul~d only be formulated in an appropriate way with reference to 
this set structure of diagrams. In our partial ordering, along with the "greater" 
relation, the lattice operations "union" and "intersection" are well-defined. For 
this reason we named the set of partitions of an integer the "partition lattice". 
For reasons which will become clear later, we wish to make use of the term "dia- 
gram lattice" when we concern ourselves with the set of diagrams. 

Because of the usefulness of the structural concept, and because of the many- 
sidedness of its interpretation, it seemed probable to us that the diagram lattice 
might lead to many interesting insights in the field of pure mathematics and, in 
the form of applications, also in chemistry and physics. Since then, this impression 
has become stronger, and we deem it appropriate to assemble the aspects which we 
have found up to now, apart from those which are still in the realm of speculations. 

One aspect which has encouraged us personally in our optimism in searching 
for new interpretations, even though it certainly is not a generally accepted 
scientific criterion is the beauty of this structure. This impression becomes evident 
through a graphical representation of examples, which also helps in the under- 
standing of our definitions. We therefore consider it appropriate to present 
illustrations of the diagram lattice for several numbers. In this way, the concepts 
and theorems to be developed can be followed in terms of nontrivial examples. 

We represent the partitions of a natural number in the usual way throug h 
diagrams, in which n boxes are arranged in rows such that the number of boxes 
in each row of a diagram characterizes the partition (see the illustrated examples). 
The arrangement of rows within a diagram in nondecreasing order of length from 
top to bottom is arbitrary from the standpoint of the partition, but nonetheless 
required in the sense of the representation through diagrams. We now formulate 
the "greater" relation by means of two different definitions, whose equivalence 
was proved in Ref. [1], and which will later be extended through other equivalent 
definitions. 

Definition la. A diagram 7 is called greater than a diagram 7', denoted by 7 ~ 7', 
if 7 can be constructed from 7' by moving boxes exclusively upward, i.e. from 
shorter rows into longer or equal ones. 

The ordering of the rows of a diagram from above according to non-increasing 
length implies a corresponding ordering of the columns, and vice versa. Thus, 
the "greater" relation can also be formulated in terms of the columns of the 
diagrams, as follows: 

Definition lb. A diagram 7 is called greater than 7', denoted by 7 3 7', if ~;' can 
be constructed from 7 by moving boxes exclusively from right to left, i.e. from 
shorter columns into longer or equal ones. 

The "greater" relation should also include equality, such that we have the 
conclusion 

7C7', 7D7' ~ 7=7 '. 
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From the above definition, it easily follows that the transition from a diagram to a 
smaller neighboring diagram consists of moving one box into a shorter row. 

Since the row- and column-lengths of a diagram each represent a partition 
of n -  decomposition of n into a sum of integers - our ordering relation can be taken 
over immediately for partitions. In this connection, it only needs to be established 
whether the greater relation for diagrams should be taken over unaltered to the 
row- or to the column partition of the diagrams. We propose therefore 

Definition 2. A partition is called greater than another, if the transition from 
the smaller to the greater can be made in steps, whereby partition numbers 
increase at the expense of others which are not larger. 

From this follows 

Definition lc. A diagram 7 is greater than a diagram 7', if and only if the row 
partition of 7 is greater than that of 7', or in other words if the column partition 
of 7 is smaller than that of y'. 

Definition lc has been so formulated that for partitions one need not assume 
an ordering of partition numbers according to decreasing values. However, since 
the partition numbers are ordered in this way in diagrams, we define diagram 
partitions, and in particular row partitions and column partitions, as ones ordered 
with monotonically decreasing partition numbers. This ordering is not assumed 
for partitions without special designation. 

From Definition 2, one can arrive at another formulation for the partial 
ordering of diagrams, in which the partial sums of the row- and column lengths 
play a role. We define vi and #i respectively as the number of boxes in the i'th row 
and i'th column, and the partial sums 

J J 
Oj = 2 ~)i, Uj ~- 2 ~i.  

i=1 i=1 

In terms of the partial sums, one can formulate 

Definition l d. 

~ 7 '  ¢¢" oj>o) ,,~ uj<u) foral l  j = l ,  2 , . . . n .  

