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Extended thermodynamics of molecular ideal gases 

G. M. Kremer 

The objective of extended thermodynamics of molecular ideal gases is the 
determination of the 17 fields of mass density, velocity, energy density, pressure 
deviator, heat flux, intrinsic energy density and intrinsic heat flux. 

The intrinsic energy represents the rotational or the vibrational energy 
of the molecules. 

The necessary field equations are based upon balance laws and the system 
of equations is closed by constitutive relations which are characteristic for the 
gas under consideration. 

The generality of the constitutive relations is restricted by the principle 
of  material frame indifference, and by the entropy principle. 

These principles reduce the constitutive coefficients of all fluxes to the ther- 
mal and caloric equation of state of the gas and provide inequalities for the 
transport coefficients. 

The transport coefficients can be related to the shear viscosity, the heat 
conductivity, and the coefficients of self-diffusion and attenuation of sound 
waves, so that the field equations become quite specific. The theory is in per- 
fect agreement with the kinetic theory of molecular gases. 

It is shown that in non-equilibrium the temperature is discontinuous 
at thermometric walls. The dynamic pressure and the volume viscosity, are 
discussed and it is shown how extended thermodynamics and ordinary thermo- 
dynamics are related. 

1 Introduction 

The modern version of extended thermodynamics was recently formulated by 
Liu & MUller [1] and Kremer [2] as a theory of monatomic gases. The objective 
of those authors was to obtain a phenomenological theory that is in close agreement 
with the kinetic theory of gases. And, as such, the theory was successful. Therefore 
the desire arose to apply the reasoning of extended thermodynamics to a less 
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restricted class of materials and in [3] Kremer worked out the case of real gases, 
published in [4], and the case of molecular ideal gases, which is described in the 
present paper. 

The objective of extended thermodynamics of molecular gases is the determina- 
tion of the 17 fields of 

mass density ~, 
momentum density o~vi, 
momentum flux Fij, 
translational energy flux �89 Fj~ i, (1.1) 
intrinsic energy density Qg, 
intrinsic energy flux G i. 

The translational energy density is equal to �89 F u. It is therefore implicitly 
included in this list of fields. The intrinsic energy density represents the rotational 
or vibrational energy of the molecules. 

The necessary field equations are based upon balance laws, and constitutive 
equations are formulated to close the system of equations. The constitutive 
equations are restricted by the principle of  material frame indifference, and by 
the entropy principle. 

It turns out that all but 6 out of 34 constitutive coefficients can be related to 
the thermal and caloric equations of state by a careful and systematic exploita- 
tion of these principles. The remaining coefficients can either be related to the shear 
viscosity and heat-conductivity, or they follow from the coefficient of self-diffu- 
sion or the absorption and dispersion of sound waves. Alternatively these coeffi- 
cients may be found by comparison with the kinetic theory of gases, notably with 
the Eucken formula. 

The notation in the paper is the usual indicial notation with summation over 
repeated indices. Round brackets indicate symmetrization, square brackets anti- 
symmetrization, and angular brackets indicate symmetric and traceless tensors. 

2 Thermodynamic processes 

All field equations are supposed to be based on balance laws, i.e. differential 
equations of the generic form 

OQ OQi 
" -~+-~x~=  P '  (2.1) 

where Q, Qi and P are density, flux and production, respectively. 
In particular for the fields (1.1) the balance equations have the form 

Balance of mass -~- + ~ : 0. 

Balance of momentum ~ + ~ = 0. 

(2.2a) 

(2.2b) 
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?,Fij cgF~Jk -- Pij. (2.2c) Balance of momentum flux ~ + ax k 

C~ �89 tTjji 0 �89 J~zTjk = Pj)i. (2.2d) Balance of translational energy flux ~ + ~-----~k 

~eg , 0Gi 
Balance of intrinsic energy ~ ~- ~x~ -- } Pii. (2.2e) 

0G~ ~Gij 
Balance of intrinsic energy flux ~ + ~ = Pi. (2.2f) 

The Eq. (2.2a-d) are formally the usual 13 balance equations of extended 
thermodynamics of monatomic gases with vanishing productions for mass and 
momentum. The trace of Eq. (2.2c) implies the balance of translational energy 

1 whose energy is ~ F m and �89 Pii is its production. Thus the balance of total energy 
with density 9g + • F~ is a conservation law. All tensors are symmetric. 

The system of Eq. (2.2) is closed by considering 

F(ijk), Fijjk, Gij, Pij, Pjji, Pi (2.3) 

as constitutive quantities which--at a given point and time--are related to the 
values of the fields (1.1) at that point and time in a manner dependent on material. 
Thus the constitutive equations have the generic form 

C = ~(o, vi, Fij ,Fjii, g, G,) (2.4) 

where C stands for any one of the quantities (2.3). 
If  the constitutive functions (~ were known explicitiy, we should now have 

an explicit system of 17 fields equations which are first order differential equa- 
tions. Every solution of this system is called a thermodynamic process. 

3 Constitutive theory 

3.1 Scope o f  constitutive theory 

In reality the constitutive functions ~ are not known and we must rely on the 
constitutive theory to restrict their generality and-- i f  possible--to reduce these 
functions to a few coefficients which can then be measured. 

The tools of the constitutive theory are universal physical principles and, above 
all the principle of  material frame indifference, and the entropy principle. 

I shall state and exploit these principles later in this paper. First, however, 
[ wish to recognize the special role of the velocity in the constitutive functions. 

3.2 A reformulation of  the problem in terms of  non-convective quantities 

Instead of the fluxes F/j, F0.k, F~:/jk, Gi, Gij and productions Pjji, Pi one may 
introduce non-convective quantities denoted as p's, g's and r's in the following 
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equations 

Fi~ = e v &  + pq, 

Fij k = ~vivjv ~ + 3p(qv~) + Piik, 

Fijjk = ~ViV.iVjVk + 6P(~iVjV~ ) -t- 4p(ijkVj) q-Pijjk, 

Gi : Qgvi -~- gi ,  

Gq = Qgt)il) ) @ 2g(ivj) q- gij, 

Pjji = 3P(qvj) q- 2ri r, 

Pi = --�89 Pjyvi + r[. 

