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The optical inhomogeneities in ruby laser crystals, resulting from inhomogeneity 
of the chromium concentration, from various glide paths, and from the presence of 
disoriented blocks, are investigated. It is shown that the most harmful influ- 
ence on the characteristics of laser damage is exerted by the axially asymmetri- 
cal part of the refractive index distortion due to residual mechanical stresses. 
A correlation is obtained between the inhomogeneity of the refractive index and 
the laser beam divergence. A method is proposed for improving the optical in- 
homogeneity of the ruby laser crystals by high-temperature (diffusion) annealing. 

INTRODUCTION 

The optical inhomogeneities that give rise to phase distortions of a light wave passing 
through a crystal exert a substantial influence on the lasing characteristics of lasers 
[i]. Among these inhomogeneities the most important are the nonuniformity of the Cr 3+ 
concentration, the disoriented blocks, slip tracks, and residual mechanical stresses. The 
radial inhomogeneity of the distribution of the activator [2-5] has been well studied and 
is called "chrome lens." It is determined by the structure of the temperature field in the 
crystal group and usually has axial symmetry. Since the refractive index of ruby increases 
with the chromium concentration [6] (dn/df > 0), whose value increases towards the 
periphery of the crystal, the active element on the whole is equivalent to a negative lens. 

However, such sources of optical inhomogeneity as the residual mechanical stresses, 
the glide tracks, and the block boundaries are less well studied. The main cause of the 
appearance of these inhomogeneities in the crystal is apparently the dislocation clusters 
that form the boundaries of the mosaic block and of the substructure, and also dislocation 
grids and lattices that form the glide tracks. 

The residual mechanical stresses obviously depend on the density and distribution of 
the dislocations, which can be quite complicated in character. 

It should be noted that the dislocation clusters that exist in crystals produce in them 
not only large-scale (continuous) variation of the refractive index on account of the mech- 
anical stresses, but also small-scale (jumplike) changes. As indicated in [4], such jumps 
of the refractive index of the crystal can be due to the presence of strong mechanical 
stress gradients in the region of the glide paths and block boundaries, and also to dis- 
orientation of the latter. The discontinuities of the refractive index on the glide paths 
(over the basal plane) are much stronger for the ordinary ray than for the extraordinary 
one, whereas in the case of block boundaries the picture is reversed [8]. However, the 
cause of this dependence of the inhomogeneity of the refractive index on the polarization of 
the light propagating in the crystal has remained unclear. To explain it, it is necessary 
to know the dislocation structure of the glide paths and the block boundaries. In the 
simplest dislocation model of the glide plane one can choose a "horizontal row" of disloca- 
tions, i.e., a row such that each dislocation line is made up by the edge of the torn plate 
terminating on the glide path and perpendicular to it [9]. 

In this simplest model, the gliding elements over the (0001) plane along the <~120> 
direction and over the (0001), (i120) planes along the <Ii00> direction correspond to com- 
plete edge dislocations with Burgers vectors along <1120> and <1100> , respectively [7] (the 
planes and directions are designated in accord with the coordinate system shown in Fig. i). 
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Fig. i. Coordinate system used to designate the crystallo- 
graphic planes and directions. XI-X3) Cartesian coordinate 
system; UI-U~) hexagonal coordinate system; Lz) twofold 
symmetry axis. 

Fig. 2. Arrangement of the "horizontal" row of dislocations 
relative to the chosen coordinate system (see Fig. i), used 
to calculate the discontinuity of the refractive index on the 
glide paths, a) Gliding over the (0001) plane in the <li00~ 
direction (basal gliding); b) gliding over the (0001) plane 
in the <itS0> direction (basal gliding); c) gliding over the 
(i120) plane in the <1100> direction (prismatic gliding). 

In ruby crystals, gliding along the <II00) direction calls for three times more energy 
consumption than in the <1120> direction [i0]. It appears that this is the reason why in 
ruby the glide paths over the basal plane (0001) are the most strongly developed, which are 
already observed when the crystal is unevenly heated at temperatures of 1300-1400~ [ii], 
and much weaker are glide paths over the prism plane (ii~0), which appear at higher tem- 
peratures [12]. 

The simplest model of a block boundary can be assumed to be a "vertical" row of edge 
dislocations, the excess planes of which are inclined at an angle 0 to the plane at which 
they terminate. In this case the angle 0 = b/D (b is the Burgers vector of the dislocations 
and D is the distance between them) is the angle of disorientation between blocks separated 
by the row of the indicated dislocations [7]. 

Within the framework of this model the ruby can contain blocks with boundaries produced 
by dislocations of prismatic glide systems and basal systems. The blocks of the former type 
have a disorientation axis parallel to the optical axis of the crystal, and consequently 
are difficult to distinguish by an optical method; the blocks of the latter type, on the 
contrary, are easily seen when viewed in polarized light [4]. Blocks with a disorientation 
axis perpendicular to the optical axis can be distinguished also by means of the coeffi- 
cients of linear expansion. This can lead to the appearance of mechanical stresses on their 
boundaries when the crystal is cooled after its growth. 

The purpose of the present investigations is a more complete clarification of the in- 
fluence of such crystal lattice defects as glide paths, block boundaries, and residual 
mechanical stresses on the inhomogeneity of the refractive index. Particular attention is 
paid to a determination of the main sources of the inhomogeneity of the crystal, which cause 
an uneven distribution of intensity of the light passing through the crystal in the far 
zone. Developed methods and apparatus are described for the control of the optical quality 
and of the residual stresses in ruby crystals. For a quantitative description of the in- 
fluence of various crystal lattice defects on the inhomogeneity of the refractive index it 
is necessary to know the piezooptical moduli, which are determined for ruby and corundum 
crystals below. An analysis of the main source of the optical inhomogeneity has made it 
possible to develop a special method for reducing the inhomogeneity and for substantially 
improving the optical quality of ruby laser crystals. 
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i. INFLUENCE OF GLIDE TRACKS ON THE INHOMOGENEITY 

OF THE REFRACTIVE INDEX 

We analyze now the influence of glide paths on the optical inhomogeneity of ruby 
crystals. Glide paths can produce considerable amplitude-phase distortions of the light 
propagating through the crystal only if the light propagation direction lies in the glide 
plane (or in the block b0undary) , or else close to it. In this case the light should be 
strongly diffracted by the discontinuities of the refractive index near the inhomogeneities. 