From this state of affairs one can prove the existence of the intersection and 
union, and one finds 

7 ~ 7 ' = 7  v ~ o y = m i n ( o j ,  o)) 

7 w 7 ' = 7  v ~ u v = m i n ( u  i,u)) 

These statements can be verified by examination of the lattice schemes for the 
numbers one through ten shown in Fig. 1. For  proofs, the reader is referred to 
Ref. [1], where persuasive reasons for the formulation of the partition ]lattice are 
also to be found. 
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Part A. The Diagram Lattice as Structure for Representations and Group 
ALgebra of the Symmetric Group ~.  

As shown by Young [2], there exists a one-one correspondence between the 
diagrams with n boxes and the irreducible representations of 6 , .  The correspond- 
ence is best understood through the irreducible left ideals, or through the simple 
two-sided ideals, of the group algebra. It is known that the irreducible left ideals 
as representation spaces give rise to irreducible representations, whereas the 
simple two-sided ideals give rise to representations whose irreducible parts are 
equivalent to one another. One forms tableaux, that is, one fills the boxes of a 
diagram with the numbers 1 . . . . .  n, and interprets the elements of ~n as permuta- 
tions of these numbers. A tableau-specific pair of subgroups 9.I r and ~3 r of ~ ,  is 
chosen, such that 9.I r includes all permutations which do not remove numbers out 
of their rows, whereas ~ includes all permutations of the numbers within the 
columns, Conjugate subgroup pairs belong to different tableaux of the same 
diagram, nonisomorphic subgroup pairs to different diagrams. We choose a 
particular tableau for each diagram, denote by ar and br respectively the projection 
operators for the identity representation of 9.It, and for the alternating (totally 
antisymmetric) representation of ~r: 

where p(s) = + 1 for even 
t ~ s; br-  1 ~ p(s)s and p(s)= 1 for odd permutations. a t - - l g X r [  ~ l ~ r l  ~ - 

From these, one can construct the so-called Young operator ~r: 

Nr = arbr with the property ~rN~ ~ 6rZ~r" 

It can be shown that ~ generates a minimal left ideal (and a minimal right ideal). 
In this way one finds a correspondence between irreducible representations F~ 
and diagrams 7~: 

~r+--'Fr. 

The two-sided ideal (~¢r) generated by ~r is simple and is a sum of dr equivalent 
left ideals. The representation defined by (N~) decomposes into d r equivalent 
irreducible representations Fr with dimension dr. The ideal (~r) contains a unit 
element, also called the projection operator for (Nr), of the form 

fir= t~lrl 123r[ ~ sb~rs -1 with the property /~,/h=6rZ;~r. 
S ~ n  

The unit element of the group ~ , ,  which is also the unit element of the group 
algebra, satisfies 

in which the sum runs over all irreducible representations 
e = /~ (or diagrams). r = l  

It is desirable for a number of reasons - and not only for those reasons that we 
encountered in the theory of chirality functions-  to obtain an overview of all those 
irreducible representations F r of ~ ,  which contain the identity representation 
of 9.1 r or the alternating representation of ~3 r. As has been proved, though not 
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explicitly emphasized, in (1, p. 279 ff.), the diagram lattice gives such an overview 
in the following way: 

Theorem 1. The identity representation of the subgroup 9.It and the alternating 
representation of ~r  for an arbitrarily chosen tableau of the diagram 7r, are 
contained in those irreducible representations F~, and only in those, whose 
diagrams satisfy respectively ~ 3 7r and 7z C Yr. Neither representation of 9.1r and 
~r  is contained in representations whose diagram is not comparable with 7r- 

We remark that the diagram ordering introduced by Young in 1901, and 
since used in the mathematical literature, does not permit of such a statement. 