(3.1a) 

(3.1b) 

(3.1 c) 

(3.1 d) 

(3.1 e) 

(3.1t") 

(3.1 g) 

These decompositions render the velocity dependence of the densities, fluxes 
and productions explicit, because the non-convective quantities are independent 
of the velocity. This statement is in anticipation of the principle of material frame 
indifference and I shall come back to it. The complexity of  these decompositions, 
particularly of (3.1 b, c) is motivated by the kinetic theory of gases, but it can also 
be derived from the requirement of  Galilei invariance of the balance laws. 

Some special notation is introduced to fit the customary nomenclature. Thus 
we call 

p~j the pressure tensor, 

p = �89 the pressure, 

3p 
eT=~--~ the translational internal energy, 

e = e r -t- g the internal energy, 

q [ =  1 ~Pi~; the translational heat flux, 

g; the intrinsic heat flux. 

(3.2a) 

(3.2b) 

(3.2c) 

(3.2d) 

(3.2e) 

(3.20 

We may replace the F's, G's and P's  in the Eq. (2.2) according to (3.1) and (3.2) 
t3a ~a 

and introduce the material derivative h = -~- + vi--~x i . Thus follows after a little 
calculation 

cqv i 
+ ~ ~ = 0, (3.3a) 

�9 ~ P i j  
eUi @ "~-Xj- 0, (3.3b) 

7- z �9 ~Vk ~P(ijk) 4 aq(i -I- ~qff ~vj) 
Pij +Pij~-~x k + ~ + 3- gxj) y ~--~xk ~ij -k 2pk(i}--~-xk = Pq, (3.3c) 

~vj r ~vj r &i 7 _7" ~Vl~ 1 gPijjk ~_ P(ijk) @ 2 _~_ 7 
[lf + 3- qi -~xk @ 2 ax k ~ T qj -~ixi T qJ "~x j 

Pij aPjk Pj~ aPik ri r, (3.3d) 
axx 2~ t3x k 
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~gi -- 1 
Qg @ ~X i ~ -  Pii, (3.3e) 

~Vk ~gij ~Vi ~Pij 
s + gi-~x/ -l--~xj q- gj-~xj-- g--~xj = r[. (3.3f) 

These equations appear to be more complicated than the original ones in 
(2.2), in particular they do not reveal the simple balance structure. And yet for the 
purposes of the constitutive theory they are preferable, because the velocity and 
its derivatives occur only explicitly. 

The variables and constitutive quantities are now chosen to be 

O, vi, Psi, qr, g, gi, 

and 

(3.4) 

P(ijk), Pijj~, gij, Pu, P(i]), rr, rri �9 (3.5) 

respectively, and, of course, these sets are equivalent to the original ones in (1.1) 
and (2.3). Thus the constitutive relations read 

= ~(e, Pu, qe r, g, g;), (3.6) 

where C stands for any one of the quantities (3.5) and where I have anticipated 
that the non-convective quantities are independent of vi. 

3.3 Definition o f  equilibrium 

Equilibrium is defined as a process in which all productions vanish, so that there 
are 12 conditions 

PU/~ = O, rifle = O, rll E = 0. (3.7) 

It seems inevitable that these conditions imply the vanishing of the pressure 
deviator P<u> and of  the heat fluxes q r and gi but there must be one more relation 
as these are only 11 in number. Therefore in equilibrium the remaining variables 
g, ~ and p must be related. I write this condition as 

gle = e'(~o, p) (3.8) 

and conclude that in equilibrium the intrinsic energy is determined by ~ and p. 
In non-equilibrium one may write 

g ---- ez(~, p) § A (3.9) 

which gives--in A--an  additional variable along with P<ij>, q f  and gi, that vanishes 
in equilibrium. The constitutive relations (3.6) may thus be written as 

= ~(~, P, P(u', qi T, A, gi). (3.10) 
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3.4 Entropy principle 

Let the entropy density be denoted by h and the entropy flux by qu I decompose 
Cpk into a convective and a non-convective part according to the equation 

~ = hv k + r (3.11) 

h and 4~k are constitutive quantities of the generic type (3.10). 
The most important part o f  the entropy principle is the entropy inequality 

_ _  ?hst ~ ~x k?~~ -- >- 0 or h 6- ~x k 6- ~ => 0, (3.12) 

and that inequality must hold for all thermodynamic processes. 
According to a lemma proved by Liu [5] an equivalent statement is that the 

following inequality must hold for all arbitrary fields (3.4). This new inequality 
results from (3.12) by adding on its left-hand side the balance laws (3.3), each one 
multiplied by a Lagrange multiplier A that may depend on the same variables 

as the constitutive quantities (~ in (3.10). Thus we have 

~vk ~xk -- @ 6- O-~xJ AY @bi 

( ~Vk@~P(ijk) 4~q( T 2~q T ~Vj) ) 

r ~Vk ~ ~Pi~ik ~V: 7" ~V: 7" ~3Vi 

P~j ~Pjk PJJ ~P~ A 
9 ~Xk 29 ?X k r q 

~gi Pii ) - ~ @' + 9 A + ~ + 

( ~Vk~giJ  ~Vi "~ ) 
- -2  i g, 6- gg-ff---xkxk 6- -~---xjxj 6- gj-ff---xjxj -- (e' 6- A ) -- r[ >=0. (3.13) 

If we insert all constitutive relations into (3.13) and perform all indicated 
differentiations we obtain an inequality whose left-hand side is explicitly linear in 
the derivatives 

/,,, b, b~j, 0L ~, g~, 
~Vl ~9 Opiy ~qr ~A ~gi 
Oxj - ' ' ' (3.14) ' ~xi ~Xk ~Xj' ?Xi ?Xj" 

Since the fields are arbitrary, so are these derivatives and therefore the in- 
equality cannot be valid unless all factors of the derivatives (3.14) vanish. This 
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requirement implies the conditions 