We choose a coordinate system (XI, X2, X3) as shown in Fig. i, oriented relative to the 
crystallographic directions in the following manner: the XI axis is directed along the 
<i{00> direction (the direction of the twofold axis L2), the Xa axis along <I120>, and the 
X3 axis along <O001} (along the optical axis). 

Let the ruby laser element be cut out of the crystal in such a way that the light 
propagates in it along the axis. In this case one can note in transmitted light inhomo- 
geneities due to gliding over the (0001) plane (basal gliding). If the polarization vector 
of the light wave is directed along the X3 axis (e-ray) then the change of the refractive 
index for this axis due to the mechanical stresses oi can be written in the form [13] 

n 3 

A~) ~ - - -~- b~ (~ + ~) + ~], (i) 

where ~ij is the piezooptical tensor. (For the symmetry of this tensor for the group 3m 
see, e.g., [13].) For a polarization vector directed along X2 (o-ray), 

3 
An? )___ -- no 

2 [~11~1 @ ~12UZ @ nlaga @ ~llg4]' (2) 

where n o and n e are the refractive indices of the ordinary and extraordinary rays, respec- 
tively. The superscript of the refractive index denotes the light propagation direction. 
In these formulas we have neglected small rotations of the ellipsoid of the dielectric con- 
stant relative to the XI axis; this is equivalent to neglecting quantities of second-order 
smallness relative to An2 and An3. 

As seen from Eqs. (i) and (2), shear strains, if at all present on the glide paths, 
affect the inhomogeneity of the refractive index only for the o-ray. 

Let us see that changes are produced in the refractive index by the discontinuity of 
the normal stresses on glide paths of various types. 

i. For basal gliding along the <II00> direction produced by edge dislocations with 
Burgers vector along <I[00> we use the model of "horizontal" row of dislocations [9], 
arranged as shown in Fig. 2a. The presence in the crystal of such a row of dislocations 
leads to a discontinuity of the elastic strains on the (XIX2) plane, equal to AUI = b/D. 
Recognizing, as was done in [9], that the stresses are continuous in the (XIX2) plane and 
that the displacements in the direction of the X2 axis are equal to zero, we can write: 

AU~ = SllA~I + SI~A~ 2 = b /D,  (3) 

A U ~ =  S~2A~1 + S~2A~ = 0, 

where Sij are the components of the compliance tensor, taken from [14]. From (3) we obtain 
for the discontinuities of the stresses oi and o2: 

D (81~ - -  8~1/81~ ) = 1.43" I012 ~ , 

A g l =  b .t01~ @_ [dyn ] 
o (S~l - s~2/s~) = 4 ,7  kc--~-J " ( 4 )  

2. For basal gliding along the <I120> direction with b along <i120> we have in the 
approximation of the model of the "horizontal" dislocation row, shown in Fig. 2b, 

b 
AU2 = --5- ' AU1 = 0, A ~  : 0, 

A~2 = b _ 4 . 7 . 1 0 1 2 b  [ dyn] 
D (s~ - s~/s~) kc--~m J ' ( 5 )  

A ~ I =  b -~1~ b rdynq 
D ( s ~ -  s~/sm = ~'43" ~u --5- [ ~ - ~ j .  
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Thus, when light propagates in the crystal along the X2 axis, the dependence of the 
inhomogeneity of the refractive index on the polarization of the light, as seen from the 
obtained formulas, can be attributed only to the large difference between the different 
components of the tensor ~ij. Measurements of some of the components of these tensors, 
which will be described below, yielded the following results [15]: 

~ n  = 5 i . 1 0  -Tmm 2" kgf -1, ~aa = 4 0 . i 0  -~ mm 2.kgf -1, 

al~ = - - 6 . 8 .  i0-Tmm z" ~ f - ~  a la  = - - 9 . 5 .  i0 -Tmm z- kgf -1, 

aal  : - - 1 , 8 .  ]0 -Tmm2"kg f ' l .  

Using these data, we obtain for the ratio of the inhomogeneities of the refractive in- 
dices of the o and e rays in the case of. z a  glide plane of the first type An!2)/An~ 2) = 
--21.1. For planes of the second type An~2)/An~ 2) = --3.7. 

Consequently, it can be concluded that glide planes over the basis (first type) have 
the largest anisotropy with respect to the polarization of the incident light. 

Similar calculations can be performed for light propagating along the XI axis. (The 
crystal growth axis is parallel to L2.) In this case An~ a) = An~1), and 

3 

A n  (1) ~ no 
2 (~1~1 + ~ng2 + ~l~ga -- ~1~g4). (6 )  

I n  s u c h  a p r o p a g a t i o n  o f  t h e  l i g h t  i n  t h e  c r y s t a l  t h e r e  w i l l  b e  s e e n  n o t  o n l y  g l i d e  
p a t h s  o v e r  t h e  b a s a l  p l a n e ,  b u t  a l s o  o v e r  t h e  p r i s m  p l a n e  (1120 )  a l o n g  t h e  <i~O0> d i r e c t i o n  
( t h i r d  t y p e ) .  

C a l c u l a t i o n  o f  t h e  d i s c o n t i n u i t y  o f  t h e  n o r m a l  s t r e s s e s  i n  t h e  c a s e  o f  g l i d i n g  o v e r  t h e  
p r i s m  p l a n e  (1120 )  c a n  b e  c a r r i e d  o u t ,  a s  was d o n e  a b o v e ,  b y  s t a r t i n g  w i t h  t h e  m o d e l  o f  t h e  
" h o r i z o n t a l "  row o f  d i s l o c a t i o n s  w i t h  t h e  b v e c t o r  a l o n g  <1~00> ( F i g .  2 c ) .  I n  t h i s  c a s e  we 
o b t a i n  

b 
AU1 = -~ - ,  AU3 = 0, A ~  = 0, 

AOs = D (S~3 - -  8~Soa/S~3).. = 0,725. t012 acre z ' (7)  

b = 4.37. i0  ~2-~ [ dyn] 
AqI=D(Sn_ 2 S [cm2J" $13/ 33) 

Finally, for the glide planes of the first type we have An~1)/An~ *) = --3.7, for planes 
of the second type An!*)/An~ I) = --21.1, and for planes off,the third type, which form a per- 
pendicular grid with glide paths over the basal plane, An~*)/An~ *) = --1.7. 

