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The discovery of the effect of collisionless dissociation of polyatomic molecules [i] 
and the subsequent proof of isotopic selectivity of the process [2] has aroused great in- 
terest in the problem of excitation of polyatomic molecules and made it necessary to review 
the previously held ideas concerning the structure of the vibrational spectrum of polyatomic 
molecules. The models of excitation of a molecule by a laser field [3-5] proposed prior 
to the discovery of the effect of collisionless dissociation and based on the vibrational 
spectrum of a one-dimensional oscillator cannot explain why polyatomic molecules are ef- 
fectively excited without participation of collisions when acted upon at a frequency close 
to one of the vibrational frequencies of the molecule and dissociate when the laser-radia- 
tion intensity amounts to 108-109 W/cm 2. 

Strictly speaking, the model of the one-dimensional oscillator is valid only for di- 
atomic molecules. In the case of polyatomic molecules it is necessary to take into con- 
sideration the singularities of the vibrational spectra that distinguish it from the spec- 
trum of the one-dimensional oscillator. The main simgularity of the vibrational spectrum 
of polyatomic molecules is that owing to the large number of vibrational degrees of freedom 
the density of the vibrational states increases rapidly with increasing vibrational energy. 
This leads to formation of a quasicontinuum of vibrational states, starting with a certain 
energy value, and this explains the effectiveness of excitation of polyatomic molecules by 
laser pulses having an intensity of the order 108-109 W/cm 2 [6, 7]. The subdivision of the 
spectrum of the vibrational states into two regions -- the region of low vibrational levels 
and the quasicontinuum -- which was carried out in [6, 7] permits a qualitatively correct 
description of the features of excitation of polyatomic molecules by coherent radiation. 

At the same time, the vibrational spectrum has one more feature that must be taken into 
consideration when it comes to explaining collisionless dissociation of polyatomic molecules. 
This feature is that the vibrations of most polyatomic molecules are close in frequency. 
The agreement between the frequencies of the vibrations can be due to the symmetry of the 
molecules or can be accidental. As shown in [8, 9], the splitting of degenerate vibrations 
by the anharmonicity of the states leads to formation of a band structure of the quasicon- 
tinuum and of bands of lower levels. In contrast to the one-dimensional oscillator, the 
detunings produced on account of the anharmonicity cannot accumulate when such vibrations 
are excited. Since the detunings due to the anharmonicity do not accumulate, the polyatomic 
molecules can be effectively excited in fields of moderate intensity. The nonaccumulation 
of the detunings in the system of low levels of the SF6 molecule was considered in [i0, ii]. 

It is seen thus that the results of an analysis of the vibrational spectrum of poly- 
atomic molecules serve as the basis for a theoretical explanation of the effect of iso- 
topically selective collisionless dissociation of polyatomic molecules in a coherent radia- 
tion field. The present paper is devoted to an investigation of the vibrational spectrum of 
polyatomic molecules. The analysis is carried out mainly with the molecules XY4(T d) and 
XY~(O h) as examples. 

i. We consider the vibrational Hamiltonian of molecules of the type XY~ and XY6. Just 
as any vibrational Hamiltonian of a system of coupled nonlinear oscillators, it has a com- 
plicated structure. Before we proceed to a determination of the energy spectrum, we simplify 
as much as possible the form of the Hamiltonian. 

The first simplification that will be made is connected with the possibility of ex- 
panding the vibrational Hamiltonian of polyatomic molecules in powers of the Born--Oppenheimer 
small parameter. In the Born--Oppenheimer approximation the total Hamiltonian of any molecule 
can be expanded in the small parameter ~TM, where m is the electron mass and M is the pro- 
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ton mass. This expansion makes it possible to separate the electronic, vibrational, and 
rotational parts of the Hamiltonian. The vibrational part of the Hamiltonian of any elec- 
tronic state can also be expanded in the small parameter /~-M. The zeroth order of the ex- 
pansion determines the harmonic part of the vibrational Hamiltonian, the first order deter- 
mines the cubic nonlinearity, the second, the nonlinearity of fourth order, etc. The energy 
scale of the harmonic part, i.e., the vibrational quantum, for polyatomic molecules such 
as SF6, SiF4, 0s0, and others, is ~i000 cm-*, and the corrections on account of the fourth- 
order nonlinearity, just as of the cubic nonlinearity, are approximately smaller by a factor 
~TMand can amount to several reciprocal centimeters. Corrections due to the nonlineari- 
ties of fifth, sixth, and higher orders depend generally speaking strongly on the number of 
the vibration level, and for levels below the dissociation limit of the electronic state 
they do not exceed the corrections resulting from the fourth-order nonlinearity. Conse- 
quently, the splitting of the levels and their displacement away from the harmonic positions 
are determined mainly by the anharmonicities of third and fourth orders. Therefore, without 
adversely affecting the analyses that follow we discard nonlinearities of order higher than 
the fourth from the vibrational Hamiltonian. 

Now, using a one-dimensional oscillator with small cubic nonlinearity as the example, 
we shall show that by means of a nonlinear canonical transformation it is possible to reduce 
the initial Hamiltonian, accurate to quadratically small terms, to a form containing only 
a fourth-order nonlinearity. Let the initial Hamiltonian be of the form 

H = + - - - f - +  a x p ~  bx 3. (1 )  

For simplicity we assume that the mass and the harmonic frequency of the vibrations are 
equal to unity. The term bx 3 corresponds to nonlinearity of the potential energy, and the 
term axp = to the nonlinearity of the kinetic energy, which usually takes place if the vibra- 
tion takes place along a curvilinear trajectory. Expansion of the Hamiltonian in powers of 
p cannot contain odd powers of p, since the Hamiltonian must be invariant to the time-re- 
versal operation, and consequently to the replacement p § --p. Therefore Eq. (i) is the most 
general form of the cubic nonlinearity of a one-dimensional oscillator. 

