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The pursuit o f  one evader by a group of  controlled pursuers is considered for the case of  simple motion of  the 
players in nonempty compact sets. Sufficient solvability conditions are derived. These conditions are sometimes 
also necessary. 

The theory of differential games [1-3] contains many studies of the pursuit of one evader by a group of controlled 
pursuers [4-9]. These studies usually supply sufficient solvability conditions for the pursuit problem, which are sometimes also 
necessary. It is important to restate these conditions in a visual geometric form (for instance, zero is an interior point of the 
convex hull of some set). We consider this topic for the case of simple motion of the players, when the control regions are 

nonempty compact sets. These control regions, however, are not constrained by the traditional condition that the evader control 

region can be fitted by translation inside the control region of any pursuer. The results of this study are the most complete so 
far for the problem of simple group pursuit [4, 6, 7, 9]. 

1. Consider the differential game 

z i = u s - - v ,  z iER k, usEUs, vEV, zi(0) z ° = ~, i =  1,n. (1) 

Here R k is the k-dimensional Euclidean space, U i and V are nonempty compact sets. A family of nonempty convex compacta 
M1,....,M n are given in /~ ,  defining the terminal set M*. 

We say that the game (1) can be terminated from the initial state z ° = (zl ° .... Zn °) not later than in time T(z °) if there 
exist Borel measurable functions ui: V--, Ui, i = 1,...,n, such that for any Lebesgue measurable function v: [0, T(z°)] --, Vwe 

* t* have the inclusion zi(t ) C M for at least one i E { 1 ..... n} for some t = t , _ T(z°), where zi(t) is the solution of the system 
of differential equations 

zi (t) = ui (v (t)) - -  v (t). (2) 

M~ We say that the game (1) starting from the initial state z ° E RknkM * allows evasion of the set if there exists a 

Lebesgue measurable function v: [0, + oo) ---, V such that zi(t ) ~ m i for all i E {1,...,n}, t C [0, + oo) for any Lebesgue- 

measurable functions ui: [0, + o~) --, Ui, i = 1 ..... n. In this case, the evader control is programmed, i.e., it is constructed using 
only information about the initial state z °. 

Denote by int H, H, OH, co H, and con H respectively the interior, the closure, the boundary, the convex hull, and 

the conical hull of an arbitrary subset H of the space R k, and by [con HI* the conjugate cone of con H. By Sr(X ) we denote a 
closed ball in R ~ centered at the point x with the radius r > 0, i.e., Sr(x ) = {y E Rk: IIY - xl[ ~ r}. 

Let ~(R k) (co f~(Rk)) be the metric space of all nonempty compact (and convex) subsets of the space R k with the 
Hausdorff metric. For the set F E f~(R k) we define the supporting function c(F, if) = maxfE F(f, ~b), ~b E /~. 

Let ~b o E R k, II ~o II ie 0. The set U(F, tpo) = {f  E F: ~, ~o) = c(F, ~bo) } is called the supporting set to the set F 
in the direction ~b o. If the supporting set U(F, ~bo) consists of a single point, we say that the set F is strictly convex in the 

direction ~b o E R k [10]. The set F E ~(R ~) is strictly convex if it is strictly convex in every direction fro E R k, II fro II ~ 0. 
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The set F E ~(R k) is called a compactum with a smooth boundary if U(F, ¢) O U(F, ~') = ~ v¢,  ¢ '  E 0S1(0), 

¢ 7 ¢ ' .  
The mapping C of the set X C R m to fl(R ~) is called a multivalued mapping; the mapping C: X--, fl(R k) is measurable 

33:_measurable) if the set X is Lebesgue-measurable (Borel-measurable) and for every D E fl(R k) the set {x E X: C(x) C D} 
is Lebesgue-measurable (Borel-measurable). 

We give several auxiliary propositions. 

LEMMA 1. Let X, M E f/(/~), X ~ M = ~ ,  Y E fI(Rm), assume that the mapping A: Y ---- 9(/~) is upper 

semicontinuous, and 

con(M--x)NA(y)=/=~,  ~-xEX,  YEY.  

Then the function or: X × Y ~  R defined by the formula or(x, y) = max{a >__ 0: ot(M - x) n A(y) ~ ~ }  is upper 

sernicontinuous. 
LEMMA 2. Le tX E fl(Rk), 0 ~ X, Y E fl(Rm), andA: Y-, co fl(R k) is a continuous strictly convex valued mapping, 

- - c o n  x Cq A(y) ~ ~ Vx E X, Vy E Y. 
Then the function a: X × Y ~  R defined by the formula a(x, y) = max{a > O: - a x  E A(y)} is continuous. 

