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Optimal stock reorder policies are determined for transportation~storage systems with queueing of user 
requests. Exact and approximate solution methods are proposed. 

Optimal inventory control is an important element in optimization of complex systems. The inventory control problem 
~n the global setting cannot be solved in the framework of a single model that simultaneously allows for all features of the 
procurement process. Various authors have accordingly examined different aspects of this problem for different inventory 

system models. 
A fairly broad class of systems is described by models in which the stock level continuously diminishes over time (as 

long as the warehouse is not empty) until it reaches the lower admissible bound; then the stocks are replenished by a Poisson 
stream of random deliveries with a known distribution function. The operation of such systems is adequately described by a 

random walk between two retaining walls [1]. The results of [1] can be applied to solve a number of problems relevant for 
analysis and optimization of such systems. 

Various aspects of this problem are the subject of extensive literature. Further references can be found in [2, 3]. 
Most inventory control studies assume that the stock-diminishing user requests are satisfied instantaneously, i.e., the 

user requests are not enqueued if there are stocks in the system. Request queues form only in a stock-out situation, which 
requires introduction of negative inventory levels. The operation of a stock system is thus optimized ignoring the waiting costs 

of the enqueued user requests and the costs due to the limited number of waiting places in queue. Such situations occur in 
transportation/storage systems (TSS), for instance, in petroleum-product supply systems (petroleum depots, service stations, 
etc.) [4, 5]. 

In this paper, we consider the stock process in a TSS and solve the corresponding optimization problem. A single- 
commodity model is analyzed, although it can be easily generalized to multicommodity TSS. 

The TSS includes a storage capacity Q. Its input is a Poisson stream of user requests of unit magnitude with rate Xp. 
The resource is issued in response to user requests through a single channel. The issue time of the resource to user requests 
(i.e., the service time of one user request) is an exponential random variable with mean/~p-1, txt-1 > 0. We thus see that 
the stock level diminishes by one unit only after the current user request has been processed. The resource is issued from stock 
until the stock level drops to the value q, 0 _< q _< Q - 1, after which the warehouse stops issuing the resource regardless 

of the queue length of user requests (q may be interpreted as safety stock). At this point (i.e., when the stock level is q) the 
system can place orders of a different size, depending on transport capacity. 

Here weconsider a fairly general case. Assume that the system orders a quantity i, i E {1,2,...,Q - q}, with 

probability t~i(qn), where n is the queue length of user requests; here ~i=l Q-q e~i(qn ) = 1 vn. The order is delivered with a 

certain delay, due to shipping and unloading in the warehouse (the warehouse does not fulfill any user requests during this 
time). The delay is an exponential random variable with mean 3'. 

User requests do not have information about the stock level in the warehouse and are absolutely "patient", i.e., they 

wait in queue until the stock is replenished. The maximum number of user requests in the system is N. In other words, a user 
request that arrives when a system already contains N such requests is lost. 
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We use the following notation: mn is the two-dimensional state vector of the system, where m is the stock level and 

n is the number of user requests in the system; E := {mn: m = q ..... Q, n = 0 ..... N} is the phase state space of the system; 

7r(rnn) is the stationary probability of state mn; Cp t is the cost associated with the waiting of one user request for a unit time; 

c, 2 is the cost associated with the loss of one user request; d is the cost of storing a unit quantity of stock in the warehouse 

for a unit time; O(x; y) is the waiting time for the transition x --, y, where x and y are in the same phase state space. 

The optimization problem for this TSS is stated as follows. Find the (optimal) values o~i(qn), i = 1,. . .  ,Q - -  q, qn E E,  

that minimize under stationary conditions the total cost per unit time G associated with waiting and loss of user requests and 

the holding of stock in the warehouse. 

We solve the problem by a Markovian approach. 

The elements of the generating matrix of the Markov chain that describes the operation of this system are defined as 

%p, i f  m ' ~ m ,  n ' = n + l ,  n ~ N - - 1 ,  

0(ran; m'n ' )= ~tp, i f  rn~.q, m ' = m - - 1 ,  n ' = n - - 1 ,  n2>0, 
yczi (qn ), i f  r e : q ,  m' = q -}- i, n' = n, 

o otherwise. 

(1) 

From expressions (1), we form a system of equilibrium equations for 7r(mn), mn  E E: 

0 (ran; m'n') z (ran) = E 

E r~(mn)=l, 
mnEE 

0 (m'n'; ran) r~ (m'n'), 

(2) 

where Emn- is the subset of states m ' n '  C E that the system can reach from mn in one step; Emn + is the subset of states 

m'n '  E E from which the system can reach the state mn in one step. 

The total cost in the system is calculated as 

mnEE 

The optimization problem for this system thus reduces to minimizing (3) subject to the constraints (2). This is a Markov 

programming problem and it can be solved using linear programming (LP) or dynamic programming (DP) methods [6]. The 

solution of the problem produces the minimum total cost G* and at the same time determines the Markovian controls cq(qnL 

i = 1 , . . . ,Q  - q, for which G* is achieved. The optimal values of e~i(qn), i = 1 . . . .  ,Q - q, are either 0 or 1 in each state 

qn E E,  and the solution of the problem thus produces a deterministic inventory control policy for the system: if in state qn 

we have c%(qn) = 1 for some io, i o E {1 . . . .  ,Q - q},  then the quantity i o must be ordered in this state. 