To eliminate the cubic anharmonicity, we carry out a nonlinear canonical transformation, 
taking the generating function in the form 

= Px  + ax2P + ~p3, (2 )  

where P is the new momentum; ~, ~ are the transformation parameters. From (2) we obtain 

X - 0 o  
o e  -x+~x 2+3~P  2, 

O0 P + 2aPx,  (3) 
P 0x 

w h e r e  X i s  a new c o o r d i n a t e .  A c c u r a t e  t o  q u a d r a t i c a l l y  s m a l l  t e r m s  we g e t  f r o m  (3)  

x = X - - a X ~ - - 3 ~ P ~ + 2 a ~ P 3 + 6 a ~ X P  2, 

p = P + 2a P X - - 2 a ~ P X ~ - - 6 a ~ p 3 .  ( 4 )  

S u b s t i t u t i n g  (4 )  i n  ( 1 ) ,  we o b t a i n  w i t h  t h e  s a m e  a c c u r a c y  t h e  H a m i l t o n i a n  i n  t h e  v a r i a b l e s  
X a n d  P :  

p~ X~ 5a z 
H = ~ + - 5 -  + (b - -  a) X 3 + (a + 2a  - -  36) X P  2 + ( ' -7-  - -  3ab) X '  + 

- - + + - 9  )x p2. ( 5 )  § 

We take the transformation parameters 

a = b ,  ~ = a+2b  
" 3 (6) 

Then the cubic nonlinearity vanishes from (5) and we obtain the Hamiltonian 

p2 X z b e Xa (a + 2b) s pa..]_3abX~P% (7 )  
H=-f-+z z 2 
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When quantizing the Hamiltonian it must be remembered that it was obtained under the 
condition xp -- px = 0; therefore the quantized Hamiltonian (7) can differ from the quantized 
Hamiltonian (i) by the inessential constant quantity~h ~. 

We note that the performed transformation was possible because the number of the cubic- 
nonlinearity constants, as well as the number of the transformation parameters, is equal to 
two. It is impossible in the general case to reduce by a similar transformation a non- 
linearity of fourth order to a nonlinearity of higher order, since the number of terms of 
fourth order in the Hamiltonian is three (they are x ~, x2p 2, p4), and the number of param- 
eters of transformation is two (they are the coefficients preceding the terms x3P, xP 3 in 
the expression for ~). 

Generally speaking, any nonlinearity of odd order can be reduced to a nonlinearity of 
the next order, while a nonlinearity of even order can in general form not be eliminated. 
It is easy to generalize the result to include the case of a multidimensional vibrational 
system with a weak nonlinearity. Therefore we take an initial vibrational Hamiltonian con- 
taining a harmonic part and a weak nonlinearity of fourth order, assuming that the funda- 
mental frequencies and the nonlinearity parameters can be determined from spectroscopic 
data. 

All the simplifications introduced so far were general in character and were valid for 
any polyatomic molecule. We now take into account the features of the excitation and the 
symmetry of the molecules. 

It is known that the interaction between laser radiation and the molecules is a dipole 
interaction. Therefore, in the spectrum of the energy states, it is possible to populate 
substantially by laser radiation only those levels that are coupled by a strong dipole 
moment, and between which the transition frequency is close to the laser frequency. Let the 
initial state in the excitation process be the ground vibrational state and let the fre- 
quency of the action be close to one of the normal frequencies of the molecule. Then the 
states most strongly populated will be those of the excited mode and of those compound vi- 
brations whose frequency accidentally coincides with the laser frequency. Generally speak- 
ing, the dipole moment of the compound vibrations is substantially smaller than that of the 
fundamental vibration. If the state of the fundamental vibration experiences a random 
Fermi resonance with the level of a compound vibration, the dipole moments will be of the 
same order of magnitude. We therefore confine ourselves to consideration of the energy 
spectrum of one mode. 

We separate in the Hamiltonian of the molecules XY4(T d) and XY~(0h) that part which 
corresponds to the resonantly excited mode. For both XY~ and XY6 molecules, the vibrations 
that are active in the IR band are triply degenerate. We chose the vibrational coordinates 
x, y, and z in such a way that they are transformed under symmetry operations in exactly the 
same manner as the Cartesian coordinates of the reference frames that are rigidly connected 
with the molecules and are shown in Fig. i. When the coordinates are so chosen, there exist 
for both the XY~ and XY6 molecules the following three combinations of fourth degree, which 
transform in accordance with a fully symmetrical representation and are made up of the 
coordinates and momenta that can enter in the nonlinear part of the Hamiltonian: 

Xa _}_ ya + Z 4, X~y 2 -}- y2Z$ "-}- Z2X 2, (8) 
([p • r]) 2 = p2r~ _ (r .p)  ~, 

w h e r e  r = ( x ,  y ,  z ) ;  p = (Px ,  Py ,  Pz)  i s  t h e  momentum o f  t h e  v i b r a t i o n a l  mode .  T h u s ,  t h e  
vibrational Hamiltonian of the excited mode is of the form 

H = p2/2m -}- me~r~/2 + A (x a -t- y4 + z 4) + B (x~y ~ + y2z2 + z2~) + C ([p • r]) ~, (9)  

where m is the effective mass of the vibrations; ~, harmonic frequency; A, B, and C, con- 
stants of the intramode anharmonicity. The obtained Hamiltonian has the same form for the 
molecules XY~ and XY~, since they are spherical tops. 

2. We proceed now to determine the spectrum of the vibrational states of the obtained 
Hamiltonian of the degenerate mode. In the harmonic approximation, i.e., at A = B = C = 0, 
the spectrum takes the simple form 

E~ = he (v + 3/2), (i0) 
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Fig. I. General form of the molecules 
XY6 (a) and XY, (b). i) The atom X, 
b) the atom Y. The arrows show the 
Cartesian axes rigidly bound to the 
molecules. 

where m is the frequency of the vibrations in the harmonic approximation; v is the vibra- 
tional quantum number. Each energy level except the ground level is degenerate. The de- 
generacy multiplicity is given by 

g~ = (v q- i) (v q- 2)/2. (11) 

The degeneracy is the consequence of the spherical symmetry of the harmonic part of the 
Hamiltonian, and is lifted if perturbations that violate this symmetry are present. The 
lifting of spherical symmetry leads to a splitting of the degenerate level [12] into as 
many sublevels as there should exist in accordance with the group symmetry of the interac- 
tion that causes this splitting. 

In the presently considered case, the correction to the harmonic part of the Hamil- 
tonian, both for the XY~ and for the XY6 molecules, is of the same form, and accordingly the 
number of sublevels into which the splitting takes place is the same in both cases. We 
shall classify the sublevels into which the splitting takes place in accord with the types 
of symmetry of the group T d. To change over to classification in accordance with types of 
symmetry of the group Oh, the following rule is available. If v is even, then the type of 
symmetry does not change and an index g is added to indicate that the sign of the wave func- 
tion is not changed by the inversion operation contained in the O h group. If v is odd, then 
the level symmetry types change in accordance with the rule 

AI+~A> E~-+E, f l " ~ f 2  (12) 

and an i n d e x  u i s  added to  i n d i c a t e  t h a t  t h e  wave f u n c t i o n  r e v e r s e s  s i g n  unde r  t h e  i n v e r s i o n  
o p e r a t i o n .  