There follows from theorem 1 a corresponding theorem about the group 
algebra, if one recalls the following facts: 
The left ideals generated by ar and br are representation spaces of ~ ,  with re- 
spective dimensions n !/l~Irl and n!/l~3r[. The representations belonging to them, 
F,~ and Fb. decompose into irreducible parts Fz, and of these respectively zr(/) 
and fr(1) are equivalent to one another. The left ideals are sums of minimal left 
ideals, of which respectively zr(l) and ~r(l) are operator-isomorphic to one another. 
zr(1) and ~r(l) simultaneously indicate how often respectively the identity re- 
presentation of ~lr and the alternating representation of ~3r are contained in the 
irreducible representation F~ of ~, .  In other terminology (cf. [1]), this means that 
the representations F,, and Fbr are regularly induced from a r and b r. An immediate 
consequence is 

Theorem 2. The left ideals generated by ar and br contain those minimal left 
ideals, and only those, whose diagrams ?t satisfy respectively 7z ~ 7r and Yz C 7r. 
The representations regularly induced from a r and b r have the decompositions 

n~ 
to= zr(Or, Z zrq)d,- 

n! 
F b = ~ ~r(1) F, ~ ~r(1)d, - . 

The two-sided ideals (at) and (br) are direct sums of simple two-sided ideals 
of all diagrams 7~ satisfying respectively the conditions 7~ 3 7r and 7z C Yr. 

We note: 
a) The general form of the elements of (at) and (br) 

("r): Y, a(s, t)sart 
s.,~e, with arbitrary complex coefficients a(s, t) and b(s, t) 

(br): ~ b(s, t)sbrt 
S,tE~n 

b) The unit elements of (at) and (br) 

(or): e(ar)= Z fit 
y! D )'r 

Orl: e(br)= F, 
7lC 7r 
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c) Special elements of (a,) and (b,) 

n! S@~n 7ZD ~;r ~'1 
with z~ ( r )  = 2 , ( r )  = 1 .  

From this it follows that ! z,(t)L(t) 
"/vC ','IC 7s 

0 if 7, d2 7~ 

1 
~-2/~, if r = s .  

From the above, one obtains without difficulty a correspondence between the 
set theoretical lattice of the two-sided ideals and the diagram lattice, as follows: 

(a,) n(as) = (at) where 7r w 72 = 7, 

(b,) ~ (b~) = (bt) where 7, c~ 7s = 7~, 

(at) u (as) = (a,, as) C (a0 where 7, ~ 72 = 7~ 

(b,) w (bs) = (b,, bs) C (b,) where 7~w 72 = 7,- 

Here the symbols ~, u ,  and C denote the set theoretical intersection, union, and 
the statement "is a subset of...". 

All this makes it clear that the diagram lattice contains genuinely meaningful 
relations regarding the structure of the group algebra and the induction of re- 
presentations of 6 , .  Other algebraic consequences will be developed in a later 
paper (Part C). 

Part B. Classification Character, Mixing Character and a Principle on 
Irreversible Processes 

When we classify a set of n objects according to some principle, we obtain a 
subdivision into subsets without objects in common. Independently of the nature 
of the classification principle, we can represent the set structure of this subdivision 
by a diagram if, for example, we consider the rows as representing the numbers of 
equivalent objects. This, however, touches on only one side of the classification 
phenomenon, for the columns of the diagram give another aspect. The length of 
the leftmost column,/~1, is the maximum number of nonequivalent objects; when 
#1 nonequivalent objects have been removed, #2 is the maximum number of non- 
equivalent objects in the remainder, etc. Both aspects, the "identification" and the 
"distinction" as characteristic features of a class subdivision represented by the 
row- and column-partitions, are equally valid designations of the classification 
structure in a set ofn objects. Thus the lattice structure for the set of diagrams also 
has significance for the classification character, and the formulations for partitions 
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according to definitions lc and ld correspond respectively to the identity and the 
distinction aspect. Summarizing, we make the following definition. 

Definition 3. The classification character in a set of n objects is represented by 
a diagram. The complementary aspects "identification" and "distinction" corre- 
spond respectively to the row and column partitions, The following statements are 
equivalent: 7 C ?'~=~ the distinction of the classification character 7 is greater than 
that of 7%*- the identification of the classification character 7 is less than that 
ofT'. 