Proof Assume the contrary: at some point (Xo, Yo) from the set X × Y the function c~(x, y) is not lower semicontinuous, 

i.e., there exists a sequence {(Xr, Yr)}, (Xr, Yr) E X × Y, converging to the point (Xo, Yo) such that 

l ima (x~, Yr) = % < %, % = ¢z (Xo, Yo)- 
r--~oo 

From the definition of the function a(x, y) we have 

, - -  %Xo E OA (Yo), - -  ~z ( x .  y~) x~ E OA (y~). 

Since the continuous multivalued mapping A(y) is convex-valued, the mapping Oil: Y--, 12(R k) is also continuous [11]. 

Thus, -C~o'X o E OA(Yo). 
Let p = s o - ~Xo'. The sequence {a(Xr, Yr)} converges to C~o', and therefore for e = p/3 there exists a natural N 1 such 

that 

I c~(xr, y . ) - -%i  ~<e, -W ~> N~. (3) 

Since the set A(Yo) is convex and strictly convex, the pointp = - 1/3(o~ o' + 2ao)X o is in the interior of A(Yo) and there 

exists a natural N 2 such thatp E int A(Yr) Vr > N 2. Thus, for r > max{N 1, N2} we have 

a (xT, YT) ~ 1/3a 0 q- 2/3% = a 0 q- 2/39, 

which contradicts the inequality (3). 
COROLLARY 1. Let M E ft(Rk), Y E fl(Rm), x E Rk\M, and A: Y--> co fl(R ~) is a continuous strictly convex valued 

mapping, co---ff (m - x) n A(y) ~ (3 vm E M, y E Y. Then the function a: Y--> R defined by the formula a(y) = max{a >__ 

0: a(M - x) N OA(y) ;~ ~ }  is continuous. 

Proof Consider the function 

cz(m,y) =max{~z~O:~z(m--x)NOA(y):¢=;~}, thEM, yEY.  

It is easy to see that max{a > 0: c~(m - x) ~ OA(y) ~ ~}  = max(a _ 0: c~(m - x) A A(y) ;~ ~ }  vm E M, 
y E Y. Therefore the function a(m, y) is continuous on the set M × Y. 

Now, using the relationships ¢x(y) = maXm~ M a(m, y), we conclude that the function ¢x(y) is continuous on Y. 

2. Let us state the most general solvability propositions for the differential game (1), which will be used in subsequent 

analysis. 
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Consider the multivalued mappings 

W~ (z~, v) = con (M~--zi) N (Us - -  v), 

~'~(z~, v ) =  co--n(Mi--z i )N(coU~--v) ,  ziE R k ~ M , ,  v E V ,  i-= 1,n. 

Condition 1. For a fixed point z = (zl , . . . ,z  n) E RknkM * we have the relationships Wi(z i, v) ~ f~ , i = 1 .... ,n, for any 

v E V .  

Condition 2. For a fixed point z = (zi . . . . .  Zn) ~ li~nkM* we have relationships ~Vi(zi, v) ¢ ~ ,  i = 1,... ,n, for 

a n y v ~  V. 
Take fixed points z, z which satisfy conditions 1 and 2 respectively and define the decision functions 

¢¢, (zi, v) = max {a >~ 0 : cz (M i - -  zi) N (U i - -  v) =/= ~} ,  

a~ (zi, v) = max {c~/> 0 : ~ (Mi - -  zi) N (co U~ - -  v) 4= ~},  v E V, i =  1,n. 

(4) 

(5) 

Denote 

t 

(z, t) = 1 - -  inf max ~ cz~ (z,. v (x)) d-c. 

T fz) = inf {t/> 0 : ~, (z, t) ~< 0}. 

(6) 

(7) 

The infimum in (6) is over all V-valued functions that are measurable on [0, t]. 

Let 

a (z) --  inf max a ,  (zi, v), a (z) = inf max c~ i (zi, v). 
v£v i=~,n vEV l=T'~ (8) 

T H E O R E M  1. Suppose that the point z ° = o o (Zl . . . . . .  zn ) E l~n\M * satisfies condition 1 and c~(z °) > 0. Then the game 

(1) can be terminated from the initial state z ° not later than in time T(z °) bounded by T(z °) _< n/ot(z°). 

Proof  By Lemma 1, the function ~i(zi °, v): V--, R, i E { 1,...,n} is upper semicontinuous and thus Borel-measurable. 
Therefore, the multivalued mapping 

M, (v) = {mi E M ,  : cz, (z~, v) (mi - -  z °' E (U, - -v)}  U (9) 

is 33 ~measurable [12, 13]. Separate a Borel single-valued branch mi(v ) of the multivalued mapping Mi(v ). Then 

u~ (v) = v + ~ (z0, v)(m~ (v) - -  z~) (1o) 

is a Borel function. 