The s p l i t t i n g  o f  t h e  d e g e n e r a t e  l e v e l s  i s  t h e  main f e a t u r e  t h a t  d i s t i n g u i s h e s  t h e  
t h r e e - d i m e n s i o n a l  o s c i l l a t o r  f rom t h e  o n e - d i m e n s i o n a l  one ,  and p l a y s  a p r i n c i p a l  r o l e  i n  t h e  
a n a l y s i s  t h a t  f o l l o w s .  Whereas  in  t h e  c a s e  o f  a o n e - d i m e n s i o n a l  o s c i l l a t o r  t h e  a n h a r m o n i c i t y  
shifts the single level from the harmonic position, and this shift accumulates with increas- 
ing vibrational quantum number v, increasing in proportion to v 2, in the case of a three- 
dimensional oscillator, the splitting produces a band of levels, the edges of which can move 
in opposite directions away from the harmonic position of the level, and in this case the 
detuning due to the anharmonicity is not cumulative. 

To find the degenerate-state splitting due to the anharmonic part of the Hamiltonian 

/tanh = A (x 4 q- y4 q_ z 4) _}. B (x~y 2 2c y~z 2 q- z2x 2) -}- C ([p X r]) 2, (13) 

we use perturbation theory. To this end it is necessary to choose the zeroth-approximation 
wave functions. In connection with the degeneracy, this choice is ambiguous. We take as 
the zeroth approximation the wave functions of three one-dimensional oscillators, each of 
which corresponds to vibrational motion along one of the Cartesian axes of the molecule. 
The spectrum of the eigenvalues of the one-dimensional oscillator takes the simple form 

Ev~ = hm (u~ ~- i/2), (14) 

where v i is the vibrational quantum number of the i-th one-dimensional oscillator, and the 
wave function is expressed in terms of a Hermite polynomial 

]/2na, exp ( - - - - ~  / Hvi (ri V ~  ) . (15) 
l 

The wave function of a three-dimensional oscillator in the harmonic approximation is 
the product of the wave functions of three one-dimensional oscillators 

[ v~, uy, vz> = ~v~ (x) ~,~ (y) ~v~ (z), (16) 
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and the connection between the vibrational quantum numbers is of the simple form 

v = v~ + v+,. + v~. 

When finding the corrections of the first approximation of perturbation theory for the 
degenerate states, it is necessary to solve the secular equation [13]. We seek the eigen- 
functions in the form 

= ~ b~x~yv~ Iv+, v+, v+> ~, 
+~+%+++=+, (17 ) 

w h e r e  Ivy, vv, v~>' = (v~l v~t vzl)-~[, Iv~, vy, vz>. The c o e f f i c i e n t s  bvxvyVz a r e  e l e m e n t s  o f  a v e c -  

t o r - c o l u m n  o f  t h e  ~ f u n c t i o n  i n  t h e  new b a s i s .  Fo r  t h e  c o e f f i c i e n t s  bvxvyVz and f o r  t h e  

c o r r e c t i o n  e t o  t h e  h a r m o n i c  v a l u e  o f  t h e  e n e r g y  we o b t a i n  t h e  e q u a t i o n  

a~b : 9anh~. (18) 

,:,+ ~ v+ + ~ (v+v+, + VyVz + vzv~), < v : ~ , v + , v z l g a n h l V + , V + , , v z > ' =  :" ~+ 
i 

<v.+ - -  2, % -}- 2, v+ I Hanhl v+, %, vz>' = <v~, % -}- 2, v+ - -  21Hanhl v+, %, v+ >' : ~ (% + 1) (% -t- 2), 

^ 

The matrix elements Han h in the basis IvxvyVz> ' take the form 

<vx + 2, vy - -  2, vz I Hanh[ vx, %, vz>' = <ux -K 2, %, t'z - -  2 1 Lranhl vx, vy, Vz)' : "~ (vx -I- t ) ( v x . -  ~- 2), 

(19) 

<v+ - -  2, %, Vz + 21Hanhl v~, %, v+>' - <v~, % --  2, v~ -~ 21 fianh[ v~, vy, v+>' = ? (v~ d- i)(vz + 2), 

where 

a = 6 A ( M 2 m @ L  ~ = 4 B ( h / 2 m ~ )  2 + 2Ch ~, 7 = B ( h / 2 m ~ )  2 - C h %  (20)  

I n  (19)  we r e t a i n e d  o n l y  t h e  t e r m s  q u a d r a t i c  i n  v ,  s i n c e  t h e  l i n e a r  and c o n s t a n t  t e r m s  
l e a d  t o  an  i n e s s e n t i a l  r e d e f i n i t i o n  o f  t h e  f r e q u e n c y  and t o  a s m a l l  s h i f t  o f  t h e  e n e r g y  
origin. 

Equation (18) is solved with the aid of the generating functions 

2 v v v z = x xy ,z b~.x,yv~. 
v xq-vyq-Vz=V 

and z a r e  g e n e r a l l y  s p e a k i n g  f o r m a l  p a r a m e t e r s .  

(21) 

From (18) we obtain for ~ the Here x, y, 
equat ion 

s ~ x ,  y ,  z ~ : = x ,  ~ .  z 

t h e  s o l u t i o n  o f  w h i c h  i s  a p o l y n o m i a l  o f  d e g r e e  v .  

B e f o r e  we p r o c e e d  t o  s o l v e  ( 2 2 ) ,  we b r e a k  up t h e  s p a c e  o f  t h e  p o l y n o m i a l s  o f  d e g r e e  v 
i n t o  s u b s p a c e s ,  e a c h  o f  w h i c h  i s  t r a n s f o r m e d  i n  a c c o r d a n c e  w i t h  an  i r r e d u c i b l e  r e p r e s e n t a -  
t i o n  of the group T d. We note that any polynomial of degree v is transformed under symmetry 
operations as if x, y, and z were real Cartesian coordinates of a reference frame rigidly 
tied to the molecule. We choose the initial basis in polynomial space in the form 

e~ = x % y ~ z  ~z. (23 ) 

Let k = min (Vx, Vy, Vz). All the basis vectors with identical k will be referred to a 

single subspace Pv k. In this subspace, any basis vector can be represented in the form 

[(xy~) x y ,  
. k 't;++ n e+ /(x•+z) y z ,  (24) 

I, (x~z) ~ zmx ~. 