~h &t ~h &r 
0 = Ai, ~0 A + ~2 ~ ,  ap~j -- A~i + -~ ~ -@ d~j' 

ah ah ah 
- -  A i ,  ---~ ~ 2 ,  = .~i,  ~qi r ~ 

7 h d~j = (oA + Ar~pr, + T A,q f + 2rgr) 3iJ -~ 2Akgp~g 
2 7 + A~p(~i~> + ~ Ajq[ + -f Aiq [ + Zig:, 

~+k aP(~'k> + �89 A, ~Prs,k agrk 
= 4, + z 8--7' 

&&Op v -- dr, ~OP<'k> + �89 A r OP'**kape+ + 2r #grkape _ A, Pr(-~ dj)k 

P"" (d + a(i 
29 ~-(i - -  

_ I A  ~ +  + 4Ai k+~A,~:5:k, aqi r Ars ~qir -r- 2 r aqir , Oqr T 

~(Pk __ / [  ~P(rsk) ~Prssk ~grk 
aA a-7' 

(3.15 a-c) 

(3.15e-f) 

(3.16a) 

(3.16b) 

(3.16c) 

(3.16d) 

(3.16e) 

&bk = Ar" ~P(rsk> ~ ~Prs,k ~grk -t- 2 dik. (3.16 f) 

There remains the residual inequality 

Z = A<ij>P(ij> + (}Ar~ -- �89 P~, + A : ~ +  Air{>= O, (3.17) 

whose left-hand side is the entropy production. It contains 4 terms reflecting the 
productions of the pressure deviator, the translational energy and the two heat 
fluxes. 

In principle it is now obvious how to proceed: From (3.15) we calculate the 
Lagrange multipliers in terms of h. These are introduced into (3.16) which provides 
relations between the constitutive relations P<ijk?, P~iik, &: and h, 4~k. Between 
those relations it is possible to eliminate h and 4)k and obtain restrictions on &0k>, 
Pqjk, gij" 

3.5 Principle of material frarne indifference 

The principle of material flame indifference requires that the constitutive functions 
of the non-convective quantities are invariant under Euclidean transformations, 
or, in other words, the constitutive functions have the same form in an inertial 
and in a non-inertial frame. 
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It follows that the constitutive quantities (3.5) cannot depend on the velocity, 
a result which I have already anticipated in (3.6). Moreover, the constitutive func- 
tions must be isotropic functions of their variables. 

There are representation theorems on isotropic functions, e.g. see [6]. Here these 
theorems shall not be of interest in their full generality, because I limit the atten- 
tion to processes in the neighbourhood of equilibrium, i.e. with small values of 
P<0>, q[, g~ and A. Therefore I write 

linear representations for P<Ok), P~Zk, gu, P , ,  P<V>, r[, r[ 

a quadratic representation for @~ 

a third order representation for h, viz. 

P<ok) = 0, (3.18a) 

(3.18b) 

gig = (~o + ~'~ A) Oik + #P<~k>, (3.18c) 

Pii : ~ A ,  

P<ij> = a&o>, 

r[ c = c~lq ~ + o~2gi, 

r! = z~q7 + z2gi, 

Ck = (~Ol -}- ~92 A) q[  -~- (~93 ~- ~94 z]) gk -I- ~sp(kr)q ff -I- q)6P<kr~g~, 

h = o~s -I- h l A  -I- h2 A2 + h3 A3 + (h4 -~- hsA)p(~>p<,s> 

q- (h 6 -}- h7A) qTq~r + (h8 + h9A)g~gr -[- (hlo q- hl~A) qfg~ 

-}- hlzp(~s~p(~k~p(k, ~ + h13p(~)qfqf -}- hlap(~bqfg ~ + hl~P<~)grgs. 

(3.18d) 

(3.18e) 

(3.18f) 

(3.18g) 

(3.19) 

(3.20) 

All coefficients/30 through h15 may depend on 9 and p. 
A remark seems necessary about why I choose different orders in the represen- 

tations of P(ijk> . . . .  , r[, and cb~,, and h. Let us consider: What I wish to have in the 
end, if possible, is knowledge about P<vk~ through r[, because these quantities 
occur in the field equations (3.3). Within a linear theory I should therefore like to 
known the explicit form of the functions rio(9, P) through Z2(O, P)- But it turns out, 
in the evaluation of the conditions (3.15) and (3.16), that the properties of these 
functions are linked to the coefficients h and ~ of non-linear terms in (3.19) and 
(3.20) in multiple ways. Therefore I must take account of the non-linear represen- 
tations for h and @k- 

The reader who is sufficiently interested in this subject is invited to turn to 
the Appendix A1 where the conditions (3.15), (3.16) and (3.17) are exploited in 
detail. In the main part of the paper I proceed to introduce the absolute temperature 
but otherwise I merely summarize and discuss the results obtained in the appendix. 
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4 Results of the constitutive theory 

4.1 Identification of  absolute temperature 

Taking into account the representation (3.20) for h we conclude from (3.15) that 
among all Lagrange multipliers only A, A u and 2 have a non-vanishing equili- 
brium value. Indeed we get 

A lx a~ s ad a e s #e 1 h~ 
= - - - a e  ha--a 0 ' Ai'[E = ap -- ha -~p, 21E -=----.~ (4.1) 

Therefore there is only one linear term in the residual inequality (3.17) and, 
by use of (3.18d), one may write 

[ (a~os aEz~ h_~Q] /non-linear terms in) 
27= �89 - - h t  ap] -- ~ A +  ~p(ij>,qT, gi, A >=0. (4.2) 

But X has a minimum in equilibrium, namely zero. Therefore it cannot have 
a linear term. The square bracket in (4.2) must vanish and we have 

aQ s 

hi - -  a d  " (4.3) 

The equilibrium part of the trace of (3.16a) reads 

5 P (4.4) AIE----- s - - T  AulE-~'. 

Elimination of hi and AlE between (4.1 a, b), (4.3) and (4.4) gives two equa- 
as as 

tions for ~ and ~-p which may be combined as 

[ a [31, 

or by (3.2) 

( ") as = ~ AulE delE -- --~ de . (4.5) 

1 
Thus by comparison with the Gibbs equation ~ AiilE is recognized as -~  

where T is the absolute temperature 

1 

A.(e, P)I~ = T "  (4.6) 



30 G.M. Kremer 

Once the absolute temperature is introduced in this way, it is now possible 
to replace the pair (9, P) of equilibrium variables by the more familiar pair (9, T) 
and I shall do this in the sequel. 