Let us consider an approximate method for the solution of this problem. An approximate method is needed when the 

dimension of the phase state space of the system IEI = (N + 1)(Q - q + 1) is too high, so that exact computer algorithms 

ran into insurmountable difficulties when attempting to solve the problem. The proposed approximation method is based on 

the idea of phase-space aggregation of the states of stochastic systems [7]. 

Assume that the system operates under high load conditions (i.e., Xp -> ~p) and stock replenishment is a rare event 

compared with the arrival of user requests (i.e., Xp -> v). We also assume that when the queue of user requests reaches a 

certain critical (limit) length, all user requests leave the system after the processing of the request is completed, and the initial 

stock level almost does not change. 
Under these assumptions, we consider the following decomposition of the phase state space: 

Q 

E = U  E m, 
m~q 

Era (l Era, = 0 ,  m=#m' ,  
(4) 

whereE m : =  {ran E E : n  = 0  .... ,N}. 
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The class of states E m of the initial chain is called an aggregated state (m), m = q,... ,Q. The decomposition (4) is used 

to construct the aggregation function U: E --, ~ , /~ = {(q), (q + 1), ..., (Q)}, which is defined as 

U (mn) = <m), mn 6 E m, m = q, Q. (5) 

The aggregation function (5) thus defines an aggregated model (aggregated relative to the original model), which is 

also a Markov chain with the phase state space/~. 
By our assumptions, the classes Era, m = q .. . . .  Q, are ergodic classes of the supporting chain with the stationary 

distributions pm = {pm(mn): mn E Em}: 

pm (m0) = IXp/(~p -~- N~p); pm (ran) = ~p/(p,p -Jr- N~p), n = 1, N. (6) 

Using the relationships (6), we conclude that the generating matrix elements of the aggregated model ~ (x," y), x, y E t~, 

are given by 

0 ((m); (m')) = 

5.f q @ l ~ m ~ Q ,  m ' = m - - 1 ,  

±f r e = q ,  qq- i ~ m ' ~ Q ,  

otherwise. 

Here we use the following notation: 

Omm" : = E E pm (mn) O (mn; m'n'), q -l- l ~ m~Q, m' = rn-- l~ 
mnEErn rn'n" EE m, 

O"qm" : = Z ,~V p q (qn) 0 (qn; m'n'), q .@ 1 ~ m' ~ Q, 
qnEEq m ' n ' E E  m, 

Using (3), we obtain after simple manipulations 

Omm, = NLpt~p/([Xp -{- NLp), q -I- l ~ tn ~ Q, m' = tn- -  l~ 

Oqm'='~" E Pq(qn)~m'--o(qn)' q - J r l ~ m ' ~ Q .  
qnEEq 

The total cost in the aggregated model is given by 

2 q- ZpCo "-}- am z ((m)), 
..% 

(m}EE 

where 7r((m)) is the 'stationary probability of the aggregated state (m), (m) E /~. 

Then the optimization problem for the aggregated model is posed as 
A 

G ---,- min 

subject to 

N 
(qn)] z ( ( m ) ) = [ N - ~  %n--q(qO)+ N~p n~ arn--q "((q)) '  

(7) 

m = q 4 ~, Q; (8) 

^ ~ ((m)) = 1; (9) 
(ra)EE 

Q--q 

Solving the problem (7)-(10), we obtain the approximate optimal values eq(qn), i = 1,... ,Q - q, qn E E. 

The dimension of the phase state space E, as noted above, is IE[ = ( g  + I)(Q - q + 1), while the dimension of the 

phase state space i~ of the aggregated model is I~[ = Q - q + 1. In real systems, the parameters N and Q are usually of the 
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same order of magnitude, so that the size of the optim;.zation problem for the initial model increases as Q2 while the size of 
the corresponding problem for the aggregated model increases linearly. 

It is important to note that the proposed algorithm for the construction of the aggregated model is not the only possible 
one. The phase state space E of the initial model can be decomposed in different ways, and as we know [7] the phase 
aggregation algorithm is determined uniquely for each phase state space decomposition of the original model. We thus need 
to consider the choice of the particular phase state space decomposition scheme in order to construct an aggregated model from 
the original model. This choice should be based on practical considerations, primarily allowing for the required accuracy of 
the end result. It is well known that deeper aggregation of the original model increases the errors in the results, while on the 

other hand the aggregation procedure involves certain methodological and computational difficulties. The proposed 
decomposition (4) is successful in the sense that it produces a sufficiently simple structure of the constraint system in the 

optimization problem of the aggregated model (7)-(10). As a result, special-purpose software allows completely automatic 
realization of the problem (7)-(10) by computer. 

In conclusion, we would like to give some arguments in favor of using the LP method for the solution of the given 
optimization problem. Real TSS operate under uncertainty with respect to the arrival rate of user requests kp and stock 

deliveries u. In practice, it is therefore important to consider the stability of the optimal values of the Markovian controls o~i(qn) 
relative to changes in the parameters k e and u. In other words, we need to determine the ranges of the parameters kp and u 
where the optimal values oti(qn) obtained for fixed values of these parameters remain unchanged. Special application software 
is available to answer this question. Moreover, the LP method permits introducing additional linear constraints. The DP method 

unfortunately does not have these features. Note that the inventory model considered in this paper can be generalized to TSS 
with user requests of an arbitrary size. 
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