I n  t h e  c h o s e n  C a r t e s i a n  r e f e r e n c e  f r a m e s ,  b o t h  f o r  t h e  XY4 and  f o r  t h e  XYs m o l e c u l e s ,  
e a c h  o p e r a t i o n  o f  t h e  s y m m e t r y  o f  t h e  g r o u p  T d r e d u c e s  e i t h e r  t o  a p e r m u t a t i o n  o f  t h e  
C a r t e s i a n  c o o r d i n a t e s  o r  t o  a r e v e r s a l  o f  t h e  s i g n s  o f  two o f  t hem,  o r  e l s e  t o  a s i m u l t a -  
n e o u s  p e r f o r m a n c e  o f  t h e s e  o p e r a t i o n s .  T h e r e f o r e  t h e  p r o d u c t  ( x y z )  i s  n o t  c h a n g e d  by  t h e  
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symmetry operations, and a product of the form (xmy n) goes over either into itself or into 
one of the products 

(x~z~),  (z'~y'~), (y~xn) ,  (z'~xn), (ymzn). 

L e t  m > n ~ 0 ,  a n d  t h e n  we h a v e  s i x  b a s i s  v e c t o r s ,  w h i c h  f o r  g i v e n  k ,  m, a n d  n a r e  
t r a n s f o r m e d  i n t o  o n e  a n o t h e r  u n d e r  s y m m e t r y  o p e r a t i o n s ,  and  a c o r r e s p o n d i n g  s i x - d i m e n s i o n a l  
s u b s p a c e  i n v a r i a n t  w i t h  r e s p e c t  t o  s y m m e t r y  o p e r a t i o n s .  F rom t h e  s i x  b a s i s  v e c t o r s  

[(xyz) ~ x'~yn], [ (xyz)  ~ ymx~], 

I (xyz)  ~ y'~z~], [(xyz)  k z~yn],  

[ (xyz)  ~ z'~x~], [(xyz) ~ x ~ z  "~] 

i t  i s  e a s y  t o  c o n s t r u c t  a b a s i s  o f  i r r e d u c i b l e  s u b s p a c e s .  I f  m a n d  n a r e  e v e n ,  t h e n  t h e  
v e c t o r  

A ~  = (xYz)  ~ (x'~Y '~ -6 Y mx'~ -6 zraY n -6 Y '~zn + x"~z n "6 z'~x '~) (25 )  1 

is the basis vector of a one-dimensional subspace that transforms in accordance with the 
representation A~ while the vector 

A $  mn = (xyz )  ~ [xmy n "6 y~zn  "6 zmx  n - -  X'~y m - -  ynzm - -  X'~Z n] (26)  

is a basis of the subspace that transforms in accordance with the representation A2. The 
vectors 

Ek,~n = (xyz)k  [2y,%~ + 2z,~yn __ x,~z~ __ z ~ x  n __ x.~y,~ y,~x,~l, al 

Ekm~ = ( xyz)~ [ x ,.Z,~ + z,~xn __ x.~y,~ __ y.~x,~l (27)  bl 

form the basis of a two-dimensional subspace that transforms in accordance with the representa- 

tion E. Analogously, the basis of the E-subspace is made up by the vectors 

E~'# ~ = (xyz)  ~ [ z " x  '~ - -  x ~ z  '~ - -  x'~y n + y'~x"l,  
(28) 

E ~m~ = (xyz)  k [2y'~z n __ 2zmy '~ __ z ~ x  "~ "6 x'~z '~ _ ynx'~ "6 y'~xnl.  

The matrices of the symmetry operators in both E-subspaces are the same and do not depend 
on the set of numbers k, m, and n. 

If m and n are both odd, then the vectors 

#ran "X Z. ";~" razn 1~ = ( Y ) tY - - z rnyn ) ,  

F ~  n = (xyz)  ~ (z"~x n __ x'nzn), (29)  

F k  mn lz = (xYz) ~ (x"~Y n - -  Y "~x~) 

form the basis of a three-dimensional irreducible subspace that transforms in accordance 
with the representation Fx, while the vectors 

F ~mn "x  ~.'~ " m f n  

Fe~ = (xyz)~ (x,%n + z,nxn), (30) 2y 

r$? ~ = (xyz) ~i (x~y ~ + x~y ~) 

form the basis of a subspace that transforms in accordance with the representation F2. If 
m is even and n is odd (the case of odd m and even n is accounted for by interchanging m 
and n in the formulas), then the vectors 

Fkmn 
f k m n  

F~mn 

a r e  t h e  b a s i s  o f  t h e  F~ s u b s p a c e ,  and  t h e  
/~,krnn 

Fkmn 
2y ~ 

F k m n  
2z 

( x y z f  ( y~  - z ~)  x L  

(xyz)~ (z,~ _ x,,~) yn, (31)  

(xyz) ~ (x ~ - -  y~) Z ~ 

vectors 

(x~z) ~ (y~  + z TM) x n , 

(xyz)  ~ (z "~ + 2 ~) y L  ( 3 2 )  

(xyz) ~ (x ~ + y~)  z ~ 

are the basis of the F2 subspace. The matrices of the symmetry operators in the like sub- 
spaces do not depend on the set of numbers k, m, and n. 
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If m = n ~e 0, then in the case of odd numbers m and n the FI subspace vanishes, and 
in the case of even m and n one E subspace and the A= subspace vanish. If m = n = 0, then 
v = 3k is divided by three and the subspace p$/3 is irreducible and transforms in accord- 

ance with the representation At. 

Thus, we have covered all the cases of different relations between the numbers k, m, 
and n, and the subspace of polynomials of degree v is broken up into irreducible subspaces. 

This breakup greatly simplifies the determination of the solution of Eq. (22). In 

fact, the operator ~ is invariant to the operations of the symmetry of the group T d. It 
therefore cannot change the symmetries of the chosen bases vectors. Moreover, in the case 
of multidimensional representations it can transform into one another only the basis vectors 
with identical indices (a->a, x§ etc.). Consequently to find the energy eigenvalues ~(P i) 
of the levels of a certain type of symmetry F i it suffices to determine the type of matrix 

in the basis of the generating functions of this type of symmetry and find its eigen- 

values. 

For the molecules XY4(T d) and XY6(0 h) the number of sublevels of one type of symmetry 
becomes larger than two, starting with v = 5. Therefore up to v = 4, when the generating 
functions are broken up by symmetry type, there is no need for solving algebraic equations 
of degree higher than two in order to find the corrections ~. 

For v = 0, i, 2 it is not necessary to solve even quadratic equations. In fact, in the 
case v = 0 there is one symmetry level At. It corresponds to the generating function ~ = i. 
Substituting it in (22), we get E = 0. The level v = 1 has the symmetry F2, the generating 

function F~ i, o= x and e(v = i, Fa) = ~. 