Thus, in crystals grown along the L2 axis, the glide paths over the basal plane (of 
the second type), which are most strongly developed in ruby crystals, will have the largest 
anisotropy relative to the polarization of the incident light, as was in fact observed in 
[3, 4, 8]. 

It should also be noted that An!2)/An~ x) = 0.18, which indicates a lower sensitivity 
of the ordinary ray to glide paths over the basal plane in the case of crystals grown per- 
pendicular to the L2 axis than in the case of parallel growth. 

It must be kept in mind that for a more accurate calculation of the inhomogeneity of 
the refractive index on the glide planes it is necessary to know the coordinate dependence 
of the stress field, the calculation of which for a crystal with corundum symmetry entails 
considerable difficulties. 

To decrease the inhomogeneity of the refractive index for the ordinary ray, as was 
proposed in [16], we can use crystals grown in such a way that the propagation direction of 
the light does not lie in the (0001) plane (i.e., there is no diffraction by the glide 
paths). 

However, as will be shown below, crystal growth in a direction perpendicular to La and 
c will offer advantages with respect to endurance of the crystals to laser radiation. 
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2. EFFECT OF BLOCKS AND OF RESIDUAL MECHANICAL STRESSES 

ON THE INHOMOGENEITY OF THE REFRACTIVE INDEX 

We now analyze the influence of blocks and residual mechanical stresses in ruby 
crystals on the inhomogeneity of the refractive index as a function of the polarization of 
the light and its propagation direction relative to the crystallographic axes. 

As shown in [17], in ruby crystals there are two types of blocks: large, elongated 
along the growth axis, with a large disorientation angle (up to 4~ and small, fan-shaped 
(mosaic blocks), with center on the boundary of the large blocks which they make up. Let 
the light in the crystal propagate along the <I~00> direction (the crystal was grown along 
the L2 axis). In this case if the mosaic block boundaries that make up the large block are 
made up by a "vertical" lattice of basal gliding edge dislocations with a Burgers vector 
along XI, the optical axis of the macroblock will become twisted relative to the X2 axis 
[7]. In the entire volume of the crystal (in the absence of macrostresses) one can obtain 
a linearly polarized wave, which in the case of the e-ray is subject to strong phase dis- 
tortions. There are two causes of these distortions, which are produced by disorientation 
of neighboring macroblocks, namely, diffraction by those sections of their boundaries which 
are parallel to the light propagation direction, and the presence of transverse gradients 
of the optical path length on account of the differences in the dimensions of the macroblocks along 
the ray propagation over the cross section of the crystal. In this case two neighboring blocks, dis- 
oriented by an angle 0, will differ in their refractive index for the extraordinary ray by an amount 

An ~ = 02/2 [ ( n j n o )  ~ - -  1]. (8 )  

In the case of the o-ray, the presence of disoriented macroblocks in the crystal can 
lead to the appearance of amplitude--phase distortions of the wave front only on account of 
diffraction by those sections of their boundaries which are parallel to the light propaga- 
tion direction. Such a diffraction can take place only in the presence of a discontinuity 
of the mechanical stresses on the block boundary. For its calculation it is necessary to 
know the structure of the boundaries of the macroblocks and the distribution, near them, of 
the mechanical stress produced when the crystal is cooled, on account of the difference be- 
tween the expansion coefficient of the corundum along (aa) and perpendicular (~:) to the 
optical axis. An approximate estimate of the discontinuity of the normal stresses for 
blocks with disorientation axis parallel to X2 yields a value 

A ~  = - -  A~3 = 0~AT ( % - -  at) (S~ + S~) (9 )  
S ~ . -  S .$3o  

This formula was obtained from the expression for the ellipsoid of the temperature 
strains [12] and from an equation of the type (3). 

At 0 = 3"10 -2 rad and at the temperature T ----- 1000~ at which the crystal is cooled 
we have Aoa = 2"107 dyn/cm 2, which yields for the o-ray a refractive index discontinuity 

~3 
I An~l) I ~ -~- (~11 - -  g13) 1 ~ 1  I ~ 3" ~0 -6. 

This value of An! I) is too small to cause a noticeable diffraction. A complete calcu- 
lation of An2 on the block boundary is impossible, since the structure of the boundary is 
unknown. It can be stated that in weakly stressed crystals the value of An2 is small, as 
follows from [3, 4, 8]. 

We now consider the case when the boundaries of the blocks of the mosaic are made up 
by a "vertical" row of dislocations of basal glide system with a Burgers vector along 
X~((II20>) ' Such a structure of the boundaries of the mosaic blocks that make up the macro- 
block causes a twisting of the axis of the latter around the X~ axis, the latter coinciding 
with the propagation direction of the light [7]. In this case it is impossible to obtain 
linearly polarized light in the entire volume of the crystal even in the absence of macro- 
stresses, i.e., an inhomogeneity is produced and causes distortion of the birefringence 
picture. 

In a crystal with such a structure, the inhomogeneity of the refractive index for the 
e-ray due to the disorientation of the blocks and their different lengths along the light 
propagation direction will be substantially less than in the case of the block structure 
described above. 

252 



As to the distortions of the wave front of the light passing through the crystal due to 
diffraction by the boundaries of the macroblocks, their values can likewise not be calcu- 
lated, since the structure of the block boundaries is unknown. 