It is worthwhile to rederive this definition by reaching it in another way, not 
making use of our former lattice definition but analyzing the logical content of 
our notion. For  this purpose we emphasize the viewpoint of distinction by trans- 
lating classification character with mixing character - the mixing in the set of n 
objects is certainly a maximum if the number of distinguishable objects is maximal. 
The expression mixing character suggests, on the other hand, that increasing 
mixing character should be defined by a mixing process. 

The mixing character thus denotes the composition of a set of partly equivalent 
objects, or the distribution of objects among different states. At this point, the 
question to be answered is whether, and to what extent, the concept of mixing 
character without arbitrary supplementary definitions (i.e., without use of phe- 
nomena other than that of mixing), can be used to compare sets of differing 
mixing character, such that a judgement of"more" or "less mixed" can be obtained, 
at least in comparable cases. 

For  such a concept, the nature of the objects or states is certainly not decisive, 
but rather the number of objects of the same kind or in the same state. Therefore, 
we call two sets "mixing-equivalent" if the partition of the classes is the same for 
both. It is sufficient to distinguish between just as many different kinds as the total 
number of objects in the set. With this restriction, we can denote all mixing- 
equivalent sets by a sequence of integers v i (including zero) in a column matrix, 
or graphically by means of diagram-like figures, in which rows with v i boxes are 
arranged along a vertical scale with indices i =  1, 2 , . . .n  denoting the different 
kinds of objects. By bringing the rows together into a diagram, we obtain the 
representation of the mixing character introduced above. Figure 2 gives an example 
of mixing-equivalent sets of seven objects, and of the representative diagram. 

If the statement that a set 93l is more mixed than another 93l' is to have a meaning, 
the comparison must be restricted to pairs of sets such that 9)l is obtainable by 
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mixing together sets of mixing character of ~ ' .  If further sets of mixing characters 
different from 9)l and 93~' were necessary for the comparison, then the concept of 
a "more mixed" relation between two sets would have no meaning. Consequently, 
we must define ~J~ as more mixed than 9J~' when ~ can be obtained by mixing sets 
with the same mixing character as 9Jl'. 

The naive mixing process consists in uniting whole multiples of mixing equiva- 
lent sets into a combined set containing a multiple of n objects. If the set finally 
obtained has a partition of objects which is an integral multiple of a partition of n, 
we may consider a corresponding set of n objects as equally mixed. This set may 
be regarded as being "more mixed'' than any one of the sets which we used for 
mixing. As these have the same mixing character this is a relation between two 
mixing characters. The mixing procedure in this case may be expressed formally 
as a unification of mixing equivalent sets with non integral coefficients or, using 

® 
an operator rh = y '  c(s)s  with the property c(s) > O, Zc(s)= 1, as an operation on 

(9 
one of the mixing equivalent sets. The sum ~ should thereby be understood as 
the set-theoretical union of fractions of sets expressed by the coefficients, the 
permutations s effecting permutations of the object-types 1, 2 , . . . ,  n. The corre- 
sponding group algebra element 2 c(s)s  acts on a column matrix with matrix 
elements representing the partition numbers of one of the mixing equivalent sets. 
Thereby the permutations s are represented by permutations matrices and the 
operator rh by a convex'  linear combination of such permutation matrices. Since 
permutation matrices have a single element 1 in each row and in each column, 
with the rest of the elements being zero, the mixing operator is represented by a 
matrix M with the properties 

~,, M/k  ~--- 2 M/k  = ][ and Mik >= 0 for all i, k. 
i k 

Such matrices are called bistochastic. 
As is apparent from the above discussion, each convex linear combination of 

permutation matrices is a bistochastic matrix. The converse of this is almost 
trivial, since n ! permutation matrices of dimension n may be combined in many 
ways to give a specified bistochastic matrix. We thus arrive at the 

L e m m a .  Mixing operators according to our definition are represented by 
bistochastic matrices, and conversely. 

Through a theorem developed by G. H. Hardy, J. E. Littlewood and G. Polya 
[3], one finds a connection between the mixing operators and the partition lattice. 
The theorem refers to n-dimensional column matrices {xl} and {Yi} of real numbers 
satisfying the condition ~ xi = ~ yi and to partial sums of these numbers listed 

i i 
according to non-increasing values 

xl, > xz2 > xl3 > ...x~. 