The band v = 2 includes the sublevels AI + E + F2. Taking the generating functions 

A~' 2, o = x 2 + y2 + z ~, E~' 2, n : y2 __ Z2 F ~  1'1 = y z ,  

we obtain from (22) 

e(v = 2, A1) = 4a + 4~, 8(v = 2, E) = 4 a - - 2 7 ,  8(v = 2, F2) = 2 a +  8- 

We consider now the band v = 3. It consists of four sublevels AI + FI + 2 x F2. 
Choosing the basis generating functions in the form 

= F 0,3,~ FO, 2,1 A~'  o, o = x y z ,  F ~  ~, 1 y 2 x  - -  z2x ,  ~ = x 3, 2~ = (y~ q -  z 2) x ,  

we find that 

form 

(v = 3, A 0 = 3a  + 3~, ~ (v  : 3 ,  F 1 )  = 5~ + 2~ - -  2?. 

The matrix of the operator ~ in the basis of the functions of symmetry F2 is of the 

) 4? 5 a + 2 ~ + 2 ?  " 

Its eigenvalues determine the position of the levels of symmetry Fa: 

( v = 3 ,  F2) = T a §  + ? _ _ + [ ( ~  §  2 + 2 4 7 2 1  ~/.. 

The band v = 4 is split into seven sublevels 2 x AI + 2 x E + FI + 2 x F2. 

in the basis of functions of symmetry AI 

The operator 

A o, 4, o = x ~ + y~ + z 4, AO,2,2 = x2y2 _.~ y2z2 ..~ z,~x2 

is of the form 

( 16a 247 ) 

D i a g o n a l i z i n g  t h e  m a t r i x  ~ ,  we o b t a i n  

e (v = 4, A,) = i 2 a  + 2~ + 27 -4- 2 [(fi + ? - -  2r 2 -+- 2472] '/'. 

Choosing basis functions of symmetry E in the form 

E~' ~' o = z 4 __ y4, E~" 2, 2 = (z2 __ y~) x 2, 
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we obtain similarly 

e (v = 4, E) = 12~ + 2~ --  ?--+ [(2~ --  4a --  ?)3 + 247~1v,. 

For the F, sublevel we choose the generating function F ~ a, ~ = xay _ yax. Substi- iz 
tuting it in (22), we obtain E(v = 4, F~) = i0~ + 38 -- 6y. In the basis of the generating 
functions of symmetry F2 

F ~  I, o = x~yz, F ~  a, 1 = yS z + z~y 

the operator ~ takes the form 

Its eigenvalues are equal to 

[6a- l -5~  2? ) 

= ~ 22? 1 0 a + 3 ~ + 6 ?  " 

e (v = 4, F2) = 8a  Jr 4~ + 3? =t: [(2a - -  g -f- 37)~ + 24 7~] '/~. 

In Table 1 are gathered the energy eigenvalues e obtained in this manner and the corre- 
sponding generating functions. 

We now consider the scheme of symmetry-allowed dipole transitions between levels from 
0 to v = 4 inclusive, which is shown in Fig. 2. In the general case the dipole moments of 
the transitions indicated by the arrows are not equal to zero. It is seen from the scheme 
that on account of successive single-quantum transitions it is possible to populate any 
vibrational sublevel. It becomes possible in this connection to determine the three con- 
stants of the intramode anharmonicity by methods of two-frequency IR spectroscopy [14]. 
Indeed, to determine ~, ~, y it suffices to establish the position and the symmetry types 
of the three sublevels of the band v = 2. Two-frequency resonances yield direct information 
on the position of the sublevels. The symmetry types of the sublevels can be determined 
from the ratio of the dipole moments of the transitions from the level v = 1 to the sub- 
levels of the band v = 2. 

Let us see what the theoretical relations between the dipole moments of the transitions 
should be. Let the initial state be the level of the band v = 1 whose ~ function is equal 
to IS, 0, 0>. In the harmonic approximation the nonzero matrix elements of the dipole-moment 
operator are of the form 

<v~,%-4- l , v z l d~]v~ , v~ , v z>  = doiVVy"~ - t ,  (33) 

where  do~ i s  t h e  d i p o l e  moment o f  t h e  O--i t r a n s i t i o n .  Now, u s i n g  t h e  p r e v i o u s l y  o b t a i n e d  
g e n e r a t i n g  f u n c t i o n s  o f  each  o f  t h e  s u b l e v e l s  A~, E, F2,  we d e t e r m i n e  t h e  c o r r e s p o n d i n g  
wave f u n c t i o n s .  The s u b l e v e l  A~ i s  n o t  d e g e n e r a t e  and c o r r e s p o n d s  to  t h e  v i b r a t i o n a l  e i g e n -  
function 

i 
I Al> = -~--~ ( 12, 0, 0> + r 0, 2, 0> -4-10,0,2>). 

The sublevel E is doubly degenerate and includes two states: 

t (212 ,0 ,  0> _ 10, 2, 0> _ i 0, 0, 2>) ' lea> = - ~  

i 
IEb> = - ~ ( 1 0 ,  2, o> - I o, 0, 2>). 

The t r i p l y  d e g e n e r a t e  l e v e l  F2 i n c l u d e s  t h r e e  s t a t e s :  

I f~>  = 10,1,1>, If~y> = It ,0 ,  t>, 
I F ~ > = 1 t , t , 0 > .  

The m a t r i x  e l e m e n t s  o f  t he  d i p o l e - m o m e n t  o p e r a t o r  f o r  t r a n s i t i o n s  f rom t h e  l e v e l  1t, 0, 0> 
to the sublevels A,, E, F2, which differ from zero, are equal to 

-~- 2 
<Al ld~[ t ,0 ,0>  = V--X- dol, <Eald~[ 1,0,0> = - ~  do1, 

<E2u I d~ I 1, 0, 0> = dol, (F2z I du I 1, 0, 0> = do~. (34) 
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Fig. 2. Scheme of symmetry- 
allowed transitions between the 

bands of the molecules XY4 and 
XY6 from v = 0 to v = 4. The 
allowed transitions are shown 
by arrows. 

Comparing the experimental ratios of the strengths of the dipole moments of the transi- 
tions with the theoretical ones, we can determine the symmetry type of each sublevel. This 
additional information is perfectly sufficient to determine the intramode anharmonicity 
constants. Generally speaking, with the aid of the generating functions we can determine 
the dipole moments of the transitions between the bands from v = 0 to v = 4 and more and 
also the positions of the sublevels in any band, but these calculations call for the use of 
a computer and consequently for knowledge of the concrete values of the intramode anhar- 
monicity constants. 

