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Wave and shock velocities in relativistic 
magnetohydrodynamics compared with the speed of light 

G.  Boi l lat  a n d  T.  Rngger i  

We prove  tha t  the natural  t he rmodynamic  restrictions on the constitutive 
equat ions in relativistic magne tohydrodynamics  (stability of  equil ibrium 
state) are necessary and sufficient to guarantee that  the normal  and the radial 
velocity of  the wave f ront  o f  disturbances and the shock velocity do not  
exceed the light speed. 

1 Introduct ion 

In many  physical applicat ions a n  R N vector  field u(x ~) satisfies a first-order quasi- 
linear system of  N balance laws of  the fo rm 

~,tr~(u) = f(u). (1.1) 

x" s tand for  (x ~ x 1, x 2, x 3) = (t, x 1, x a, x s) and ~ means O/~x ~, x i will be used 
for  (x 1, x z, x s) and Oi = ~/oxi .  

I f  all solutions of  (1.1) also satisfy the scalar inequality 

O~,l~(u) - -  g(u) ~ 0 (1.2) 

the system m a y  be written in a part icular  symmetr ic  fo rm [I-3] .  Indeed,  if we 
define the m a i n  f i e l d  u',  i.e. a set o f  multipliers, by the relat ion 

u' �9 d F  ~ -  dh ~, (1.3) 

we may  write 

A':'(u ')  ~.u'  = f(u') ,  (1.4) 

where:  

82h '~ . 
A'~ - -  ~u' ~u' ' h '~ = u'  �9 F ~ - -  h ~ . (1.5) 
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The system (1.4) is symmetric hyperbolic if 

.~ = 0n' .  0F~:~ > 0 (1.6) 

holds for all non vanishing variations 0u' and at least for one time-like vector ~ .  
It is shown in [2] that the quadratic form .~ is equivalent to the quadratic form 
introduced by Friedrichs [4]. 

The special structure of the system and the convexity condition lead to several 
interesting results in non-linear wave propagation and, in particular, for shock 
waves. Such results concern the boundedness of shock velocities [5], growth of 
entropy across the shock [6, 2], etc . . . .  

Without loss of generality we may choose F ~ as the field u. With this choice 
there are some physical examples, as in the present case of MHD,  for which the 
solutions of (1.1) must also satisfy a set of M semi-linear constraints 

~ci(u) = c(u), V c i =  const., V = ~/~u. (1.7) 

Since these constraints must be compatible with the field equations, they must 
be involutive i.e. they are always true, if they are satisfied by the initial data and 
so there exist some M •  M matrices M ~ such that [7] 

Vc i VF i ~ Vc j VF i : M / Vc j ~ M j Vc i. (1.8) 

In this situation it is possible to extend the previous results. The system assumes 
the symmetric form (1.4), where in the present case the spatial part of (1.5) be- 
comes [7] 

~2h'i ~2 b 
- -  - -  c i -  " h ' i  = u" " F i ~ b " c i - h i ;  (1.9) A'i  ~n" ~U' ~U' ~U' ' 

where b are the new multipliers for the constraints (1.7) 

u "  dF i ~- b �9 d c i ~  dh i. (1.10) 

The condition of convexity (1.6) remains unchanged. Moreover it turns out 
that [8] 

I f  (1.6) is satisfied for an arbitrary time-like covector ~ and for all Ou' ~ 0 
compatible with the constraints: 

~i 0ci : 0 (1.11) 

and 

M i = const., det ( M ~ )  > 0, det ( L ~ )  > 0, (1.12) 

where 

L i : M i -~ Void'b, L ~ : M ~ : / ,  V' : ~/~u', (1.13) 

then the normal velocity of  the wave front, the radial velocity of  disturbances and 
the shock velocity do not exceed the light speed c. 

In relativistic non-linear wave problems, in particular for MHD, it is very 
difficulty to prove directly that all types of disturbances and shocks propagate 
with velocities that are bounded with respect to the light speed in vacuo [9, 10]. 
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In this paper we show that in the case of relativistic MH D  the conditions (1.6) 
and (1.12) are equivalent to the usual thermodynamic conditions of stability and 
therefore all types of signals have speeds less than or equal to c. 

4. Relativistic MH D 

The system of equations governing a perfectly conducting relativistic plasma forms 
a set of covariant conservation laws representing the conservation of particle 
number, energy-momentum and the Maxwell equations 

~ V  ~ = 0 

~ T  ~'~ = 0 (2.1) 

0~7 t~  = 0 

where: 

V ~ = ru -~, 

T ~/~ = ( r f  %- B 2) u~u ~ - -  ( p  %- �89 B 2) g~B _ B ~ B  ~, 

~p,,~ : u~B ~ _ u~B ~. 