The partial sums shall be denoted 
notation we formulate the 

and Yl~ > Yl~ > Yl~ > ' ' '  yz~ . 

k k 

by X k = ~ x h and Yk = ~ Y~,. With this 
i=1  i = t  

1 A linear combination is called convex if c(s) > 0 and Z c(s) = l. 
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Hardy, Littlewood and Polya Theorem. Of two n-dimensional column matrices 
{xi } and {Yi } of positive real numbers satisfying the condition ~ xi = Y', Yi the first 

i i 
can be obtained from the second by multiplication with a bistochastic matrix 
if and only if relations of the form Xk <= Yk hold for all indices k, where the partial 
sums X k and Yk refer to the sequence of numbers according to decreasing values. 

Since rows and columns in a diagram are ordered according to nondecreasing 
length, the mixing operator applied to a diagram partition transforms it into a 
smaller one. Moreover, every diagram partition is obtainable from every greater 
one by application of a mixing operator. It follows that the following definition is 
equivalent to la, lb: 

Definition ie. 7 C ~'~*=~ the row partition of 7 is obtainable from that of 7' by 
multiplication with a bistochastic matrix ~- the column partition of 7' is obtainable 
from that of 7 through multiplication with a bistochastic matrix. 

Definition 3 follows inescapably if we replace mixing character with the more 
general concept classification character and substitute identification and distinction 
respectively for row and column partition. 

Since bistochastic matrices are well-defined at least for denumerably infinite 
matrices and can evidently be defined for the continuum as well, definition 1 d 
implies the natural generalization of the diagram lattice to the case of diagrams 
having an infinite number of boxes. By introducing a "box density", for example, 
one obtains an interpretation of the row partition as a monotone decreasing 
density distribution of boxes among a finite or denumerably infinite set of states, 
where the states are ordered according to decreasing occupation density. 

Two concepts from statistical thermodynamics which are complementary in 
the same way as identification and distinction are those of "statistical order" and 
"statistical disorder". A distribution function in the usual sense represents the 
identification, since the number of objects in the same state is represented by the 
values of this function. A corresponding monotone decreasing function which we 
shall call "diagram distribution function" takes the place of a diagram with a finite 
number of boxes. It represents the statistical order as the row partition of a 
diagram does. The column partition or the inverse function, on the other hand, 
represents the sequence of decreasing maximum numbers of objects Jin different 
states. It indicates the statistical disorder in the distribution. Without going into 
topological questions which appear in the case of infinite sets, and which certainly 
possess only mathematical interest, we arrive at 

Definition 4. The mixing character of a statistical distribution function is 
represented by a diagram function, the statistical order being designated by the 
row partition, and the statistical disorder by the column partition. Increasing 
mixing character is equivalent to increasing statistical disorder, and decreasing 
statistical order, and corresponds to the transition 7 ~ 7'C 7. 

Every measurement of the mixing character according to some numerical 
scale corresponds to a homomorphic mapping of the diagram lattice onto the real 
numbers. In this mapping, incomparable diagrams are unavoidably mapped onto 
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comparable values of the function used for measuring. Thus it is true that "greater 
mixing character leads to a greater value of the function", but not conversely. The 
entropy is such a homomorphic  mapping of the partial ordering for the statistical 
disorder and the mixing character, as one can easily verify. The following proof 
makes use of definition 1 a of the partial ordering. 

What has to be shown is that 

7 . C ? ' ~ S ( ~ ) > S ( 7 ' )  where 7 .cy 'meansT(7 ' ,~ ,4=7 ' .  

For the proof, it suffices to show that the result is true for the case in which 7 is 
obtained from 7' by the lowering of a single box. Thus, letting a single box be 
moved from the i'th row of ?' into the k'th leading to a new (unprimed) diagram 7, 
it follows that 

( v i +  1)~'+ t (v~ - l) ~ - 1  >v'i'v? 
and therefore 

S(7) - S(7') = - Z v S In v s + E v's in v'~ 

= - vi In vi - Vk in Vk + (Vi + 1) In (vi + 1) + (Vk-- 1) In (vk -- 1) 

= -- In v~'v~ + ln(vi + 1)~'+l(vk - 1) "k-1 > 0 .  