Estimates of the discontinuity of the mechanical stresses Ao due to the cooling of the 
crystal and to the presence of disoriented blocks can be obtained by the same method as 
used in the derivation of (9). If the block disorientation axis is parallel to the axis, 
then 

-- -- 2 l A~ [ATO(~ ~)(0 ~)FS~, (10) 
where 0 is the angle of disorientation of the neighboring blocks; ~ is the angle between the 
boundary of the blocks and the optical axis of one of them. As seen from (i0), this value 
of &o3 cannot cause noticeable diffraction at disorientation block angles 0 ~ 3"10 -2 red 
and at AT ~ 1000~ 

We consider now the case when the light propagation direction in the crystal coincides 
with the <li20> direction (the crystal is grown perpendicular to L2). In this case, if the 
mosaic block boundaries are made up by a "vertical" lattice of edge dislocations with a 
Burgers vector along XI, the optical axis of the macroblocks will be twisted around the 
propagation direction of the light. On the other hand if the Burgers vector of the dislo- 
cations in the mosaic block boundary is directed along X2, then the twisting will be around 
an axis perpendicular to the light propagation direction [7]. 

Thus, from the considerations advanced above and from the fact that the energy needed 
to produce in the basal plane dislocations with a Brugers vector along <1120> [7] is one- 
third as large as in the case of <li00) [13], crystals grown around (li20> should have a 
smaller optical inhomogeneity for the ordinary ray than crystals grown along <iI00>. 

However, taking into account the entire complexity of the crystal growth process when 
the Verneuil method is used, the last conclusion calls for a detailed experimental verifi- 
cation. To check on its validity it is necessary to analyze a large amount of statistical 
data on crystals grown in different directions under most closely identical conditions. No 
such data are available at present. 

We now consider the influence of the residual mechanical macrostresses, produced by the 
interaction of all the structural defects in the volume of the crystal, on the inhomogeneity 
of the refractive index. The magnitude of these stresses depends on the dislocation density 
in the crystal and on the dislocation distribution over its volume. The character of this 
distribution is determined mainly by the gradient structure of the temperature field during 
the crystal growth; this structure in most cases has axial symmetry. However, the distor- 
tions of the phase front of the light passing through the crystal have no such symmetry. 
The reason is that the ruby crystals are anisotropic with respect to the linear expansion 
coefficient ai, to the compliance moduli Sij, and to the piezooptical moduli ~ij. We note 
that in the presence of a strongly developed block structure in the crystal the symmetry 
of the field of the residual stresses can also be strongly distorted. 

We consider now the refractive index inhomogeneity that can be produced by residual 
mechanical stresses in a crystal that has a weakly developed block structure, but are 
produced in an axially symmetric temperature field. By solving this problem we can estimate 
the residual stresses in the crystal and the radial gradients in the growth oven from the 
character of the optical inhomogeneity of the grown crystals. Since the exact solution of 
the problem of the elastoplastic deformation is extremely complicated and calls for knowl- 
edge of the characteristics of the anisotropy of the plasticity of the crystal and of its 
dependence on the temperature, we shall make a number of simplifying assumptions, which 
make it possible to obtain simple analytic expressions with accuracy sufficient for practi- 
cal purposes. We shall assume that, first, there is no plasticity anisotropy in the crys- 
tal; second, that the plastic deformation in the crystal stops at a certain distance L from 
the crystallization zone and that this level corresponds to a temperature Tm (L depends on 
the radial gradients in the oven); third, the residual stresses in the crystal are dis- 
tributed parabolically in the radial direction (the actual distribution of the stresses is 
close to this law [18]), which corresponds to a linear growth of the radial temperature 
gradients; fourth, we can neglect the anisotropy of the compliance moduli Sij, which is not 
very large for the ruby crystal [19]; the crystal has the form of a long thin cylinder. 
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Under the foregoing assumptions, we can write for the stress tensor components the ex- 
pressions [19]: 

oF = O~)max(r ~- I), 

~o = (o~)max (3r  2 -  1), ( 1 1 )  

oz = 2 (Or)ma x (2r  2 - -  t ) ,  r = R/Ro, 

where R is the radial coordinate; Ro is the radius of the cylinder; 
radial stress in the crystal. 

We note that the law governing the distribution of the stresses 
linearly decreasing temperature gradient %r such that 

(Gr)max ~-- 8 (211 + S12) ' 

where 

(Or)ma x is the maximum 

(ii) corresponds to a 

(12) 

= II~ -{- 111 . ;-~11 ~'11 -~ cr . 
2 ' = --2---- ' 

2 

For a crystal grown, e.g., along L= (twofold symmetry axis), we obtain for the inhomogenei- 
ties of the refractive indices of the ordinary and extraordinary rays the respective ex- 
pressions (see (i) and (2)): 

n 8 

a n  o ~ - - T  (Jllgql -]- Yfllq2 -j- ~113q3) , 
(13) 

3 

Ane,--" -- n---2-e 2 [Jl31 (ql  -}- 0"2) @ ~33173], 

where 

o l  = 2 (Or)ma x (2r  e - -  i ) ;  

% = (Or)max [r 2 ( s i n 2 0  @ 3cos  2 O) - -  t ] ;  

~3 = (Or)i~ax [ r~ ( 3s in2  0 -~  cos 2 O) -- t ]  

(0 is the polar angle measured from the optical axis of the crystal). 

In (13) we have neglected the rotation of the ellipsoid of the refractive index as a 
result of the shear strains, since the changes they produce in the refractive index are of 
second-order smallness in the stresses. 

The interference pattern in light transmission through the crystal, due to the mech- 
anical stresses of the indicated symmetry, is determined by the expression IAn = mXo, where 
I is the length along the ray in the crystal; m is the order of the interference, Io is the 
wavelength of the light source. As seen from the formulas in (13), the pattern takes the 
form of ellipses corresponding to a positive lens and rotated for the o- and e-rays 90 ~ 
relative to each other. For the e-ray the ellipses are elongated along the optical axis. 
This is precisely the behavior of the interference pattern observed earlier [i] (Fig. 3a). 
We note that the ratio of the semiaxes of the ellipses a/b on the interference pattern de- 
pends on the law of the variation of the radial temperature gradient. If grad I =-- Ir n, then 

a/b = V n q- 2 for the e-ray. In the presence of gradients that depend so strongly on r 
(large ratio a/b), the influence of the anisotropy of the crystal can already come into 
play; this anisotropy can lead to the appearance of a saddle point in the inhomogeneity of 
the refractive index [i] (Fig. 3b). 