3. Owing to the anharmonicity splitting of the degenerate levels, the detunings from 
resonance with the laser radiation may not accumulate with increasing v. It is quite easy 
to choose a radiation frequency such that the detunings do not accumulate in the system of 
the lower levels. In order for the detunings not to accumulate in the system of the upper 
bands (v > 4) it is necessary to satisfy definite conditions for the intramode anharmonicity 
constants. 

Let us find under which conditions no detunings due to anharmonicity in the system of 
the upper levels take place for mol~cules XY~ and XY~. We start from the fact that the 
off-diagonal elements in the matrix Han h are much smaller than the diagonal ones, i.e., 
y ~ ~ or 8. Then, neglecting the off-diagonal terms, we find that the position of the band 
levels is uniquely determined by the set of three quantum numbers Vx, Vy, v z with the condi- 
tion v = v x + Vy + v z. The correction e to the harmonic values of the energy E v = he (v~- 
s/2) for the band levels depends on the set of quantum numbers in the following manner: 

e (vx, v+, vz) = a(v~ +v~ + v~) -~ ~(VxVy -~- VyVz + VzVx). (35) 

Let v ~i; then Vx, Vy, v z can be regarded as continuous variables, which vary in the 
ranges 0 < Vx< v, 0 < Vy ~ v, 0 ~ Vz~ v and are connected by the relation v = v x + 
Vy + v z. 

The correction e as a function of the variables Vx, Vy, v z has in the range of their 
variation three extrema: 

e~ = a v  2 (v~ = v ;  i - x ,  y ,  z ) ,  

s2 = (~  + ~ ) v 2 / 3  (v~  = vy  = v~ = v / 3 ) ,  ( 3 6 )  

e c = (2~  § ~) v2/4 (v~ = v j  = v / 2 ,  i ~ ]). 

The extremal values e~ and sa determine the positions of the edges of the bands, and 
e c determines the position of the center of gravity. Indeed, at arbitrary a and B the value 
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of e c lies between e: and e2. In addition, e c is, accurate to terms quadratic in v, the 

trace of the matrix Hanh, divided by the number of levels in the band. It is known that the 
trace of a matrix is the sum of its eigenvalues; therefore e c is the center of gravity of 
the band. In order for the detunings that are produced on account of the anharmonicity not 
to accumulate, it is necessary that El and e2 be of opposite sign, and then the harmonic 
value of the energy lies in the band. From (36) we find that to this end the constants of 
the intramode anharmonicity must satisfy the conditions 

s ign  (a,  6) = - -  t ,  [al < 16l. ( 3 7 )  

Conditions (37) are the criterion for nonaccumulation of the detunings. 

4. We consider now the level-density distribution in the bands, which is an important 
characteristic of the band structure of the quasicontinuum. The effectiveness of excitation 
of the molecules depends substantially on the level density near the energy nh~., where 
n = 0, I, 2, ...; mL is the frequency of the laser pulse. Indeed, the only bandLlevels that 
can be substantially populated are those whose energy is close to n~ L. The distance from 
the energy value nNm L to the nearest level of the band has generally speaking a random de- 
pendence on v, but it cannot exceed half the distance between neighboring levels in the 
vicinity of the energy nhr L The higher the level density at the point nhmL, the smaller 
the detuning from resonance with the radiation of the nearest level of the band, and the 
easier it is to populate the levels close to resonance with the radiation. From the fore- 
going reasoning it is seen that for an effective excitation of molecules the frequency mL 
must be chosen such that the values of the energy nh~ L be located in the region of bands 
with maximum level density, when the rate of acquisition of energy by the molecules is 
maximal. 

We obtain now the level-density distribution in the bands of molecules XY~ and XY6, in 
the previously assumed approximation y < a or ~. In this approximation, the spectrum is 
described by expression (35). Assuming that the vibrational quantum numbers v i are con- 
tinuous variables, we obtain first the number of levels in the band v: 

y 2 

N v = ~ ( u  - -  u x - -  Vy - -  Uz) = d V l  d r 2  d u 3 6  (v - -  vl - -  u2 - -  vs) = ~ - .  ( 3 8 )  
v' 

v x = 3  v y = o  Vz=) O 0 0 

T h i s  f o r m u l a  c o r r e s p o n d s  t o  f o r m u l a  ( 1 1 )  p r e v i o u s l y  o b t a i n e d  i n  t h e  h a r m o n i c  a p p r o x i m a t i o n ,  
a n d  t h e  6 s y m b o l  u n d e r  t h e  s u m m a t i o n  s i g n  i s  e q u a l  t o  u n i t y  a t  v = v x + Vy + v z a n d  t o  z e r o  
in all other cases. On going over to continuous variables, this symbol turns into the Dirac 

function. We now determine the number of states in the band v which are located in the 
vicinity of the energy value e. To this end it is necessary to introduce under the summa- 

tion sign in (38) one more 6 symbol, viz. 8 (8--a ~ ~--~(~v~q-vv~q-�89 On going to con- 

tinuous variables, it also turns into the Dirac 5 function and the sum goes over into an 
integral that determines the level density in the band in the vicinity of the energy c: 

v v v 3 

0 0 0 i = I  

Since the three-dimensional integral contains two ~ functions, it reduces to one-di- 
mensional. It is seen from (39) that integration in the cube 0 ~ v~ ~ v, 0 < v2 < v, 
0 < va < v reduces to integration over a triangle with vertices (v, 0, 0), (0, v, 0), 
(0, 0, v). It is therefore more convenient to change over to the cylindrical coordinates 

z, p, ~, with the aid of the transformation 

z] 

The integral (39) reduces to an integral over a triangle in the polar coordinates p and ~ : 

A 
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Fig. 3. Distribution of the level 
density in the band v. The ordinates 
are the level densities gv(e) in 
normal units. The abscissas are the 
detuning from the harmonic value of 
the energy in arbitrary units. 

3s--(~+~)vz 
The last integral is taken over arcs of a circle of radius p0= [2 3(2a--~) ' which are lo- 

cated inside the triangle (the centers of the circle and of the triangle coincide). As a 
result we find that in the energy region between e2 = (a + 8)v~/3 and e c = (2~ + 8)v2/4 the 
level density is constant and is given by 

2= 
g~(e) = go ~- ~[12a--~ I (42) 

In the region between ec = (2~ + 8)v2/4 and el = av 2 the level density decreases monotoni- 
cally from the value go at e = e c to zero at e = ex, in accordance with the law 

II (43) i2~--(4~ +4~)v~ , j "  

We note that the energy values ex, s~, and e c correspond, respectively, to the edges and 
to the gravity centers of the bands. At the center of gravity of a band a change takes 
place in the character of the gv(e) dependence. The distributions of the level density in 
the bands with different v are similar to one another. The form of the distribution is 
shown in Fig. 3. 