Since the greater relation for diagrams holds in the opposite sense for the mixing 
character, it follows that: 

The mixing character of 7 is greater than that of 7' ~ S(7) > S(7'). 
At the same time that our Ref. [1] on chirality functions appeared, 

A. Uhlmann [-4, 5] published a concept of"degree of mixture" of a density matrix 
which corresponds to the concept of mixing character developed here insofar as 
one thinks of mixing character in terms of the identification aspect. 2 The object 
of this work is a formulation of the Shannon entropy which does not depend on 
the spectral decomposition of density matrices. We make use of Uhlmann's result 
to apply our concepts to density matrices. According to the proofs given in 
Refs. [4, 5], a density matrix A is more mixed than a density matrix B if A is a 
convex linear combination of density matrices unitarily equivalent to B: 

A more mixed than B ,~ A = ~ c(#) UuB U f  1 
# 

J J 
~=> ~ , 2 ~ <  ~ 2f for a l l j  

i = 1  i=1  

where c(/~) are real positive coefficients satisfying ~ c(/0 = 1 and the U, are unitary 
# 

matrices. The 2 A and 22 are the eigenvalues of A and B in monotonically de- 
creasing order. The proof of the equivalence of the above statement with the 
relation for the partial sums shows the equivalence of the two mixing concepts. 
The aspect of the column partition, distinction, or statistical disorder does not 
appear in Uhlmann's work, since diagrams play no role in his formulation of the 
problem. On the other hand, he recognizes the entropy as a homomorphic mapping 
of the partial ordering relation "more mixed than". 

2 The  choice of the word  "degree"  seems to us unfor tunate ,  since it implies  in general  the existence 
of a numer ica l  scale. A scale on the other  h a n d  presupposes  the la t t ice  being modular ,  but  this  is not  
t rue for n > 7 as one finds by inspec t ion  of the examples  in Fig. 1. 
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A Theorem on the Time Development of Irreversible 
Processes in Closed Systems 

The analysis of classification in a set of n objects at the beginning of this 
chapter led to the diagram as representative of the classification character. The 
diagram with its complementary decompositions in rows and columns leads 
inevitably to the equal roles of the two aspects "identification" and "distinction". 
With the interpretation "mixing character of a statistical distribution" for the 
diagram, "statistical order" and "statistical disorder" are the corresponding con- 
cepts for the row and column partitions. From an unprejudiced ]perception 
theoretical standpoint, it thus seems artificial not to consider both aspects in the 
same way in the formulation of numerical measures of the mixing character. Thu s , 
if we decide to regard the Shannon entropy as an appropriate expression of 
statistical order and disorder, then we must grant the same role equally to a 
function which increases monotonically with mixing character like the Shannon 
entropy, but which is related to the column partition in the same way that the 
Shannon entropy is related to the row partition. Thus we compare two functions 
S(F) and S(7) of the following form: 

S ( y )  = - £ vi  In vi ; S-(y) = Z kti In/~i 

with the property 

[s(~) > s(~ ) 

which can be proved for S-(2) in the same way as for the entropy, except that one 
considers columns instead of rows. 

The following example (Fig. 3) shows that the order of the values of the two 
functions can be different for incomparable diagrams. 

S(yl) = - 9 1 n 3  

71 := 

S(71)= 91n3 

It follows that 

]1111 
Y 2 : = ~  

Fig. 3 

S (Y2) = - 5 In 5 

S-(Yz) = 5 In 5 

s(yl)< s(~2), s(y,) > s(y2) 

and in this way it becomes clear that neither of the two functions alone, neither the 
Shannon entropy nor the function S-(V) provides a complete criterion for statistical 
order or disorder. S(y) and S(2) are examples of what we shall call mixing homo- 
morphic functions f(y), defined by the property 

YCT' ~ f(F)=>f(Y'). 