Let v: [0, T(z°)] --> V be some Lebesgue-measurable function. We will show that for at least one i E { 1 .. . . .  n} the 
solution of  the system of  equations (2) hits the set M i at t = t* when for the first time 

t 

1 - -  max ~ a~ (z °, v (r)) dx = O. 
i= l ,n  0 

This t* obviously exists and t* < T(z°). 

At time t* for some i E { 1,... ,n}, 

From (2), (10) we have 

and thus zi(t*) E M i. 

1 - -  ~ % (z °, v (x)) d~ = Oo 
0 

0 ~ ~ z~ (t*) = z~ + (u, (v (~)) - v (~)) d~ = j ~ (z,°, v (~)) m~ (v (~)) d~, 
0 0 
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Let us prove the upper bound for T(z°): 

t t 

1 - - i n f  m a x ~ i ( z o ,  v ( - c ) ) d ~ c ~ l - - l i n f  So ~T~ c z i ( z ° ' v ( ~ c ) ) d ~  
vt(') ~=~,n ~ n vt(. ) ~=-f-~m 

t 

~< 1 1 inf .f max cz i (z °, v (x)) dT 1 1 - -  = - -  - -  cc  ( z  ° )  t ,  
12 vt(. ) ~ i = l , n  12 

and so T(z °) < n/~  (z°). 

T H E O R E M  2. Suppose that the point o = (zlO .... .  ,Zn °) G Rkn\M* satisfies condition 2 and ~(z °) = 0, while the 

infimum in infvE v max/= 1 ..... n ~i(Zi 0, V) is achieved on some vector v o E V. Then the game (1) starting from the initial state 
z ° allows evasion of the set M*. 

P r o o f  Take v(t) -- v o for t _> 0. Since ~xi(£i O, Vo) = 0 vi  E { 1 .... .  n}, we have con(M/ - zi °) t3 (co U i - Vo) = 
¥i E {1 .. . . .  n}. 

Hence we obtain zi ° + t(co U i - Vo) f3 M i = f~ vi  E {1 .... ,n}, t > 0. Clearly, zi(t ) C zi ° + t(co U i - Vo) 

vi E {1 . . . . .  n}, t > 0, and therefore zi(t) ~ Mi ,  i = 1 . . . . .  n, t >_ O, for any Lebesgue-measurable functions ui: [0, +oo)  - ,  

Ui, i =  1, . . . ,n .  

LESKMA 3. Let M E co fl(Rk), Y E t2(Rm), x E RkkM, and A: Y--, f~(/~) is a continuous strictly convex valued 

mapping, con(m - x)  t3 A(y)  ~ ~ Vm ~ M,  y ~ Y. I f  o~(y) = max{c~ _> 0: offM - x) (3 A(y)  ~ f~}, then the mapping 

M(y) = {m ~ M: o~(y)(m - x)  ~ A(y)} is single-valued and continuous. 

P r o o f  Since the values of  the multivalued mapping A(y) are strictly convex sets, we have 

max {~ j~  0 : c ~ ( M - -  x) f] A (V) 4 = N }  = max  {o~ ~ O: cz (M - -  x) N 

N co A (y)--/= ~} ,  v v E V .  (11) 

By Lemma 2, the function e~(y) is continuous, and the multivalued mapping M(y)  is upper semicontinuous [14]. We 
will show that it is single-valued. 

Assume the contrary: for some Yo E Ythe set M(Yo) consists of  more than one point, i.e., there exist ml, m 2 E M(Yo) , 

m 1 ~ m 2. From the inclusions cd.Yo)(m 1 - x) E co A(Yo), c~(Yo)(m 2 - x) E co A(Yo), we obtain c¢(Yo)(Xm 1 + (1 - X)m 2 - 
x) ~ co A(Yo)vX E [0, 1]. 

The set co A(Yo) is strictly convex, and therefore ~(yo)(Xml + (1 - ),)rn 2 - x) E int co A(Yo) YX E (0, 1), which 

contradicts the equality (11). Thus, the mapping M(v)  is single-valued and therefore continuous. 

3. Consider the differential game 

i 

z ~ = u i - - v ,  z i E R  k, u i E O c o P ,  v E P ,  z i ( 0 ) = z ,  °', i = l , n .  (12) 

Here P E 9(Rk), zi ° ~ Mi,  i = 1, . . . ,n .  The nonempty convex compacta M1,... ,M n define the terminal set M*, as in the game 
(1). 