Here r is the rest mass density, f the index of the fluid r f  = ~ %- p,  ~ is the 
proper energy density, p the pressure, u ~ the unit four-velocity and B ~ is the magne- 
tic field: B~u ~ = O, O 2 = - - B ~ B  ~. The signature of the metric g~, is ( + ,  , , ) 
and the speed of light c is equal to unity. 

Taking into account the Gibbs relation: 

d f  : T d S  %- V dp, V = 1/r 

we have 

r d ( - - r S u  ~) = (G %- 1) d V  ~ - -  ur d T  ~ - -  B~ d~P ~ ,  (2.2) 

G = f - - T S - - 1 .  

All differentiable solutions of (2.1) satisfy the entropy law: 

~ ( r S u  ~) = 0. (2.3) 

The system (2.1) represents the evolution laws (1.1) and the constraints (1.7) 
while (2.3) coincides with (1.2). We put this in evidence by writing the following 
identifications 

F ~ = T ~' ," f : 0 ;  c i=}Pio ,  c = 0 ;  h ~ : - r S u  ~, g = 0 .  (2.4) 

\ 7 ' ~ i /  

By comparison of (2.2) with (1.10) (for the spatial components) and (1.3) (for 
the temporal part), we deduce the form of the main field u' [11] and of the multi- 
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plier b [12] appropriate to the present case 

1 Bo (2.5) 
u'--~--T --u~ ; b - -  T" 

- - B  i 

The quadratic form (1.6) assumes the form 

if we take into account (1.11), i.e.: 

~i d T  i~ = ~ d T  ~~ ----- 0. 

We compute the invariant .~ in the rest frame of the fluid, u ~ = 1, u i = 0 
imply B ~  6u ~  ~B ~  i d u i = B . d u ,  (B=--(Bi) ,  ecc . . . .  ): 

~oT.~ = r f ( ~  - -  ~2) 6u 2 + rf(f~] 6u - -  ~o~ @/r f l~] )  2 

+ (~o 6B - -  ~ .  Ou B + B . ~ 6u) z + (B A ~ . ou) 2 

+ ( ~  _ ~2) (B A ~u) 2 + r ~  a', 

where ~'  depends only on the thermodynamic variables: 

.~' = 6S  O T -  6p b V - -  V 2 6p2/ f  

= - - G r r  6T 2 --  2Gzp 6T Op - -  (@p -1- V2 / f )  dp 2 �9 

Therefore .~ is positive for all non vanishing variations of the field, if we have 

V 2 D(GT, Gp) 
GTr < 0, J + -7" GTr >: O, d D(T, p) " 

These relations are equivalent [2, 11] to the natural conditions that the specific 
heat is positive and that the sound velocity is not larger than the speed of light 

c , > O ,  0 <  (#P)  < 1 .  (2.6) 

The conditions (2.6) for convexity have already been deduced in [ll].  
Now we consider the conditions (1.12). First of all we note that the constraint 

is linear with respect to the field u ~ F ~ ~ (V ~ T ~ T~ T, because by (2.4) e e 
is equal, except for the sign, to the last block of  components of F ~ Hence, if we 
substitute F ] for u in c ~, we obtain from (2.4a): d(F i) = gt~j and therefore 

e"(F s') + e/(F ') = 0. (2.7) 

Differentiating (2.7) with respect to u we deduce that the left-hand side of (1.8) 
is zero and thus we have M i = O, det (M"~)  = ~o :> 0. 
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I f  we take into account  (2.5b), we obtain:  

and then 

-ff6"l / Biui--~-' I Vth ~ 10, Bi, - -u  i~ " 

F r o m  (1.13) we have L i =  Vc i V ' b  : ci(V'b) = ui/u ~ and we conclude 

det ( L ~ 3  : (u~,)/u ~ > O. 

Therefore the conditions (1.12) are always satisfied for all time-like vectors ~ .  
Thus (2.6) are necessary and sufficient condit ions which guarantee the following 
speeds are less than or  equal to c: 

- the magnitude o f  the radial velocity A with which weak disturbances propagate  
along the rays, 

- the normal  velocity 2 = A �9 n,  where n is unit  normal  to the wave front,  
- the shock speeds. 

Lichnerowicz [10] has assumed 

~, < 0, ~,p > O, ~(p, S) = f/r 

in order  to prove that  M H D  shock waves propagate  with less than the speed of  
light. These same assumptions were also introduced by Israel [9] in an uncharged 
fluid. The first one is equivalent to (2.6b), the second one is an ad hoe condition. 
We consider our  condit ion (2.6a) to be more natural  
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