Through examination of the examples of the diagram lattice given in Fig. 1, one 
can see that the three lowest diagrams are ordered in each case. If one limits 
oneself to these three lowest diagrams, therefore, each function f(Y) with the 
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property 7 < " / ~  f(Y) >f(Y') also satisfies 7 -C 7 ' ~ f ( 7 )  > f(7'). Since the smallest 
diagram represents the uniform distribution, one can conclude that all functions 
of this kind have their maximum values at the equilibrium distribution for an 
isolated system and that, in the immediate neighborhood of equilibrium, all these 
functions represent the mixing character sufficiently by their monotonic de- 
pendence on it. Farther from equilibrium, this is no longer true. Hence, if one tries 
to make any mixing homomorphic function responsible for the temporal sequence 
of statistical distributions, it is important to realize that the sequence will depend 
on the choice of this function. From our standpoint, it is doubtful that the temporal 
sequence of distributions can be tied at all to any one function of this kind. As we 
have seen, the mixing character cannot be completely described by one function; 
the entropy is certainly a very vague criterion for situations far from equilibrium, 
while the increase in statistical disorder represents a generally acceptable stand- 
point. We feel that the interpretation given here of statistical order and disorder 
is quite persuasive, and it therefore seems reasonable to assume that the increase in 
statistical disorder, or of mixing character, is a general criterion for the temporal 
sequence of situations on the path to the equilibrium. 

In the course of a thorough discussion of the manuscript of this work with my 
friends in the Chemistry Department, University of Minnesota, A. Mead made 
a suggestion which has helped us to formulate the above-mentioned hypothesis as 
a principle. For this, I owe Alden Mead my sincere thanks. 

We consider the time development of a distribution of n particles among m 
states. The total number of particles is assumed constant, and the transitions are 
governed by constant transition probabilities wzk in which the transition from k 
to i is denoted ( i~  k). The number n is assumed large enough that differentiation 
with respect to time is justified. This formulation is expressed through Eqs. (1) 

h,(t)= ~ wiknk(t)-- ~ w.ni(t) where wik>=O (1) 
k = l  1=1 

We rearrange (1) to 

h~(t)= ~ Wiknk(t) where Wik =w,k-6ik  ~ Wu. (2) 
k = l  1 = 1  

By defining vectors fi = {n~}, we transform Eqs. (2) and their solution into the form 

n(t) = Wfi(t) ; fi(t) = e(t-t°)wfi(to). (3) 

The matrix W satisfies 

i = 1  i = 1  l=1  

that is, the sum of the elements in each column of W is zero. 
We now specialize the conditions, such that the uniform distribution cor- 

responds to the steady state as t--+ ~ .  The necessary condition for this, mk= n 
(with integer k), is not critical for the condition on the system, because from 
ni(oo ) = nk(oZ) ) for all i, k follows 

~ Wik=0 
k = l  

or: The sum of all the elements of each row of W is zero. 
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Thus, with the assumption of uniform distribution in the steady state, W, 
becomes a matrix in which the sum of the elements in each row and in each column 
is zero. We first convince ourselves that the product of two matrices whose rows 
and columns sum to zero also possesses this property, and then discuss the 
expansion 

e ¢N°)w = E + (t - to) W + ½(t - to) 2 W 2 + . . .  

where E is the unit matrix. 
The expansion shows that the sum of matrix elements of e (t- to)W is one for each 

row and column, and it is evident that negative coefficients do not occur, because 
this would imply the possibility of negative ni(t). Therefore, we have the result that 

e(t-to)W is a bistochastic matrix, 
and consequently 

) ) 

ni,(t) <= ~ n~,(to) for all j =  1 . . . .  m if t > to 
s = l  s = l  

where the increasing subindex s of 1 s denotes monotonically decreasing values 
respectively of nls(t ) and nt,(t0). 
Thus according to definitions le  and 4 we have the result. 

The time development of the system proceeds in the direction of monotonically 
increasing mixing character, that is, monotonically increasing statistical disorder 
and monotonically decreasing statistical order. 

This conclusion is considerably stronger than the known result that in such 
systems the (Shannon) entropy increases according to 

- E ni(t) ln ni(t) ~ - E hi(to) In ni(to) for t > to. 