The foregoing analysis of the influence of the mechanical stresses on the inhomogeneity 
of the refractive index explains the behavior of the interference pattern of the crystal 
when light of different polarization propagates in it. However, this analysis does not 
make it possible to estimate the stresses and the temperature gradients, owing to the dis- 
torting influence of the "chrome lens." 

To estimate the residual stresses in the crystal, we consider the pattern of the 
anomalous birefringence, since it is not sensitive to the inhomogeneity of the Cr 3+ concert- 
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Fig. 3. Interference pattern of a stressed crystal for the 
e-ray: a) for crystals grown in a temperature field with a 
weak radial dependence of the temperature gradient (inter- 
ference pattern of the elliptic type); b) for a crystal 
grown in a temperature field with a strong radial dependence 
of the temperature gradient (interference pattern with 
saddle point). 

tration. The character of the pattern of the anomalous birefringence is described by the 
formula 

l [(n o - -  n~) § (Ano - -  Ane)] = mho, (14)  

l ~ - - l o ( l  @ ~2/2), 

where ~o is the length of the crystal; ~ is the angle between the normal to the end surfaces 
of the crystal and the direction of the wave normal of the light propagating in the crystal 
(~i) ; m is the order of the interference. Using (13) and the values of the components 
of the tensor ~ij, we can rewrite (14) in the form 

2.10~ ~ m~0 ] r2(c~  - a z ( n e - - n o ) - -  (15)  
no( r)max lo(t @~/2) ' 

w h e r e  (Or)max i s  i n  kgf /mm 2. 

As seen from (15), the pattern of the anomalous birefringence in the crystal is a 
family of second-order curves (hyperbolas). Figures 4a and 4b show the curves calculated 
from (15) and the experimentally observed birefringence patterns for a ruby crystal with 
Io = 7.5 cm. As seen from Fig. 4, the radial temperature gradient T = Xr accounts well for 
the observed form of the pattern of the anomalous birefringence. There are cases, however, 
when it takes the form of a curve of higher order than the second (Fig. 4c). This can be 
due to the stronger radial dependence of the temperature gradient. 

Formula (15) presented above makes it possible to estimate (Or)max, while (ii) yields 
all the diagonal components of the strain tensor. This is done experimentally in the fol- 
lowing manner: we number the fringes of the anomalous birefringence pattern i, 2, ..., 
starting from the center of the crystal along the optical axis. By varying the angle (by 
inclining the crystal), we cause fringe 1 to pass through the center of the crystal. Then 

m - - I  Ro ~ [kgf 3, 

where lo is in centimeters; Rm-1 is the distance between the geometric axis of the crystal 
and the point of intersection of the m-th fringe with the direction of the optical axis. In 
(16) the wavelength is kr = 6328 ~. The estimates made for the crystal shown in Fig. 4b 
yielded for the stresses the following values (in kgf/mm2): (Or)me x = 0.65; (O0)max = 1.3; 
(Oz)max = 1.3, corresponding to aradial temperature gradient gradT =-- 17r (deg). The use 
of the described method of estimating the stresses calls for the presence of not less than 
two fringes in the birefringence pattern (m >.~ 2), thus limiting the sensitivity of the 

1.8 ]k__g_f_] ,a ~ ~ 0.9 ['kgf ] 
method ((or)max>-~-0kmm ~ for a single pass of light through the crystal and t rjmax/-~--o[~mZj 

f o r  a d o u b l e  p a s s ) .  

The presented method of estimating the residual mechanical stresses can be easily 
generalized to include the case of axially symmetric temperature fields. 

255 



X/// \.\X_ 
i I \NN\ 

Fig. 4. Pictures of anomalous birefringence of stressed ruby 
crystal: a) calculated from formula (15); b) for crystals grown 
in a temperature field with a weak radial temperature gradient; 
c) for a crystal grown in a temperature field with a strong radial 
temperature gradient. 

The presence of a block structure in the crystal may distort the picture of the anoma- 
lous birefringence. These distortions are negligible if the maximum block disorientation 

angle is ~-~- 10(n e-n~ ) . For a crystal with lo = 7.5 cm we have ~ 2  ~ 

3. MEASUREMENTS OF THE PHOTOELASTIC MODULI OF CORUNDUM 

AND RUBY CRYSTALS 

In connection with the extensive use of articles made of single-crystal ruby and 
corundum, it is frequently necessary to know their piezooptical moduli. The published 
values of the elastooptical moduli of corundum, measured by the dynamic method (plus the 
adiabatic conditions [20]) can lead to some doubts when used in static problems. Among 
these problems, e.g., are the estimate of the residual stresses in the crystals after their 
synthesis and annealing, allowance for the influence of the mechanical stresses on the 
change of the refractive index, etc. Taking this into account, we measured the piezooptical 
moduli under isothermally static conditions. We used an interference method, which made it 
possible to directly calculate these moduli from the dependence of the absolute increment of 
the refractive index on the stresses applied to the sample, using the formulas [13, 21] 

ABll An~3--An23 _~ An12--An3z Anm+A~31 
~ ~ ~ , ( 1 7 )  

AB2~ = hn2a-- An~ An~ ~ Anl2 ~ An21-- An31 
n~ n~ n~ ' 

AB3~= An13~An23 ~ An~2--hnl2 _~ Ansi--An21 (18) 
-~ ~ ~ , 

where  n i j  i s  t h e  i n c r e m e n t  o f  t h e  r e f r a c t i v e  i n d e x  a l o n g  t h e  i d i r e c t i o n  f o r  p o l a r i z a t i o n  
in  t h e  j d i r e c t i o n ;  

ABtj ~ ~ij~z~z. 

The measurements were made on samples in the form of a parallelepiped with crystallo- 
graphic faces {0001}, {i0i0} and {ii~0}. In this case the piezooptical moduli ~ik, the 
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normal stresses oi, and the absolute increments of the refractive index Anij are connected 
by the relations 

nilcrl = -- 2An31/n~, (19) 

~11(~ = -- 2An82/n~, (20) 

~1~cr2 = - -  2 A n 3 ~ / n ~ ,  ( 2 1 )  

~12~2 = - -  2 A n 3 ~ / n ~ ,  ( 2 2 )  

~33(~3 ~-  -- 2 An23 /n~ ,  (23) 

~31~1  = 2 A n 2 3 / n ~ ,  (24) 

~31(~ = 2 [An~2 - -  A n l 2 / n ~  - -  A n l ~ / n ~ ] ,  ( 2 5 )  

~13c~ = -- 2An12/n~, (26) 

where n~ = n2 -- 1.758; n3 = 1.766. 