There is one immediate consequence: The Gibbs equation, i.e. (4.5) and (4.6) 
joined together in the form 

ds = --~ delE -- -~7 d9 , (4.7) 

implies the integrability condition 

Here we are dealing with an ideal gas where 

k 3k 
p = -~ ~T and s T =- ~ T (4.9) 

hold. Therefore (4.8) implies 

O~]r = O, ( 4 . 1 0 )  

i.e., the specific intrinsic energy is independent of ~, it may only depend on the 
absolute temperature. 

4.2 Summary of  results 

As shown in the appendices A. 1 and A.2 the constitutive functions for (3.18 a-c), 
and (3.19), (3.20) obtain the following explicit forms as a result of the entropy 
principle 

Pink) = O, 

LT --TT--p s -s T s  
gik = (P el q- P A 4- aa) dik q- erp(ik~, 

1 r 1 2 
4)~ =- -~  (qi, -I- gk) -- -T-~@ A gk - ~pT &kr)q r ,  

l~ m{k T 3/2 e~. ) e 
h = q  l n - - +  f - ~ d T + a 4  + - ~ A - - ~  

9 

9 ( r&;]zl3 t 
ff 3T3(e~.) 2 1 + 2e~ dT] - - ~ p T  p@s)p@s) 

al T512 1 - i 1 
5 p ~  (I + _ _ ~ p  ] qrq:  2pT2jrg, g" 

2T2e~ 

(4.11a) 

(4.11 b) 

(4.11 c) 

(4.12) 
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1 

2TZp(~) 2 + e--fi r dT] Ag~g~ + 6~p(~>p(~k~p(k~ ~ 

9~ ( . a~TS/2\ -1 1 
@ 2~p3 T \1 -f---~p } p~)qTqf 4- 2p2T2e~p(r~)g~g~. (4.13) 

de r 
err stands for )-~ and a~ through a4 are constants of integration. 

The amazing feature of these results is there specific nature: All coefficients 
in (3.18a-c) and (3.19), (3.20)--some, or most of them coefficients of non-equi- 
librium terms--are specifically related to the thermal and caloric equation of 
state P(9, T) and J(T) except for the constants a. This specific nature of the results 
is a recurring feature of extended thermodynamics, first observed by Liu & Mill- 
let [1]. 

However, not everything is quite so specific. Indeed the 6 constitutive coeffi- 
cients of the productions 

ri r ~- oqqi r 4- oc2gi, P<ij~ = ap~ij~, (4.14a, b) 

F/ T ~--- = Zlqi 4- Zzgi, Pii ~ z] (4.14c, d) 

are only restricted by some inequalities, viz. 

alTS/2] O, a O, ~ O, (4.15a-d) Z z ~ 0 ,  oq 14- 2p ] = < = < = 
< 

~lZ2 - -  ~ 0r -~- 2me----Tr Z1 >= O. (4.15e) 

In the next Section I shall discuss ways on how to identify the remaining un- 
known coefficients 0q, ~2, Za, Z2, a, and ~. These are called the transport coeffi- 
cients. 

If  we take the intrinsic energy to be the vibrational energy of the molecules, 
it is possible to show that the above results of extended thermodynamics are identi- 
cal to those of statistical thermodynamics, if only the constants a~, az and a3 
are set equal to zero, see [7]. Therefore in the further development of this paper I 
shall ignore these constants. In fact, several contributions from a~ were already 
ignored in writing (4.15e) in order to make that inequality less cumbersome. 

In conclusion I list the field equations, i.e. the balance laws (3.3) combined 
with the constitutive Eqs. (4.11) and (4.14). 

~b + ~ = 0, (4.16a) 

~oi~ i @ oPij~ ~ O, (4.16 b) 
~xj 

~xl 4- 4- Pij ~ = 0, (4.16 c) 

~v~ 0q~ r ~vj~ 
P(ij) -~ P(ij) ~X k -~ 4 ~ .j_ 2pk<i~x~ = ap(,~>, (4.16 d) 
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T ~Uk 4 T ~I')( i T ~Vi 5p 2 ~T 
(7 T + 7- qi V~x + T q) -~Xj~ + qJ -~X2 -~ 20T gxi 

7p gT P ~P<ik> ofiqf + oc2gi, 

O ( 1 -  ee---~)z] + (1 -- e---~ ~g' 
eT l ?xi 

~Vk OVi I ~T ~ Zl ~P(ij) 
gi + gi-~xk -]- g: ~xj -[- Per ~xi + P--~Xi - A gxj 

Q ~xk 

(4.16e) 

e r Ox, - -  -"~Pi:~"~: = - - � 8 9  ~ A ,  (4.16f) 

~T 
§ = z iq f  + z2gi. elP(ik) ~ (4.16 g) 

I have reordered these equations somewhat compared to (3.3) with respect to 
the equations of balance of energy. Thus (4.16c) is the balance of internal energy, 
viz. the sum of the trace of (3.3c) and of (3.3e). Also I have used (4.16c) to eli- 

minate 2h from the balance (3.3e) of intrinsic energy. This was done in order to 
facilitate a subsequent argument, er in (4.16f) stands for the derivative of tIE = 
3p 
2"-~ + d(T) with respect to temperature. 

Note that the left-hand sides of Eqs. (4.16) are explicit in the variables 

q, vi, T, P<ij>, qT, A, gi, 
k 

provided we know d = d(T). Of course, p is always equal to~-gT.  