Equation (1) is just a special formulation of the master equation, which has the 
general form 

w(co, co') > 0 (4) 
0(o, t )= ~ [w(co, co')0(co', t ) -  w(co', co)0(co, t)]dco' with 

O(co, t)dco = 1. 

There 0(co, t) denotes the statistical density of a Gibbs-ensemble, depending on the 
location co in a space of variables, and on the time t. The transition probability 
from the point co' to co is expressed by w(co, co'). With the aid of the definition 

W(co, co') = w(co, co') - a(co, co') ~ w(o",  co)rico". (5) 

The masterequation (4) and its solution can be written in the form (6) and (7) 

O(co, t) = ~ W(CO, co')O(co', t)dco' (6) 

O(co, t) = ~ [e "- '°)w] (co, co')O(co', t)dco' . (7) 

The known requirement on the system, to have an entropy increase with time is 

Sw(co, co')dco=Sw(co',co)dco ~ S ( t )>S( to )  for t > t o  (8) 
where 

S(t) = - k ~ 0(co, t) In 0(co, t)dco (k = Boltzmann's constant), 
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from this equation and the definition of W(co, co') it follows that 

W(CO, co')dco' = ~ W(CO, co')dco = 0 

and from the expansion 

[e (t-'°)w] (co, co') = cS(co, co') + (t - to) W (co, co') + ½(t - to) 2 W2 (co, co') + . . .  

follows that 
.[ [d '- '° 'w] (co, co')dco' = j [e ('-'°)w] (co, co')dco = 1 

o r  

[e~t to, W] (co, co,) is a bistochastic function of co and co' 

or: the mixing character increases monotonically with time. 
The master equation is applicable to a wide range of phenomena, probably 

wide enough to justify considering our hypothesis being a general principle, which 
we shall call the 

Principle of Increasing Mixing Character 

The time development of a statistical (Gibbs-) ensemble of isolated systems 
(microcanonical ensemble) proceeds in such a way that the mixin 9 character 
increases monotonically. 

Increase of mixing character is equivalent to increase of statistical disorder 
and decrease of statistical order, according to Definitions 3 and 4. 

The most striking aspect of the principle of increasing mixing character, it 
seems to us, is that the evolution toward equilibrium is not determined by a 
quantity (such as the entropy, or any other single mixing-homomorphic function), 
but by a quality, the mixing character, which in turn is determined by the partial 
ordering defined by the diagram lattice. 

Equal entropy for different mixing characters, if it is possible at all for a system 
with a finite set of particles, is very unlikely. Therefore, the time evolution of a 
system where all or nearly all mixing characters are passed whose entropy is not 
smaller than the initial one cannot be excluded by entropy arguments. The princi- 
ple of growing mixing character on the other hand selects a comparatively small 
amount of different paths. Furthermore, with increasing n, incomparable mixing 
characters are to be found, which are separated from each other by increasing 
numbers of neighboring diagrams. This shows that the selection character of our 
principle compared with the principle of increasing entropy does not become 
negligible for large or infinite values of n. 

It seems necessary to state that the discussion of equilibrium by means of 
arguments referring to entropy is unaffected by the principle of increasing mixing 
character. We have discussed this question for the case m = n (p. 179). If m > n the 
same argument applies as the mixing character is not dependent on the number 
of states but only on the maximum number of occupied states which is n again. 
If m is smaller than n we have to refer to diagrams with no more rows than m. 
For this a lemma is needed which is easily verified. 

Lemma. The set of all diagrams with not more than m rows is a sublattice 
of the lattice with diagrams with n > m boxes. This sublattice has a smallest 
diagram. 
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From the lemma follows that all mixing homomorphic functions have a 
maximum value at equilibrium. 

It is desirable 
1. to discuss our principle without reference to the master equation; 
2. to find a set of mixing homomorphic functions according to the condition 

7 -C 7' ~ f(7) > f(7') which suffice to specify the increasing mixing character; 
3. to give practical examples, which illustrate the relevance of the principle 

discussed above. 
These problems will be attacked in subsequent papers. 

The author wants to express his heartiest thanks to Professor A. Mead, who translated the German 
manuscript. 
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