Measurement Procedure. We investigated leucosapphire and ruby (Cr ~ 0.03%) samples 
grown by the Stockbarger and Verneuil methods, respectively, and annealed beforehand; their 
dimensions were 5.5 x 5.8 x 17.35 and 4.78 x 4.78 x 14.8 (face-orientation accuracy ~20, 
flatness of faces not worse than X/4, and their parallelism 2-3"). After adjusting the 
sample in accordance with the ray reflected from the front face, a small optical wedge was 
produced, as a result of which interference fringes arranged perpendicular to the long edge 
of the sample were observed on the screen. The large field of view of the instrument on the 
screen has made it possible to observe interference fringes both from light beams passing 
through the crystal (past the sample) and those passing inside the sample (the interferom- 
eter field). The latter were used as a reference. 

The homogeneity of the stresses in the central part of the sample (~1/3 of the length) 
was the result of its geometric shape (long parallelepiped), of the uniform load on the 
sample, as well as of the redistribution of the stress field within narrow limits, effected 
by displacing the loading device relative to the piston rod of the hydraulic press. 

The homogeneity of the stresses was monitored against the bending of the interference 
fringes of the crystal field relative to the reference fringes of the interferometer field. 
In the central part of the crystal this distortion did not exceed 0.1-0.15 fringe. Investi- 
gations have shown that it is impossible to attain in samples with blocks the uniform stress 
distribution with the accuracy of which the procedure is capable. The measurements were 
therefore performed on samples in which there were no blocks (the presence of blocks was 
monitored by the well known polarization and shadow methods [12, 22]). The load was applied 
to the investigated samples by a hydraulic press; the error in the measurements of the pres- 
sures on the sample did not exceed • Calculations of the absolute increments of the re- 
fractive index An for a sample of thickness I at a given pressure were made in accordance 
with the formula 

A n  = ( ~  N 1  - -  N ~ )  ~ /21 ,  

o 

where X is the wavelength of the light source, equal to 6328 A; Nz is the number of fringes 
passing on the screen through the zone of the uniform stresses in the sample (the number of 
fringes was counted relative to the reference fringe of the interferometer field); N2 is a 
correction equal to the change in the number of fringes on account of the geometric increase 
of the optical path in the crystal. To calculate N2 we used the elastic compliances S~2 
and $13, equal respectively to--0.0716 and--0.0364'10 -12 cm2/dyn [20]. The sign of An -- 
the sign of (• -- N2) was determined by comparing the direction of motion of the fringes 
in the course of loading with the direction of their motion when the mirror was transla- 
tionally displaced. 

The measurements were made at a temperature 21~ An estimate of the change of the 
sample temperature on account of its deformation under loads on the order of i00 kgf/mm 2 
shows that the change is ~i0 -3 deg, and the characteristic time of establishment of the 
temperature field in the sample ~char~-~h2~ -I (h is the maximum sample dimension; ~ is the 
coefficient of thermal diffusivity of ruby) was ~15 sec. 

Measurement Results. Figure 5 shows the experimental plots of 2Anij/n 3 against the 
stresses o i for leucosapphire and ruby samples, and also the calculated dependence of 
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Fig. 5. Dependence of the change of 
the refractive index 2Anij/(n ~) on 
the stresses mi: i) from (19); 2) 
from (20); 3) from (21) and (22); 4) 
from (23); 5) from (24); 6) from (25); 
7) from (26); 8) from (27). 

2[(An3= -- Anl2)/n~ -- Anls/n~] on the stress ~2. A comparison of the experimental depen- 
dences with the calculated one shows not only that they are in satisfactory agreement, but 
serves also as a check on the obtained experimental values. 

The piezooptical moduli calculated from the measurement data turned out to be 

~n  = (5 l ' iO-7  -~ 2%)kg f-l" ram2, 

~33 = ( 4 0 - t 0  -7 -4- 2%)  kgf ' l ,mm 2, 

a13 = ( - - 9 . 5 . 1 0  -7 - 6  t 5 % )  kgf'~ mm 2, 

~12 = ( - - 6 - 8 . 1 0  -7 - 6  8 % )  kgf-k mm 2, 

~81 = ( - - 1 . 8 . 1 0  -7 -~- 25 %) kgf -1" mm 2. 

Discussion of Results. It is of interest to note the absence of a difference between 
the moduli ~ij of leucosapphire and ruby (Cr ~ 0.03%) samples made from crystals grown by 
different methods (the leucosapphire by the Stockbarger method with a dislocation density 
~i03 cm -2, as revealed by etching on the (0001) plane, and the ruby by the Verneuil method 
with dislocation density ~i05 cm-2). 

As already noted above, in the present study we compared the values of the piezooptical 
moduli determined by dynamic and static methods. A comparison of these values when re- 
calculated in terms of the elastooptical moduli Pij given in [20] (~i = (40.55 + 46PI~)" 
10 -7 mm2/kgf, ~12 = (40.19 + 46PI~)'I0 -7 ~ni/kgf, ~s = 53.56 mm2/kgf, ~31 =--8.98"10 -7 
mm2/kgf, ~:3 = --i0.i 'I0-7 mm2/kg f) shows them to differ greatly. The reason for this dif- 
ference remains unclear. It may be due to the stronger sensitivity of the dynamic method 
to the block structure of the sample. The difference between the measured elastic compli- 
ances [14, 23], which are used in the determination of the moduli ~ij, likewise does not 
explain the observed discrepancy. 