5. We examine now the distribution of the strengths of the dipole moments among the 
transitions between neighboring bands of degenerate vibrations of molecules XY~ and XY~. 
To this end we sum the squares of the dipole moments of the transition from states in the 
vicinity of the energy e of the band v into states lying in the vicinity of the energy e' 
of the band (v + i). If the sum differs from zero, this means that there are allowed transi- 
tions, and if it is equal to zero then there are no allowed transitions. In addition, the 
sum of the squares of the dipole moments determines the cross section for photon absorption 
in the continuous spectrum. The sum of the squares of the dipole moments, as well as of 
the level density in the bands, will be estimated in the approximation v ~ i, y ~ ~, 8: 

~,=o ~,=o ~,=o ~ i = o < = o < = o  = = 

3 3 

i= l  i=l 

+ @ ; ) ]  { 4 ,  [(~,~ + l )  ,~ (~,1 - ~; + i )  ,~ (~,~ - ~,~) + (~,~ + l )  ~ (v~ - ,~i) x 
x ~(~,~ - ~,~ + { )  + (~,~ + ~) ~ (,~, - ~,~ + ~) ~ (~,, - v ; ) ] }  = 

=3d~, ~ (v,-F1_.)6 v { - - v  6 e - - a ~ v i - - ~ , ~ , v { v j  X 
v,=0 v2=0 va=0 "= /=I i<j 

X 6 [(e' - -  e - -  ,6v) - -  (2a - -  6) v11. ( 4 4 )  

We change now from summation to integration in cylindrical coordinates, which are determined 
by the expressions 
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- -  . (45) 

Then the sum (44) goes over into the integral 

~d~1(8'--8--[sv+2a--[5) I [ 2(~+[5) ~ -- ~/~_ (2a__ ~)p0cos~ ] (46) 
S =  ( ~ - -  [5) ]2a-- [5 ] dT.5 8 ' - - 8  3 - -  ' 

V 2  3s -- (a + [5) v~ where 9o = 5i~[5 ) , and the integral (46) is taken over arcs of a circle of radius 

0o, which are located inside a triangle with vertices (v, 0, 0), (0, v, 0), (0, 0, v) in the 
space of the numbers vl, v2, v3. The planes of the triangle and of the circle, as well as 

their centers, coincide. 

As a result of the integration we obtain the following: if the initial state has an 
energy e such that ~2 < s < ec (it is assumed here arbitrarily that ~2 < ~c < el), then the 
transitions are allowed in the region ~a < E' < E b, where 

8a:~_~ 2(a-~-~) + V 3e--(a+[5) v'' 3 v - -  ( 2 a  - -  13) ~ - -  ~- , 

E b 8 q - 2 ( a q - ~ ) v / 3 q - 4 ( 2 a - - ~ )  V a s -  (a + [5)v' 
= 2 a  - -  [5 

If r < r < r then transitions are allowed in the two regions -- Ca1 < e 

e' < Eb2, where 

2 (~ § [5) 
eb~ = e § 13) [ - 5 "  po 3 v q- (2a -- T , 

6a + 5[5 V 6p~ -- v~ 

6a + 5[5 ! / "  6p~ -- v2 Eb2 E + 6 v - (2(t - 13) ~ 12 

' < eb: and Ea2 < 

(47) 

(48) 

The sum of the squares of the dipole moments is determined by the expression 

S = 2 ~r3" d~ s ' - - 8 - -  [3v -+-2a- [3 I - - T  (C~ -}- (49) 

6. We consider now the rate of energy acquisition in the band structure of the quasi- 
continuum. If it is assumed that the spectrum is practically continuous, then the rate of 

acquisition of energy is determined by the cross section for the absorption in the bands. Let 

n be the number of absorbed photons; then 

d-!~ = I(~ (n), (50) 
at 

where o(n) is the absorption cross section of a molecule that has stored n vibrational pho- 
tons; I is the intensity of the laser radiation. The absorption cross section (accurate to 
inessential factors that determine the dimensionality) is equal to the product of the sum 
of the squares of the dipole moments by the density of states at the corresponding points 
of the energy spectrum. In bands of triply degenerate vibrations, the level density is 
practically independent of the number of the band v, and consequently of the number of ab- 
sorbed photons n. This is a consequence of the fact that the width of the bands and the 
number of levels in the bands increase in proportion to v 2, and is confirmed by the results 

obtained in Sec. 4. 

The sum of the squares of the dipole moments of transitions from one point of the band 
to another point of the neighboring band depends on v and determines the dependence of 
on n. For the band v the absorption cross section o(v) is directly proportional to [S(v§ 
v + I) -- S(v§ -- i)], where S(v§ + i) corresponds to transitions from the band v into the 
band v + I, and S(v§ -- i) corresponds to transitions from the band v into the band (v -- i) 
and is taken with a minus sign. For down transitions the square of the dipole moment is 
proportional not to (v + i), as for up transitions, but to v. As a result, the sum of the 
squares of the dipole moments for down transitions is determined by the expression 
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S ( v - > v - - i ) = S ( v - - > v +  8 " - 8 - ~ + 2 ~ - ~  ' (51) 

as can  be p roved  by r e p e a t i n g  the  a rgumen t s  p r e s e n t e d  i n  Sec.  5. Taking  (51) i n t o  c o n -  
s i d e r a t i o n ,  we o b t a i n  

12u--B[ 
g ( v ) ~ S  1 8 ' - e  - ~ , + 2 ~ - ~ 1  (52) 

The g (v )  dependence  i s  g e n e r a l l y  s p e a k i n g  c o m p l i c a t e d ,  bu t  i t  i s  p o s s i b l e  to  s i n g l e  o u t  
two a s y m p t o t i c  c a s e s  t h a t  c o r r e s p o n d  to  two s t a g e s  o f  the  e x c i t a t i o n .  