5 Identification of transport coefficients 

5.1 The limit of  ordinary thermodynamics 

It is a most natural question, of course, to ask how to get back from extended to 
ordinary thermodynamics of a molecular gas. In ordinary thermodynamics, in- 
stead of the set (1.1), or (3.4) we should have the basic fields 

Q, vi, p (or T) 

and there would be conservation laws of mass, momentum and energy, or the ba- 
lance of internal energy 

+ e ~  = 0, (5.1 a) 

�9 gPij 
ev ,  + ~ = 0, (5.1 b) 

~qi ~Vi 
OA +-~ixi + P'J ~--'~j = 0. (5.1c) 
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To close the system of  equations, in ordinary thermodynamics we must have 
constitutive equations for 

the pressure deviator P~,_i> 

the heat flux qi = q r  + gi 

3p 
the internal energy e = ~ + d ( T )  + A .  

Adapting an iterative scheme from the kinetic theory-- the so-called Max- 
wellian iteration, see [8]--we derive the desired constitutive equations from the 
Eqs. (4.16d-g) in an approximate manner as follows: In the first step we intro- 
duce equilibrium values for P(0>, qT, A and gi on the left-hand sides of (4.16d-g) 
and calculate first iterates. 

(1) p ~v(i 
p<~j) = 2 - -  - - ,  (5.2 a) 

a ~xj~ 

(~)r (l) 5p 2 ~T 
~xlq i -~ 0r i = 2~T ~xi '  (5.2b) 

(1) 2p@ ~v k (I) 3p 2p@ ev k 
A -- ~e~- ?x k ' i.e. e = ~00 + d -5 ~er ?x~' (5.2c, d) 

( l )  T ( i )  1 ~T 
Zl qi ~- z2gi = Per -~x i �9 (5.2e) 

The iteration proceeds by putting these first iterates into the left-hand sides 
of  (4.16d-g) and calculating second iterates, etc. However, I shall not go beyond 
the first step. Therefore in the sequel I omit the superposed index (1) in the equa- 
tions (5.2). 

From (5.2b, e) one gets for qi = q r  + gi 

m i 5 
k -'k -er(~ - -  0~2) - -  S (Z1  - -  X 2 )  ~ T  

qi = - -P m c~2Zi - -  eqZ2 ~xi (5.3) 

Thus with (5.2a), (5.2c) and (5.3) we have the desired constitutive equations 
which can be used to close the system (5.1). 

Equations (5.2a) and (5.3) are recognized as the constitutive relations of Navier- 

Stokes and Fourier, respectively, and we conclude that -- p is the coefficient of 
ff 

~T 
shear viscosity # while the factor of ---~-- in (5.3) is the coefficient of heat 

vxi conductivity 

t n  I 5 

p k T ~ ( ~  - -  ~ )  - -  ~- (z~ - -  Z~) 
# = - - - - ,  ~ = p - -  (5.4a, b) 

(y m ~2Z1 -- oqZ2 
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Since/~ and 24 are measurable quantities, these equations permit the deter- 
mination of ~ and provide a restriction on the transport  coefficients cq, cv2, Z,, 
and Z2. Thus there remain four unknowns in the theory at this stage. 

5.2 Compadson with the kinetic theory. Eucken formulae 

In the literature there is considerable interest in the ratio z//~ which indicates 
the relative efficiency of heat and momentum transfer. According to the elementary 
kinetic theory we should have 

24 
~ 5 4 + 4 (5.5) 

where er r stands for the derivative of the translational internal energy e r with respect 
to the temperature. This reflects the fact that momentum exchange in a gas and 
the exchange of intrinsic energy are less effective than the exchange of transla- 
tional energy by a factor 2 T, e.g. see [9], p. 279. Equation (5.5) is called the Eucken 
formula and it has been revised several times as the kinetic theory has become 
more and more sophisticated. Thus there is a proposition by Chapman and Cow- 
ling [10] which reads 

24 5 , 0  D t 
/z - -  ~ e~. (5.6) ~ -  T ~ ' T .  

Here D is the coefficient of  self-diffusion. There is also a more complex for- 
mula, due to Wang Chang and Uhlenbeck [11] which reads 

{ (~ z A 1 4 m B d r ,  4 C(er ) (5.7) 

in which the coefficients are definite expressions that follow from the Chapman- 
Enskog solution of the Boltzmann equation for molecular gases. 

With/~ and z given by (5.4) we obtain in the present theory 

- ~ l z , _  - ~ 2 z l  T-din (z_, - z l )  + 4 ( c ~ 1  - c~2) ( 5 . 8 )  

and, if we abbreviate the positive expression on the left-hand side of  (4.15e) by 
d we can recast (5.7) in the form 

24 4 m I 4 C ( 8 / ) 2  n = a  1 - -  3- + ~  
# 

where a, b, c stand for 

5ka(2252 --  Z0 2 o:2 
a ~ b - -  - -  

8 m z 2 ( O C l Z 2  - -  o r  2252 - -  Zx 

2az~ ~ 
(2Z2 _ _  ~1)2 , C - -  (2252 --  Z1) 2' 

(5.9) 

(5.10a-c) 
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Note that (5.9) has the same form as the Eucken formula in the Wang Chang- 
Uhlenbeck generalization. A comparison between (5.7) a n d  (5.9) would allow 
us to have three restrictions on the values of the transport coefficients ~ ,  ~z, Z~ 
and Z2 so that now only one transport coefficient remains unknown in the theory, 
say ~. 

There is a tempting special case to be considered, namely the case 

O~ 2 = O and Z~ = 0 (5.11a, b) 

so that the two equations (5.2b, e) uncouple. We call this case the case of negligible 

coupling between translational and intrinsic energy. The r a t i o -  in (5.8) becomes 
/z 

5p ~ 

z~ _ 29T~ ~ P e l .  (5.12) 
# # Z 2  

By comparison with (5.2b) the numerator of the first term is seen to be equal 
to the "translational heat conductivity". If we accept, again from the kinetic theory 

15k 
(e.g. see [10], p. 247) that this heat conductivity is very close to -4---~m #, we may 
write 

s P___P_ e I (5.13) 

This formula compares well with the Eucken formula (5.6) in the Chapman 
and Cowling generalization and we conclude that there is a relation between X2 
and the measurable coefficient of self-diffusion, viz. 