Another discrepancy with the publishe d data is the disparity in the values of the dif- 
ference ~:~ -- ~:2. This difference was found by us to be 0.59'10 -7 mm2/kgf as against 
0.36.10 -7 mm2/kgf obtained from dynamic measurements [20], and against 0.76'10 -7 mm2/kgf 
obtained from the dependence of the change of the birefringence on the stresses [18]. Since 
the quantity ~I~ -- ~:2 is used in many procedures for estimating residual stresses in 
corundum crystals (see, e.g., [7]), such a disparity is most significant. In our opinion 
this disparity (the last-mentioned method is static) could be due also to the procedure 
used to obtain uniform stresses in the measurements, and might be connected with the qual- 
ity (block structure) of the employed sample. 
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4. METHOD AND APPARATUS FOR THE MONITORING OF OPTICAL 

INHOMOGENEITIES IN RUBY CRYSTALS 

Ruby crystals grown by the Verneuil method have considerable optical inhomogeneity. 
The sources of this inhomogeneity are: the inhomogeneity of the chromium concentration, 
the presence of glide paths and block structure, residual mechanical stresses due to the 
presence of a complicated dislocation structure of the crystal.* 

At the present time there are various methods of measuring the indicated inhomogenei- 
ties. The interference method permits a study of the refractive index inhomogeneities due 
to the presence of the "chrome lens" and to the residual mechanical stresses. One usually 
uses a Michelson interferometer with mercury or cadmium lamps as the light source [25]. The 
interference method produces in fact the picture of the phase distortions of the light 
wave passing through the crystal in the near zone. 

The presence of small-scale phase distortions leads in the far zone to a complex dif- 
fraction pattern, which is sometimes called small-angle scattering in the literature. 

The well-known instrument POKK-I, intended for the investigation of a light wave passing 
through the crystal in the far zone, yields only the integrated characteristic of the di- 
vergence, but does not yield any information on the structure of the distribution of the 
energy in the far zone. 

To investigate local inhomogeneities of the refractive index with strong gradients 
(glide plane, block boundaries) one uses also instruments with small diaphragms [26], which 
make it possible to investigate the shadow pattern of crystals (i.e., the amplitude dis- 
tortions in the near zone of the end face of the crystal). 

The residual mechanical stresses are presently measured by using various conoscopes 
[12, 18, 26]. The stresses in instruments of this type are estimated either from the value 
of the angle between the optical axes of the crystal, which becomes biaxial in the presence 
of mechanical stresses, or from the anomalous birefringence. 

A shortcoming of the existing methods of estimating the stresses is that the crystal 
must be viewed along the direction of the optical axis, which usually does not coincide with 
the geometrical axis of the sample. This method of viewing calls for the use of an immer- 
sion liquid. 

We have constructed an instrument for the investigation of the optical homogeneity of 
ruby laser crystals. The principal characteristics of the optical inhomogeneities that 
cause phase distortions of a light wave passing through the crystal can be obtained with 
this instrument from the interference pattern, from the anomalous birefringence and also 
from the distribution of the optical radiation passing through the crystal in the far zone. 
In addition, using the results of the analysis presented above, it is possible to determine 
the residual stresses in 90 ~ ruby crystals by measuring the anomalous birefringence. 

The schematic diagram of the instrument is shown in Fig. 6 [2]. The light source is a 
type OKG-II helium--neon laser operating in the regime of a single longitudinal mode. The 
lasing was not single-mode with respect to the transverse indices. This operating regime 
of the laser produces radiation with great time coherence, so that it is possible to use 
interferometers with large differences between the optical paths. However, the multimode 
character of the lasing with respect to the transverse indices does not make it possible to 
use the laser beam directly to investigate the optical homogeneity of the crystals, since 
the laser has no spatial coherence, as a broad directivity pattern, and its intensity is not 
uniform over the cross section. To obtain the necessary spatially coherent light field with 
flat phase and uniform intensity we used a diffraction filter consisting of two confocal 
lenses and a diaphragm in the region of their focus. The dimension of the diaphragm is de- 
termined in such a way that it is somewhat smaller than the diameter of the caustic of the 
TEMoo mode passing through the entry lens in its minimum cross section. A diaphragm of 
diameter (4-6)'10 -~ cm and a lens with focal length F~ = 0.8 cm were used. The focal length 
of the exit lens was F2 = i0 cm. Such a filter ensured a flat wavefront with accuracy of 
approximately X/5 over a diameter 1.5 cm. This flatness was limited by the dimensions and 

*We do not touch here upon methods of investigating dislocations in crystals. They are 
described, e.g., in [7, i0, 24]. 
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F i g .  6. S c h e m a t i c  d i a g r a m  of  i n s t r u m e n t  f o r  t h e  
monitoring of the optical quality of ruby laser crys- 
tals: i) He-Ne laser; 2) quarter-wave plate; 3) 
polaroids; 4) long-focus lens (F = i00 cm); 5) tilt- 
ing mirror; 6) photographic cameras; 7) photomulti- 
plier with slit diaphragm; 8) investigated crystals; 
9) Mach--Zehnder interferometer; i0) diffraction fil- 
ter with round diaphragm ii. 

quality of the diaphragm, and also by the spherical aberrations of the exit lens. We note 
that the advantages of such a filter over an ordinary telescope are that it makes it pos- 
sible: i) to dispose of the weak small-scale inhomogeneities, which take place in the radia- 
tion of even a single-mode laser, something that cannot be done by telescope; 2) to realize 
a more compact (in length) system at a given planarity of the wave front on a given diam- 
eter than in the case of a telescope, at not too great a loss of intensity. The latter is 
due to the fact that the divergence of the radiation past the diaphragm is determined not 
by the focal length of the entry lens, but by the diffraction by the diaphragm. After 
passing through the investigated crystal, the plane wave shaped by the filter underwent 
amplitude--phase distortions due to the optical inhomogeneity of the crystal. These dis- 
tortions in the near zone were revealed by the shadow and interference patterns using a 
Mach--Zehnder interferometer with a shutter in the comparison arm. 

To investigate crystals in polarized light with arbitrary direction of the polariza- 
tion plane, the radiation from the laser passed through a quarter-wave plate and two 
rotatable polaroids, between which the investigated sample was placed. 