Any point z ° = (Zl°,. . . . .  zn °) E RknkM * obviously satisfies condition 1. Using Theorems 1 and 2, we will obtain 

necessary and sufficient conditions of  solvability for the pursuit problem in this differential game. 

L E M M A  4. Let X1,...,Xr, r _> 1, be nonempty subsets of the space R k. The inclusion 0 E int co(U i= 1 ..... r Xi) holds 

if and only if [con(Ui= l ..... r X/)]* = {0}. 

P r o o f  Let 0 E int co(U i= 1 ..... r Xi)" This means that there exist points x 1 . . . . .  Xm, m _> k + 1, in the set U i= 1 ..... r Xi 

such that 0 E int co(U i= 1 ..... m Xz)" Therefore, for any nonzero ¢ E R k there exists an index i E { 1 .. . . .  m} such that (xi, ¢)  < 

0. In other words, [con(Ui= 1 ..... m X/)]* = {0}. 

Since 

1:=1 , r  t = l  , m  t ~ ' ~ ,  r 

we obtain [con(Ui= 1 ..... r Xi)]* = {0}. 
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X ~c Conversely, let [con(O i= 1 ..... r i)] = {0}. I f  0 ~ int co(U i -  1 r Xi),  then there exists a nonzero ~ E R k such that 

(if, x) >- 0 for e v e r y x  E Ui=  1 ..... r X i ,  1.e., V~ E [con(Ui= 1 ..... rXi)] , a contradlcuon. 

It is easy to verify that [con(Ui= 1 ..... r Xi)]* = Oi= l  ..... r[ c°n Xi]*" 

Let us state the main proposition of this section. 

T H E O R E M  3. Let P be a strictly convex compactum with a smooth boundary. Then in the game (12) the inequality 

a(z °) > 0 is equivalent to the inclusion 

OE int co (' U _ (M, - -  z°)) .; (13) 
~ 1  .n 

Proof .  We will show that the inequality c~(z °) > 0 implies (13). Assume the contrary: there exists 
0 * E OSI(0 ) n [con(Ui=lo ..... n(Mi - zi )] • Since P is a strictly convex compactum, the set U(co P, ~) consists of  a single 

point v o. Obviously Oti(Zi, V0) > 0 for some i E {1 .. . . .  n} and there exists a vector m i E M i such that v o + Oli(Zi O, 

VO)(m i -- zi O) E 0 co P. Hence we obtain (Vo, ¢) + c~i(zi °, Vo)(m i - zi O, ~/) <_ c(P,  ~) ,  and so (m i - zi O, ¢) = 0 and v o + 

oLi(zi O, Vo)(m i - zi O) E U(co P, ¢). This contradicts the condition of strict convexity of  the set P. 

Conversely, assume that the inclusion (13) holds. Let c~(z °) = 0. Since the function max/= 1 ..... n ai(zi °, v) is continuous 

in v, there exists a vector v o E P such that  ~i(zi O, Vo) = O, i = 1 . . . . .  n. Hence v o E O co P. Take an arbitrary index 

i E {1,...,n} and an arbitrary point m i E M i. Consider a sequence of  points {Vr} , v r = v o + ~,r(mi - zi°), )~r > 0, that are 

not elements of  the set co P and converge to the point v o. By the separation theorem for convex sets, for any natural r there 

exists a vector Cr E OSI(O ) such that 

(14) 

Then 

~ - z  7, ~)  ~> o. (15) 

Since the unit sphere is a compact set, we can extract from the sequence {¢r} a subsequence that converges to some 

point ~o E 0S1(0 ). Denote this convergent subsequence again by {¢r}- By inequalities (14) and (15), we have (Vo, ¢o) = c(P, 
0 

t~O), (mi -- zi , ~/o) >- O. 

Since i E {1,.. . ,n}, m i E M i are arbitrary, and boundary of set P is smooth, we obtain ¢o E [con(Ui= I ..... n (Mi - 
0 * Z 0 ~ ,  z i ) ] , a n d t h u s O  ~ in t co  U i= l  ..... n ( M / -  i ,  acontradiction. 

Let us consider some examples which show that the assumptions concerning the boundary of the set P are essential. 

E x a m p l e  1. In the game (12), let k = 2, n = 3, P = co(U i= 1,2 S I ( ( -  1) i, 0)), U i= 1,2,3 Mi = {0}, Zl ° = (1, 0), z2 ° = 

( -  1, 0), z3 ° = (0, - 1). 