--Za = p D. (5.14) 

Note that, here again, with the assumptions (5.11) and the identification 
(5.14) of Z2, we now have only one remaining unknown transport coefficient, 
viz. ~. One way of determining that coefficient is the measurement of the attenua- 
tion of sound waves. I proceed to show this. 

5.3 Plane harmonic waves o f  small  ampli tude 

I investigate solutions of the system (4.16) in the form of plane harmonic waves 
of small amplitude propagating in the x-direction and having the frequency o) 
and the complex wave number k c = U q- iU. I consider a constant reference state 

with ~, 7 ~ and vanishing values of A, vx, qr, gx and p<x~) 

= ~ + ~e i('~t kcx), v x = -{ei(~t-kCx), 

T = f7 + Te  i(~ k~), A = 3 e  i(~162 

q.~ = ?t ei(o~t- kc~), gx = ff ei('~t-kcx) , 

P~,.,x) = P ei(~ 

(5.1 5a, b) 

(5.15c, d) 

(5.1 5e, f) 

(5.15g) 
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The barred quantities ~ through ff are the amplitudes, products of them are 
neglected. The phase speed V and the coefficient of attenuation or are given by 

(D 

V -- - -  and ~* ~ - -k  i. (5.16a, b) 
k ~ 

For  simplicity I shall consider the special case (5.11) of negligible coupling. 
Insertion of (5.15) into (4.16) gives a system of linear homogeneous equations for 
the amplitudes, viz. 

k ~  k ~ 

m ~9 

0 

kC 

k ~  k ~ 
m 09 

0 

4k~T  k c 

3m o9 

0 

k~ k c 

m (o  

3k~ 
2m 

l k \ 2  - U 

---tin) 
~ c k ~ T _  I k 

E T - -  
m O~ 

0 

0 

k c 

0 

0 

k~ Ei 
m (D 

0 

1 + i - -  
09 

0 

0 

k c 

(D 

0 

l + z - -  
6O 

0 

8 kC 
15 (D 

i - -  
2co 

~ -- i 2--- ~ 

0 

k~ Ei 
m (D 

0 

0 

0 

0 

k ~ 

60 

0 

1+~2~ 
O9 

0 

(5.17) 

The determinant must vanish for this system to have a non-trivial solution 
and that requirement leads to a dispersion relation which has the general form of 
a bi-cubic equation for (kC/og). 

+ x,  + x2 + x3 = 0 (5.18) 

where the X's are complex coefficients which are not given here. For  the case of 
small frequency, which is the usual case of sound waves one obtains a solution 
for 

k C 1 . f f  k / m  ~ m e r / k +  1 -~ 

+ e~ p 2e . meT1} (5.19) 

- - 0 .  
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where Vo is the adiabatic speed of sound, i.e. Vo = 1 + m e t  - -  , and D is 

the coefficient of self-diffusion that was introduced earlier. I have dropped the 
tildes from (5.19), 

From (5.19) one may easily calculate the absorption coefficient (5.16 b) which 
is a measurable quantity and turns out to be a function of  ~:. Inversely we may 
write 

/z e~- (5.20) 
= 2 V03Q0~ * 15k l ~/T QO 4 

092# 4m er(me~./k + 1) er(mer/k  -+- 1) /z 3 

Thus we have identified the last remaining unknown transport coefficient of 
the theory. 

If I had not restricted the attention to the case of negligible coupling in the 
above analysis of waves, the absorption and dispersion of sound waves should 
have provided information about other transport coefficients as well. 

6 Final remarks 

6.1 The role o f  temperature 

The reason why temperature is such an appropriate variable in thermodynamics 
is that it is considered to be easily measurable and the reason for that is its con- 
tinuity at a thermometric (sic!) wail. Let us consider how this stands in non- 
equilibrium. 

A thermometric wall does not actively participate in the processes on either 
side, in particular it does not produce or store entropy so that the entropy flux 
coming in on one side is going out on the other side. Thus, if  e i is the unit normal 
to the wall, we have 

~rbi~ e i = 0. (6.1) 

The brackets denote the difference of the bracketed quantity on the two sides. 
The heat flux qi ~-- q [ +  g;--or  rather its normal component--is  also con- 

tinuous on a thermometric wail, since such a wall does not  store energy either. 
Therefore insertion of (4.12) into (6.1) gives 

1 I - 2  r 

If we neglect non-linear terms, the right-hand side is zero and (6.2) implies 
that indeed the temperature is continuous. That  result, however, is only as good 
as the linear approximation, because--according to (6.2)--there iS a jump of 
T, if on either or both sides of  the wall the bracketed expressions cannot be neg- 
lected. In such a case, the temperature looses much of its value as a suitable 
variable. 
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6.2 The dynamic pressure 

We recall (5.2d) where e r = 3p = 3k 
2~ 2m 

T and e t-= J (T )  holds and write 

3k p el  ~vi 
e = -~m T + el(T) @ 2 ~ er ~x i . (6.3) 

Thus e contains a term proportional to ~-~x... In the kinetic theory of  poly- 

atomic gases, e.g. the works of Wang Chang, Uhlenbeck and de Boer [11] or of 
Waldmann [12], this is not done. Rather these authors define e as 

e = e r + J hence e r = - - = e - - 3 P  er" (6.4a, b) 
2~ 

Elimination of ( e -  e r) from (6.3) and (6.4) leads to 

k o T - -  ~ ~vi P =--m 7x~ where ~ _ 43 mk ~o2T~ e r '  @ (6.5a, b) 

if non-linear terms in ~ are neglected. 

It is customary to call the term --~" ~ the dynamic pressure and ~ is the volume 

viscosity. By (4.15d) ~ is non-negative. 

Thus it is possible to have either e or p depend on 7x~" Both versions are 

possible and equivalent as was already remarked by Kogan [13]. 