In the far zone, the phase distortions of the wave front of the radiation passing 
through the filter were observed with a long-focus lens (F = i00 cm), in whose focus was 
placed either a photographic plate or a slit diaphragm with a photomultiplier. In the lat- 
ter case the light beam was periodically swept on the slit with the aid of a tilting mir- 
ror, so that the divergence of the light beam (the field in the far zone) could be measured 
directly on the oscilloscope screen. The angular resolution of the apparatus was in this 
case not worse than 30". The use of a slit diaphragm as the scanning element is justified 
by the fact that for most ruby crystals the light beam passing through the crystal has a 
directivity pattern elongated in one direction. 

The described instrument could be operated in several regimes. 

i. Investigation of phase distortion of the light wave passing through the crystal: 
The phase distortions were analyzed in the near zone with an interferometer and in the far 
zone by scanning the light beam passing through the crystal through a slit in the focus of 
the lens. The investigation can be carried out at arbitrary mutual orientations of the 
incident light polarization plane, crystal optical axis, and scanning direction. 

2. Operation with a small diaphragm is carried out with the shutter in the comparison 
arm of the interferometer closed, and makes it possible to investigate the shadow pattern 
of the crystal in both a parallel and diverging light beam. The divergence angle is regu- 
lated by moving the exit lens of the diffraction filter. 

3. The conoscope regime is realized with the shutter in the comparison arm closed and 
with the polaroids crossed, and makes it possible to investigate, in the case of a parallel 
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Fig. 7. Oscillogram of the distribution of the energy 
of optical radiation passing through the crystal in the 
far zone. E) Electric vector of light wave; C) optical 
axis of the crystal; K) scanning direction. 

Fig. 8. Interference pattern for o-ray 
(a) and distribution of energy of the 
radiation passing through the crystal 
in the far zone (b) for three ruby crys- 
tal samples. 

beam, the pattern of the anomalous birefringence, and in the case of a converging beam the 
conoscopic pattern of the crystal. 

5. EFFECT OF CRYSTAL INHOMOGENEITY ON THE DIVERGENCE 

OF OPTICAL RADIATION PASSING THROUGH IT 

The setup described above was used to investigate ruby crystals 75 mm in length grown 
by the Verneuil method. The chromium concentration of the samples was ~0.03% by weight. 
The main purpose of the investigation was to determine the causes of the nonuniformity of 
the energy distribution of the light wave passing through the crystal in the far zone. To 
this end we compared the interference pattern, the field in the near zone (the shadow pat- 
tern), the field in the far zone (the spatial distribution of the light intensity at the 
focus of the lens), as well as the pattern of the anomalous birefringences. 

The picture of the energy distribution in a certain plane Zo (k is the direction of 
propagation of the light) in the far zone is determined by the amplitude--phase distortions 
of the light wave when it passes through the crystal, and can be obtained from the distribu- 
tion of the field in the near zone by using the formula [27] 
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I i~ ~+Y~ 
ikei(~ E(~q)e r, d~d~], (27) E (xyzo) ---- 2~r0 

Z0 

where (xyzo)  i s  the  c o o r d i n a t e  o f  t h e  f a r - z o n e  p o i n t  on t h a t  c r y s t a l  end f a c e  ove r  which  
t he  i n t e g r a t i o n  i s  c a r r i e d  o u t .  The f i e l d  E ( ~ )  can be e a s i l y  o b t a i n e d  from the  form of  the  
i n t e r f e r e n c e  p a t t e r n .  However,  s i n c e  t h e r e  i s  no o n e - t o - o n e  c o r r e s p o n d e n c e  be tween  t he  
f i e l d s  E(~n) and E(xyzo)  g i v e n  by (27) ,  a s t u d y  of  t he  d i s t r i b u t i o n  o f  the  f i e l d  i n  t he  f a r  
zone calls for simultaneous observation in the near zone, in order to adequately determine 
the causes of the field distortion in the far zone. 

An investigation [16] of a light wave passing through a crystal has shown that the 
distribution of the light intensity at the focus of the lens takes the form of a central 
spot and lateral "whiskers" due to diffraction by the glide paths and block boundaries. 
However, the bulk of the energy of the light passing through the crystal is contained in the 
central spot, i.e., in a first-order approximation the influence of these defects (glide 
paths and block boundaries) on the divergence can be neglected. 

We have investigated the distribution of the radiation energy in this spot using the 
instrument described above. An oscillogram of the energy distribution is shown in Fig. 7. 
Obviously, such an uneven character of the field picture in the far zone should correspond 
to amplitude--phase distortions of the wave front also in the near zone. The radial in- 
homogeneity of the chromium concentration usually produces an almost spherical wave, which 
can be corrected with an ordinary lens. The inhomogeneity of the stresses distorts sig- 
nificantly the sphericity of the wave front, and it is usually impossible to obtain by cor- 
rective measures a far-zone plane wave in the case of stressed crystals. The corresponding 
distributions of the energy in the far zone have a clearly pronounced inhomogeneous charac- 
ter (Fig. 7). For the ordinary ray, this inhomogeneity is determined mainly by the macro- 
stresses in the crystal. In the extraordinary ray, the energy distribution in the far zone 
is influenced, besides by the stresses, also by the presence of disoriented blocks. It 
should be noted, however, that the presence of a block structure in the crystal, as indi- 
cated above, can increase the inhomogeneity of the distribution of the structure defects, 
meaning also the inhomogeneity of the mechanical stresses. Thus, disoriented blocks can 
cause indirectly, via the inhomogeneity of the stresses, the appearance of optical in- 
homogeneity for the ordinary ray. 

A comparison of the pictures of the radiation field in the far and near zones shows 
that to each maximum of the intensity in the focus of the lens there correspond definite 
regions of the crystal, which do not contribute to the other sections of the field. This 
indicates that the inhomogeneity of the field in the far zone is due not to diffraction of 
the light, but to refraction by the refractive index inhomogeneities due to the stresses. 
For example, in the case of a two-peak directivity pattern, each maximum corresponds to one 
of the halves of the crystal. Such a symmetry of the optical inhomogeneity is seen also 
on the interference pattern and on the pattern of the anomalous birefringence (Figs. 7 and 
8). 

In the case of crystals with a very complicated birefringence pattern (complex stress 
structure) the field distribution in the far zone has a sharply pronounced inhomogeneous 
character (Fig. 7). 
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