The set P has a smooth boundary but it is not strictly convex. It is easy to see that c~(°) > 0, although 0 

int co (U i= 1,2,3 ziO)" 
E x a m p l e  2. In the game (12), l e t k =  2, n = 3, P = $5((4, - 3 ) )  n $ 5 ( ( - 4  , - 3 ) ) ,  U i = l , 2 ,  3 M i : {0}, Zl 0 : (0, 

1), z2 ° = ( - 1 ,  - 1 ) ,  z3 ° = (1, - 1 ) .  

The set P is strictly convex, but its boundary is not smooth. The point 0 E P and  ~i(zi O, 0) : 0, i = 1, 2, 3. At the 

same time, 0 E int co (U i= 1,2,3 zi°) • 

C O R O L L A R Y  2. Assume that P is a strictly convex compactum with a smooth boundary. I f  0 E int co(Oi= 1 ..... n 

( M  i - zi°)),  then the game (12) may be terminated from the initial state z ° not later than in time T(z°). 

I f  0 ~ int co(O i= 1 ..... n (Mi - zi°)) ,  then the game (12) starting from the initial state z ° allows evasion of the set M*. 
4. Consider the following differential pursuit game: 

"~ 0 
Z~ = n s - -  v,  zi  E / ~ ,  ui E Ui (z °, M i ) ,  o E P,  zi (0) = z i ,  i = 1, n. (16) 
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Here P is a strictly convex compactum with a smooth boundary in /~ ,  

U~(~,M0 = U u ( P , ~ ) , S ( z ~  , M O = O S ~ ( O ) N I c ° n ( M ~ - z ° ~ ) l * "  
a~S(zO,M i) 

The terminal set is the same as in the game (1). 

Let  z ° = (zl ° . . . . .  ,Zn °) E RtnkM * and assume that the inclusion (13) holds. We will show that with these pursuer control 

regions the point z ° satisfies the condition (1) and the game (16) may be terminated from the initial state z ° not later than in 
time T(z °) (see (7)). 

To this end, let us return to the game (12). The set P is strictly convex, and therefore the multivalued mapping 

U~ (v) = {u~ E 0 co P : us ~ v + ~ (z~, v) ( g ~  - -  z°)} 

is single-valued and continuous, i.e., Ui(v ) = {ui(v)}: We will show that for any fixed i E {1,...,n} and v o E V, we have the 

inclusion ui(vo) E Ui(zi °, Mi). I f  ~i(zi O, yo) = 0, then ui(vo) = v o. Repeating the argument used in the second part of the proof 
of Theorem 3, we conclude that v o E Ui(zi °, Mi). 

Now consider the case when c~i(zi °, Vo) > 0. The set c~i(zi °, Vo)(M i - zi °) ¢q (co P - re) consists of a single point 
ui(Vo) - v o. Therefore, 

c (co P - -  vo, ~) = - -  ~ (z~, re) c ( M i - -  z °, - -  % (17) 

~b is a supporting vector to the set co P - v o at the point ui(vo) - v o. From the inequality c(co P - Vo, ~b) _> 0 and the 

equality (17), we obtain c(M i - zi °, - ~ )  <_ O, i.e., ui(vo) E Ui(zi °, Mi). 

By Corollary 2, if the inclusion (13) holds, then the game (12) can be terminated from the initial state z ° not later than 

in time T(z°), and we have previously shown that in the process of pursuit ui(r ) @ Oi(zi O, mi) for any i E { 1 .... ,n}, r E [0, 

t*), where t* is the game termination time. We thus have the following proposition. 

THEOREM 4. Let z ° = (zl ° ..... ,zn °) E Rkn\M * and assume that the inclusion (13) holds. Then the game (16) can 

be terminated from the initial state z ° not later than in time T(z°). 

Example 3. Consider the game (16) with k = 2, n = 3, M i = SI(0), i = 1, 2, 3, P = $1(0), zl ° = (0, - 2 ) ,  z2 ° = 
o * ( -  1, ,,/r~-), z3 o = (1, "v~). The control region of pursuer i is 0S1(0 ) A [con(S1(0 ) - zi )] . It is easy to see that 

[con (S 1 (0) - -  z~)]* = {x = (xl, x2) : x 2 / ~ ' 1 / 5  t x1 l}, 

[con (S t (0) - -  z°)l * = {x = (x 1, x2) : x 2 ~ r a in  {0, ] / 3 x i } ,  

[con (S i (0) - -  z°)] * = {x = (xi, x2) : x2 ~ r a in  {0, - -  ] / 3 x i } .  

By Theorem 4 we conclude that in this game the pursuit problem is solvable in a finite time. 
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