Appendices 

Appendix 1. Consequences of the entropy inequality 

The Lagrange multipliers follow by insertion of the representation (3.20) of h 
into (3. ! 5) 

i~O S -- ~CI~ i~hl ~EI~ i~h2 ~EI~  2 

+ - h9 g,g, + "  -TI qTg,, ( a . o  
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t ~ ~p h~ ~ )  + ~ ~p - 2h~ ~ /  ~ + ~ ~p - 3h~ ~ i  

4- ~-~p -- h5 -~p) p<,~>p<,~> 4- \--~p -- h7 -~p ] q f  q f  

4- \--~p - -  h9 ap] g~g~ 4- \-~p -- h , ,  ap] qfg~' (A.2) 

Auj; = 2(h4 4- hs A) p<~j> 4- 3hj:p<r<Op#> > 4- h,3q<rqf + h,,,q<r&> 4- h,sgu& ~, (A.3) 

Ai  ~_ 2(h6 4- h7/1) qr 4- (hxo + h~  A) gi ~- 2h~aP<~r>q f 4- ht,,P<e,;gr, (A.4) 

2; = (h~ o 4- lht  A) q r + 2(h8 4- h9 A) gi @ h~,,p<~>qf 4- 2h,~p<~gr, (A.5) 

o)~ = hz 4- 2h2 A 4- 3h3 A z 4- hsp(,~>p<~> 4- hTqrq~ 4- hgg~g ,. 4- h~xqfg~. (A.6) 

On the other hand, the trace, the symmetric traceless part and the antisymmetric 
part of Eq. (3.16a) read 

5 prrA~ 4- s 4 2r&, h = ~A + ~ T p<~>A<r~> 4- 2A,.q f 4- g 

3-A(~qj> + 2<i&> = O, 2A~<~pj> k § A~p<rv > 4- 9 r 

(A.7a) 

(a.7b) 

(A.7c) 

The substitution of the representation (3.20) of h and of the Lagrange multi- 
pliers (A.1) through (A.6) into (A.7a) leads to a polynomial in qr, gi, P<u> and A, 
which is equal to zero, so all its coefficients must be equal to zero 

e~ = e k ~  - h~ a o / +  v p  k ~  - h ~ v ) '  (A.a) 

( cqh' -- 2h2 ?e ']  s (3hl ?e']  (A.9) h, -- e \ ae --~ ] 4- ~- p \--~p -- 2hz ep ] ' 

hz  = ~o \ a o - -  3ha --~'e ] 4- ~ - p  \ ap - -  31'3 "-~p] ' ( A . 1 0 )  

h4 = ~ \--~ -- h s - ~  ] 4- v P \-~p -- h s --~p ] 4- ~ h 4 , (A.1I) 

(0h6 __ h7 c%I'~ 5 (~h6 08I~ 
h6 = 0 \ 3  0 --~1 @ T P \--~-p -- hv'-~p ] -}- 4h6, (A.12) 

hs = e  \ a~ '9"-~] 4- 3 \ ap --h9 c~p] +-3-h8' (A.13) 

h,o = 0 \-~--~- -- h** -~-0) + w P \-~--p -- ** -~p] + ~ h,o. (A.14) 
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In the same manner, we get from (A.7b) and (A.1) through (A.6) 

-1 (~s ~'~ - ,  ~h~ ~'~ 
h~ = ~ \--~p -- hi -@-p], h5 = -~p \--@-p -- 2h2 -~p), (A.15a, b) 

--2 --9 --7 --I 
h~2 = "-~-p h4, h~3 = -ffp--p h6, h~,~ = -~p h~o, h,s = h s. (A.15c-f) 

P 
Equation (A.7c) is identically satisfied. 

Next, we obtain by insertion of (3.18), (3.19) and (A.1) through (A.6) into 
(3.16 b -f) 

~v~ ~fio ~Vo (A. 16) ~ -ho~+h~o ~-~, 

~92 ~ ~Vo ~/3~ ~v~ (A.17) 0@ = h 7 -~- h11-~O @ h6 ~ @ h~~ ~0 ' 

~___~ ~ ~o (A. 18) ~ = �89 h~o + 2hs ~---~-, 

�89 h~ ~ § 2h 9 ~ -  -4- �89 - -  + 2hs - - ,  (A.19) 

~os ~/3o ?~o c~7 cq# 

r ~/3o eVo Oy ~/z (A.21) e~ = �89 h,,-~s + 2 h . ~  + �89 h~o$ + 2hs e-~, 

) ~p - -  h 6 ~ ~p + h~o \ 8p -- J ' (A.22) 

[~Vo ez), (A.24) 

-~p --by\@ 

~ Uo 

@ \@ 

o~5 ( �89  

- �89 hl~ \ @ 

~ = h~ ( v - - ~ )  + h,o 0 , - -  d), 

{~Vo [?vl 1) (A.25) 5p) +2h9 '~P - - d ) +  � 8 9  +2hs  \ ~ ,  -- , 

(0% O# ~Y 2 
5p) + h,4\@ --J)  + hlo~p + h6 (-~p -- --~), (A.26) 

r �9 + 2 h , 5 \ - ~ p - - e '  + 2 h s ~ p + � 8 9  ~p , 

q)6 = �89 hlo (y - -~ )  -l- 2hs(# -- e'), 

(A.28 a, b) 
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2 ~OS ~SI~ 2 [?hl 86l~ 
~ = ~ ~-~p --h,--~p ] ,  ~z = g ~--~p -- 2hz--~p ] ,  

~2:h6fli@h~ovl, ~ 4 ~ � 8 9  hlofl l+2hsvl ,  

hi 2h2 
9 3  : - - ,  ~ 4  = , @6 = 0 "  

e 

The residual inequality (3.17) reads 

[8~s 8e'] 

8 ~5 = ~  h,, 

41 

(A.29 a-c) 

(A.30a, b) 

(A.31 a-c) 

{Oh~ Oel] h2 

+ (2h8zz + h~o~Xz) g,gr + [2h6a2 + 2hsz~ + hlo(Oq + Z2)] qfg, >= O, (A.32) 

where use has been made of the Eqs. (3.18d-g) and (A.1) through (A.6). In (A.32) 
I have omitted terms that are more than quadratic in {q r, gi, A, P(ij)). 

z = 2(5, p, p<;j), qL A, gi) 

assumes its minimum in equilibrium so that we have 

Zig = X(~o, p, 0, 0, 0, 0) = 0. (A.33) 

