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Moment-curvature relations for a pseudoelastic beam 

T. Atanackovi~ and M. Achenbach 

Pseudoelastic bodies have very simple stress-strain diagrams for uniaxial 
tensile and compressive loading. In particular, yield and recovery occur at 
fixed stresses. And yet, the moment-curvature diagrams for bending and 
unbending of a beam are fairly complex, because the stress and strain fields 
are non-uniform. The paper shows stress profiles within the beam for pure 
bending and arrives at explicit equations for loading and unloading curves. 

1 Introduction 

In some temperature range shape memory alloys exhibit pseudoelasticity. In 
that range the stress-strain curve of a single crystal under tension and com- 
pression has the form shown in Fig. 1. There is a yield limit and a recovery limit 
so that in a loading-unloading experiment the state of the body runs through 
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Fig. 1. Stress-strain diagrams for a pseudoelastic body 
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Fig. 2. Dimensions of a beam segment. Coordinates. ro is the radius of curvature 

a hysteresis loop. At a higher temperature the hysteresis loops are farther away 
from the origin and altogether smaller. 

Given a stress-strain diagram of  the type shown in Fig. 1 we shall in this 
paper derive a moment curvature relation for a pseudoelastic beam in bending. 
As a result of the non-uniformity of the stress- and strain-fields in the beam this 
relation will be considerably more complex than the (a, e)-relation. We note that 
in [1] the moment-curvature diagram was assumed to have the same general 
characteristics as the (a, e)-diagrams of Fig. 1. The cross section of the beam 
is assumed to be rectangular. Its dimensions are shown in Fig. 2 along with the 
choice of coordinates for the subsequent analysis. 

2 Pure bending and unbending of a rectangular beam 

We redraw a (a, 0-diagram for a memory alloy in the pseudoelastic range in 
Fig. 3 and introduce some notation that will frequently be referred to in the 
sequel. 

The yield in loading starts at the point (a2, e2) and ends at (a2, e4). In unloading 
from a strain ~ > e4 and yield starts at (at, es) and ends at (aa, el). If  the un- 
loading starts from e2 < e < e4 (say from point R) it proceeds along the line 

R R  n then RIrs and finally S0----~ The lines 0-B and RR ~I are assumed to be parallel 
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Fig. 3. (a, e)-diagram with characteristic points 
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m 

with the slope Et. The slope of the line CK is E 2 = E 1.  We assume that the 
plane sections of an initially straight rod remain plane in the deformed state. 
Then we know from elementary beam theory that the strain e in a layer whose 
distance is y from the neutral axis is given by 

1 
= - -  y = ~ y ,  (1) 

r o  

where ro is the radius of curvature of the neutral surface and is the curvature 
itself. For  a given et, e2, ea and s4 we define 

2 2 2 2 
~ ,  = ~ e , ;  ~ = = ~ e 2 ;  q~a = ~ e a ;  ~ , = ~ e 4 .  (2) 

Note that in loading the yield starts in the outer layer of the rod when # = q~2 
i.e., when a point in the outer layer of the rod reaches point B. The yield region 
develops up to the point N as q~ increases, that is up to the point when the curva- 
ture is q~ = #4- If q5 > # ,  the state of  the outer layer is given by a point, say 
C, on the right elastic range of the a -- e diagram. Thus, the stress distribution 
across the beam has the form shown in Fig. 4. 

The position of the layer on the outer border of the elastic core we find from 
the condition e(ye) = ~by e = e 2 .  Thus, 

H q~2 
Ye = 2 q~" (3) 

Similarly, for q~ > #4  the position of the inner border of the outer elastic 
region ~ is determined from the condition e@) = e,, or 

H q~, 
Y - -  2 ~ "  (4) 

The bending moment that corresponds to the deformed rod with curvature 
we find as 

M =  f ay dA,  (5) 
A 
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Fig. 4a-e. Stress distribution in loading 
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where A is the cross-sectional area of the rod. From Fig. 4 and by using (3)and (4) 

we get that for loading (M = M) 

I E l i 4  0 ~ 4 = < 4 2  

t (~--~t ~ [ ( 0 7 1 /  I E l i  4 + 3 QD 2 1 -- 42 < 4 < 44  

= ( 6 )  
I [ 4  2 - 

[ -+- y I  1 -- {E142 - -  E24,~} 4 • 4 , , ,  

where I = bH3/12 is the axial moment of inertia. 
Now we analyse the unloading of the rod. Let 4i be the initial curvature, i.e. 

the curvature when the unloading begins. If 4,. E [4, 42] then the whole cross 
section is elastically deformed, the stress distribution is shown in Fig. 4a, and we 

have for unloading (M---- _M) 

if4 = E l I 4  0 ~ 4 ~ 42. (7) 

Now, suppose that 4,.E [4~, 44] so that the stress-strain state of a point 
in the outer layer is given by point R in Fig. 3. To the point on the edge of the 
elastic core there corresponds the point B. In unloading, when the curvature chan- 
ges by - - A 4 ,  the change in strain of the points B and R is 

H 
(Ae)B =- - - A 4  ye; (Ae)R -= - - A 4 - - .  (8) 

2 

Since unloading from both points B and R proceeds along lines that are paral- 
lel, it follows that the changes in stress at B and R are 

H 
(A~)B = --El  z~4 Ye > (A~)R ~- - -El  A 4  -~ .  (9) 

Thus, the stress distribution across the upper part of the rod will have the form 
shown in Fig. 5b. 

