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In [i, 2] an analysis was performed of the propagation of a continuous laser beam 

(<~ = I0.6 ~m) on a vertical atmospheric route containing a cloudy layer with the lower limit 

at a height of 1 km. In the present paper we consider the propagation of a laser pulse at 

= I0.6 ~m along a vertical atmospheric route containing a cloudy layer up to a height of 

20 kin. The basic effects that influence the process of propagation in the free atmosphere 

are the following: the molecular absorption by the water vapor and by the carbon dioxide, 

the kinetic cooling, the thermal self-action, the diffraction divergence. In a cloudy layer 

there are added to them the absorption by water vapor and the bleaching effect. With allow- 

ance for the foregoing effects, the propagation of a pulse on a vertical route can be de- 

scribed by an equation whose dimensionless form is 
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Here ~ =~/L~O(O); ~=  ~ / ~ p  ; ~c= t r  ; E!=(E/E~e~.p(~/2) ; ~ , h e i g h t ;  ~ ,  t ime;  ~p , 

pulse duration; ~ c ' duration of the cooling effect; E , complex amplitude of the field; 

E o =~--~8; ~o' radiation intensity on the beam axis; ~B ' wave resistance of the medium; 

, optical depth of the free atmosphere; 
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p , density of the air; Co, heat capacity of the air at constant pressure; T , temper- 

ature; o~Hz # and o~r z , molecular coefficients of absorption of water vapor and carbon 

dioxide; 17 , refractive index; ~ , radius of the beam; gp pulse energy; ~ , wave number; 
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T , maximum possible overheating of the medium on account of the evaporation of the drops 

[3]; ~0 ' molecular coefficient of absorption of water vapor in the cloudy layer; ~tt 

attenuation coefficient of aqueous aerosol; ~a[[ , characteristic time of change of the value 

O 
of ~att due to the evaporation of the drops [3]; T o , initial temperature of the cloud 

layer; C = 0 at 0 ~z~ ~ ,~ ~ 20 km and C = I at ~ ~ ;  ~I and ~2 are the 

lower and upper limits of the cloud layer. The distributions of the quantities ~ , ~, 

~0, ~co z, and T were taken for the standard model of the summer atmosphere from [4]. 

The effect of cooling is taken into account in (i) in accordance with [5, 6], and the depen- 

dence of the quantity s on the height was taken from [7]. A cloud layer with temperature 

253~ is assumed to be located at heights from 7.0 to 7.5 km. The solution of (i) was ob- 

tained numerically by a method described in [8]. 

A number of calculation results for the case of a Gaussian beam and a water content of 

the layer ~/o = I0-2 g/m 3 are given in Figs. 1-3. For convenience, the vertical axes are 

calibrated in quantities normalized to their initial values. Figure 1 illustrate the change, 

along the route, of the radiation intensity ~(#, ~, ~ , of the energy density ~,~,~= 

f~ j~l and of the effective radius of the beam ~= ]~r~r/ ]~)~ on the 
i 

beam axis ( F = 0 ) at the end of the pulse / ~ = ~p/ for g~o/Ol = 3.6 km and 6 = 0.0243. 

Curves 1 and 2 of Fig. 1 correspond to the values of the parameter ~c/O/ = 2 and 6. The 

cloud layer leads to a noticeable deterioration of the energy characteristics of Lhe beam and, 

in particular, to a decrease of the paraxial focusing of the beam. Nonetheless, at the end 
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of the route at ~c/0/= 6 , owing to the kinetic cooling, the intensity of the radiation on 

the beam axis exceeds its initial value. Figures 2 and 3 show the distributions of ~f and 

~ corresponding to the data of Fig. i, in the beam cross section ( P'= ~/ ~ ). Curves 

I, 2 and 3 in Fig. 2 pertain to heights 0.5, 7.2, and 20 km and are plotted for ~c/0/= 6 

Figure 3 illustrates the influence of the contraction of the pulse on the degree of its 

focusing in the atmosphere. On going from ~c/0/= 2 (curve I) to ~ /0/= 6 (curve 2) the 
C 

intensity on the beam axis at the end of the pulse increases by ~6,v times while the pulse 

energy reaching the level ~ = 20 km remains practically unchanged. 

Also discussed in the paper is the influence of the water content of the cloud layer on 

the characteristics of the pulse propagation. 
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