The necessary conditions for Z to be a minimum in equilibrium are 

8~-XA I~ = 0  and ~ l S z ' S  is non-negative definite (A.34a, b) 

where XA = (P(ij), qi r, A, gi}. 
From the first of these conditions we conclude that 

8r 

hi -- 8d ' (A.35) 

and from the second 

h,~r >= 0, ~ -- 2h22~_p) _ ~ 0, (A.36 a, b) 

2h60% -}- hlozt >= O, 2hsz2 -{- hlo0r ~> 0, (A.36c, d) 

(2k6~1 -1- h~oZ1) (2hsz2 + hlo~2) ~ h6cr -t- hsz1 + hao (A.36e) 
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Appendix 2. The absolute temperature as variable and the final results 

We replace the pair of variables (9, P) by the pair (0, T) and use the relations 

to rewrite the Eqs. (A.8) through (A.31) in the form 

0 h2 -- --0 (A.38a, b) 
hi = - f  , 2T2e I , 

1 ( T d e ~ ] h , - - 1  
ha -- 3rs(@) 2 1 + 2e---Tr d r ] "  - -  4 p T '  

(A.39a, b) 

hs - -  2T2e~A y - -  , 
-2~1 

h,o -- 5 p ~ '  (A.41 a, b) 

2 [/3,(# ~T J)v~ 3p/31(# -- e) 
h7 - -  5pTA2e~. " -I- 2 T  

hg-- 
2T3 A2(eIT) 2 ~- 2TZA2(@)2 

2vt] /31 r ( p  1) _ (# _ d )  ~O_~ + 1 + ~ ]  ST 

- - 2  [- o2 / /2~"1 1) p @ _ _ ~ )  (2vl t) h i , -  5pTa24 [pier ~Tp + +3/3,  T + \3p 

+/31 (T -- ~ ) & l  @ -- -~) a~-~l (A.44) 

1 -- 18vl 
hla = 6 p 2 T ,  h ,a  - -  25p2TA  , (A.45a, b) 

h i , - -  25p2TA,  h15 --  2 p T 2 4 A  ~ - -  , (A.46a, b) 

1 1 
9, = --T' g2 = 0, ~v a = --~-, (A.47a-c) 

--1 --2 
9 ,  = T 2 @  , ~os = 5 p T '  q)6 = 0, (A.48 a-c) 

(A.42) 

A a4,] 
4 grj' 

(A.43) 

[2v* , 1) 

2~ 1 
hs = 0, h6 - -  5 p T A '  (A.40a, b) 
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5p 

aflo _ 5p ap &o _ d ap 

~),_ 2 ~p 1 ( _ ~ )  ~# --1 

8t31 &, ~p 

o r  - e 5-~ + ~-~ ~ - + 2(r - d)  , 

&o _I ~ 5p ex), 
e-f = ~ ~ + ,,~4- + ~ ( / ~  - 

8# 3 ~1@ 
~T-- 2T (~ - 81) @ T "  

87 2 8p 5 (  ~ )  7 
ST-- e ~--T-I-2-T ) '--  + - f - ( # - - J ) '  

h6 -bT ~- hlo XVf ?--r = ~ h7 

~(/~SP __ d ) ] ,  

43 

(A.49) 

(A.50a, b) 

(/, - -  eI), (A.51 a, b) 

(A.52a, b) 

(A.53) 

(A.54) 

(A.55) 

(A.56) 

(1.57) 

h,o ~T + 4hs \8 T ~T) = -Sp d)] 

2 [ 
~2 + -  (A.58) --4h 9 [e~.v, + ~T(# --eI)l -I- T39----~T 8~ dT] " 

In the above equations e~ stands for the derivative of J with respect to the 
temperature and A is defined by 

Insertion of (A.40b), (A.41 b), (A.42) and (A.44) into (A.57) leads to 

fit = 0, (a.60) 

and we get from (A.49), (A.55), (A.41 b), (A.42), (A.44) and (A.46a) 

# = e z, ~1 =P,  hlo = h7 -~ hit = h i 4  = 0. (A.61a-c) 

Moreover, Eq. (A.57) is identically satisfied and the other coefficients result 
from integration of (A.50a), (A.50b), (A.51a), (A.53), (A.54), (A.56) and the 
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Gibbs Eq. (4.7) 

7/o( aiTS/2] 5 p 2 ( l + a x T S l a  ~ 
7 =-~"  1 + - - ~ p  ] ,  /3~ = 0 " - - ' ~ P  ,] -~- a2, (A.62a, b) 

k T 3/2 e t 
~o =p~'+ ~3, s = - - I n - - + f r e t +  ~,. (A.63a, b) 

m 

al through a4 are constants of integration. 
I summarize the results 

k T 3/2 f e  r e -e  
s = - - I n  - -  + dT  + a4, hi = 7 '  h2 --  2T2e ~ , ( A . 6 4 a - c )  rn 

( ke4  -1 
ha --  3T3(e~.) 2 1 + 2e I dT ] '  h4 -- 4 p T '  hs = 0, (A.65a-c) 

__ --0 ( alTS/2~ -1 --1 
h6 5p2T 1 +---~p ] , h7 = O, ha --  2pT%~' (A.66a-c) 

1 ( 2  l de l r~  1 
h9 --  2T2p(e~r) 2 + e--~r dT ] '  hto = hH = O, hx2 --  6paT,  (A.67a-c) 

h,a -- 2 1 --1- ---~p ] , hi4 = O, h~s 2paT2j  r ,  (A.68a-c) 

1 1 (A.69a-c) ~ 1 = - ~ ,  9 )2=0 ,  q~3=-~-, 

--1 --2 
cP4 --  T2@ ' 9)5 5pT '  ~v 6 = O, 

SP~ ( a'rs/2] 
/~o= T l + T / + a ~ ,  r 

71) ( . alT512\ 
7 : 7  1 + - - - ~ p  ) ,  r o : p J + a 3 ,  

(A.70a-c) 

/z = e t, (A.71 a-c) 

rl = p.  (A.72a-c) 
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