I n  t he  f i r s t  s t a g e  o f  t h e  e x c i t a t i o n ,  t he  te rms  l i n e a r  i n  v and c o n t a i n e d  i n  t he  ex -  
p r e s s i o n  f o r  g a r e  l a r g e r  t han  t h e  q u a d r a t i c  ones .  The a p p e a r a n c e  o f  l i n e a r  te rms  i s  c o n -  
n e c t e d  w i t h  the  f a c t  t h a t  e = h ' v ,  where  h i s  t h e  d e t u n i n g  o f  t h e  l a s e r  f r e q u e n c y  from 
t h e  f r e q u e n c y  of  t h e  0--1 t r a n s i t i o n .  In  t h i s  c a s e  

= ~I/V~,  (53) 

where o l  i s  a c e r t a i n  a b s o r p t i o  n c r o s s  s e c t i o n ,  which  i s  a c h a r a c t e r i s t i c  o f  t he  m o l e c u l e ,  
in  t h e  f i r s t  s t a g e  o f  t h e  e x c i t a t i o n .  In  t h e  s econd  s t a g e  o f  t h e  e x c i t a t i o n  t he  q u a d r a t i c  
terms a r e  much l a r g e r  t han  t he  l i n e a r  ones ;  t h e r e f o r e  

= ~Jn, (54) 

where  o= i s  the  a b s o r p t i o n  c r o s s  s e c t i o n  in  t h e  second  s t a g e .  

S u b s t i t u t i n g  (53) and (54) i n  (50) ,  we f i n d  t h a t  i n  t h e  f i r s t  s t a g e  

n =  (o~w)v ~. (55) 

= ~Idt is the energy density of the pulse; T is the duration of the pulse. In where W the 
0 

second stage 

n = (g2W)'/~. (56) 

Thus,  t h e  o b t a i n e d  e x p r e s s i o n s  (55) and (56) show t h a t  the  e n e r g y  a b s o r b e d  by the  m o l e -  
c u l e s  i s  d e t e r m i n e d ,  f o r  a f i x e d  l a s e r  f r e q u e n c y ,  by t h e  e n e r g y  d e n s i t y  o f  the  l a s e r  p u l s e ,  
and a t  low e n e r g y  d e n s i t i e s ,  when t he  number o f  a b s o r b e d  p h o t o n s  i s  s m a l l ,  we have  (n 
W2/3),  w h i l e  a t  l a r g e  e n e r g y  d e n s i t i e s  n ~ W 1/2 

The number o f  a b s o r b e d  p h o t o n s  i s  l a r g e s t  i n  t he  c a s e  when t he  l e v e l  d e n s i t y  i n  t he  
v i c i n i t y  o f  t h e  e x c i t e d  s t a t e s  i s  maximal .  Th i s  t a k e s  p l a c e  i f ,  a t  a f i x e d  l a s e r - p u l s e  
e n e r g y  d e n s i t y ,  t h e  l a s e r  f r e q u e n c y  i s  chosen  such t h a t  t h e  e x c i t e d  s t a t e s  have  an e n e r g y  
s a t i s f y i n g  t h e  c o n d i t i o n  

e 2 < 8 < ~ .  (57) 

In this case, for the states with energy 8§ the sum of the squares of the dipole moments 
S-~o. This shows that the most optimal will be the laser frequency for which the excited 
states have an energy c ~ g2. 

7. A band structure is possessed by the quasicontinuum of any molecule that has de- 
generate vibrations. Examples are not only the molecules XY,(T d) and XY~(0h), but also, 
e.g., the planar molecules of the type XYa(Dah). Among the latter is included the molecule 
BCIa. In experiments on collisionless dissociation of the gas BCIa [14], the mode va of 
symmetry E was resonantly excited. The levels of this mode, which are degenerate 
in the harmonic approximation, are split by the anharmonicity and also form a quasicon- 
tinuum band structure. 

The formation of bands can take place also in less symmetrical molecules on account of 
the random degeneracy of the oscillations. An example can be the molecule C2H~. The two 
atoms in the C2H~ molecule can be approximately regarded as one compound atom. In this 
approximation the molecule C2H~ has a fourfold symmetry axis and should be a symmetrical top, 
Indeed, with very good accuracy the molecule C2H4 is a symmetrical top [15]. It therefore 
has normal vibrations that are close in frequency and are active in the IR region, namely, 
~7 and ~9. It is precisely upon excitation of these vibrations that one observes collision- 
less dissociation of the gas C2H4 [16]. 
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Notice should be taken of one more possibility of band formation, namely the splitting, 
by anharmonicity, of levels of degenerate compound vibrations. Assume we have a compound 
vibration ~com = Emimi, where m i are positive integers and ~i are the frequencies of the 
natural vibrations. If Em i is equal to 2-3, then the compound vibration has a noticeable 
dipole moment. The degeneracy of the compound vibration is equal to the product of the 
multiplicities of the degeneracy of the vibrations mim i that produce it, and can be very 
high. We consider a compound vibration with degeneracy multiplicity M > 3. Levels that are 
degenerate in the harmonic approximation, namely V~co m, where v is the vibrational quantum 
number, are split by the anharmonicity and form a band. The dipole moment of the transition 
between the levels of the neighboring bands is of the order of magnitude of the dipole 
moment of the main transitions of the compound vibration. The width of the bands increases 
in proportion to v 2, and the number of levels in the bands increases in proportion to 
v M-~. Therefore, the average distance between the levels of one band in the case M > 3 
decreases as v ~-M, or remains constant at M = 3. If the bands of the compound vibrations 
overlap the corresponding harmonic values of the energy, then resonant excitation of the 
molecules at the frequency of the compound vibrations is possible up to the dissociation 
levels. 

8. In conclusion, let us formulate the main results of the present paper. 

We determined the form of the vibrational Hamiltonian of the triply degenerate modes 
of molecules of the type XY4(T d) and XY6(Oh). A method was developed for determining the 
energy eigenvalues of the degenerate vibrations with the aid of generating functions. 
Analytic expressions were obtained to describe the anharmonic splitting of the lower vibra- 
tional levels. 

The specific singularities of the spectra of the high-lying vibrational states were 
considered and it was shown that the quasicontinuum of t~e vibrational states of polyatomic 
molecules has a band structure. 

Approximate analytic expressions describing the +energy position of the bands of 
degenerate vibrations of molecules of the type XY~ and XY6 were obtained. A criterion was 
derived for the nonaccumulation of the detunings that result from the anharmonicity of the 
vibrations. The distribution of level density in the bands was obtained. An approximate 
analytic expression describing the distribution of the strengths of the dipole moments of 
the transition between bands was obtained. The kinetics of the band excitation was analyzed. 
Approximate expressions describing the kinetics of the excitation were obtained. 

The author thanks Professor N. V. Karlov for suggesting the problem and for interest 
in the work. He is grateful to S. S. Alimpiev and V. M. Akulin for helpful discussions. 
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