When in unloading the outer layer reaches the point R", the stress remains 
constant with the value al (Fig. 5d). As unloading proceeds, the outer layer of 
the elastic core reaches point S so that yielded region has a constant stress equal to 
ai (Fig. 5e). 

Further unloading extends the elastic core so that, finally, the state of the 
outer layer is given by point S. After that, the unloading proceeds as in a lineary 
elastic body. 

To calculate the moments corresponding to the stress distribution shown in 
Fig. 5, we start with 4 i E [42, 44]. The stress at the point B' is given by 

H 42 
a B, = EleBi = E14yBI = E14  -~- 4----ii. (10) 
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Fig. 5a-h. Stress distributions in unloading 

Similarly 
H 

~R~ = ~2 - (z/~)R E~ = Z l  T [~2 - ( ~ ,  - ~ )1 .  0 1 )  

With (10) and (11) we can calculate the moment M = hT/ by using (5). The 
result is 

~i=Et I{qb- -~ i [ l - -~ -~ / j j (  r + 3 ~ 2  [ 1 - - (  ] ]  \~_/ 2j . ~b2 } (12) 

The expression (12) holds until the outer layer reaches state R II. Using (11) 
we conclude that the expression (12) is valid for 

~ i  - ( ~  - ~ )  < ~ =< r _-< r  (13) 

By similar analysis, that we omit, it follows that 

Et/{~--~e[1--{~2~31-k 3 [1--{~2~ 2] J 

{ (r _ N1 
h~ = (14) 

~ i  ~ < ~ < ~ i  - ( ~ 2  - ~ )  

El lfiO 0 <= q~ <= #1. 
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Finally, we consider the case when the unloading begins at the value of ~i > 44- 
The stress-strain state of a point in the outer layer corresponds to the point C. 
The stress distribution is shown in Fig. 4c. Thus, from (6) we have 

-~ -~ E~I [ q52 j ~2 (15) 

for ~b, ~ ~0 =< ~b i. When, in unloading, ~0 reaches cb4, the unloading follows the 

sequence shown in Fig. 5. Therefore for q~ ~ ~b 4 the moment hT/is determined 
by (14) with qb i = ~b4. 

We make two remarks concerning the formula for loading M(q)) and unloading 

)O((b). If the rod is not straight initially but has a constant curvature ~o the argu- 

ment in ~r and ~r instead of q~ should be ~O _ ~bo. Also it is obvious from the 
expressions for ~r and 3) that both depend on the cross section. Formula similar 
to (6), (14) and (15) could be easily derived for other cross sections. 

In Fig. 6 we show characteristic loading _Mand unloading 37/curves. 
If the temperature of the rod is increased, say from T~ to T2, then the initial 

modul of elasticity is increased from E~ to E~.  Thus, from (6) we have 

M2(q ~) > M~(q~). (16) 

Thus in conclusion we say that the (M, q~)-diagram for bending is fairly com- 
plex, even thought the (~r, e)-diagram for tensile and compressive loading consists 
only of straight lines. This fact must be taken into account, if one wishes to extract 
information on constitutive properties from bending experiments. 

k4~ 
r~>rl 

7' 

Fig. 6. Moment curvature relations for loading and unloading 
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As a special point of interest we mention that in bending of a pseudoelastic 
beam the layers subject to maximal stress need not be the outer ones. This is put 
in evidence by the Fig. 5 b through 5d. 

3 An application 

Now we use the results of the previous section to estimate the driving moment of 
a thermobile [2]. We assume that the thermobile works between moderately high 
temperatures so that the stress-strain diagram has the form shown in Fig. 3. A 
thermobile consists of two wheels and a memory wire around them, see 
Fig. 7. The cold wire coming to the lower wheel of radius r is bent 

at the point ~ from q)----0 to q)----1/r along the curve MI in Fig. 8. 
While in contact with hot water (from points ~ to | the wire is heated with the 

curvature remaining constant. The point | belongs to the loading curve M2 
at the higher temperature. At the point | the wire becomes straight again 
(~  = 0). That means that from | to | the state of the wire changes along the 

unloading curve 2~/2 (Fig. 8). 
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Fig. 7. Schematic view of a thermobile 

M~ 

Fig. 8. The thermobile processes in (M, q)) diagram 
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The moment that produces rotation of the wheels is 

Its value may be calculated using (5), (14) and (15), if the properties of the 
wire are known. 

Acknowledgement: The financial support of Alexander yon Humboldt-Foundation 
to T. Atanackovid during the course of this work is most gratefully acknowledged. 

References 

1. James, R. D. : The equilibrium and postbuckling behavior of an elastic curve governed 
by a nonconvex energy. J. Elasticity 11 (1981) 239-269 

2. Wang, F. E. : The thermobile nitinol engine. MECCA, Milwaukee, Wisconsin SAE 
Technical Paper (1985) 1-9 

T. Atanackovi6 
Fakultet Technickih Nauka 
Veljka Vlahovica 3 
21000 Novi Sad 
Yugoslavia 

M. Achenbach 
Hermann F6ttinger Institut 
Technische Universit~it 
D-1000 Berlin 12 

Received September 12, 1988 


