
OPTICAL METHODS OF LASER RADAR FIELD PROCESSING 

N. D. Ustinov, I. N. Matveev, and V. V. Protopotov* 

The book describes modern methods of receiving laser signals, viz., by interfer- 
ometry, by nonlinear optics, by laser amplification, and by heterodyne mixing. 
The theory of these methods is considered as applied to the problem of laser ra- 
dars. Investigated in detail are features such as the resolving power of inter- 
ferometry and nonlinear-optics method, the efficiency of parametric conversion 
of laser signals, the sensitivity of laser amplifiers, and problems of optimal 
heterodyne detection. Methods of speckle interferometry and adaptive optics 
are described. The book is aimed at a large circle of scientists and engineers 
active in the problem of recording of laser signals, as well as to students in 
advanced courses of the corresponding specialties. 

INTRODUCTION 

The problems of laser ranging have much in common with those of radar. As for the meth- 
ods of their solution in laser ranging, they frequently differ in principle from those in ra- 
dar. The main reason is the difference in the wavelengths of the ranging radiation. Radar 
deals with electromagnetic radiation in the radio band, with wavelengths from tens of meters 
to millimeters. Typical laser-ranging wavelengths lie in the optical band and the wave sources 
are lasers of various types. 

Ruby is the first subject in which lasing was realized, in 1960, at a wavelength 0.69 ~m. 
The ruby laser is used to this day in laser ranging. More effective operating media were 
found subsequently. The possibility of lasing with neodymium ions at a wavelength 1.06 ~m 
was first demonstrated in 1961. Widely used at present for lasers of this type are matrices 
based on yttrium-aluminum-garnet single crystals, as well as amorphous matrices of special 
glass. 

Development of the carbon dioxide laser, operating at 10.6 ~m, was reported in 1964. 
From among all the laser types used today in laser ranging, the carbon dioxide laser has the 
highest efficiency. The high output radiation powers, the ability to operate in the cw and 
in the pulsed regimes, as well as the high transparency of the atmosphere in this spectral 
region make the carbon dioxide laser most promising for the solution of ranging problems. 
The search for lasers of new types for laser ranging is continuing. 

The wavelength difference is the foremost cause of the difference between the capabili- 
ties of laser ranging and radar. Above all, laser ranging has immeasurably greater capabil- 
ities of obtaining both coordinate and noncoordinate information on objects. At equal sizes 
of the receiving apertures, the potential resolving power in the optical band is larger by 
five orders of magnitude than, for example, in the centimeter radio band. Laser rangin@, in 
contrast to radar, enables the operators to obtain the image of the object after one or sev- 
eral illumination cycles. 

The reaching of the potential resolving power of laser-ranging devices is hindered, how- 
ever, by such factors as the turbulence of the atmosphere and distortions (aberrations) of the 
optical receiving systems. To compensate for these phenomena there were developed in astron- 
omy special methods of increasing the resolving power, such as intensity interferometry, 
speckle interferometry, etc. These methods, however, call for prolonged processing of a 
large number of measurement results. 

The problems encountered in laser radars (lidars) called for the development of new iden- 
tification methods that permit operation in real time. The results were the methods of the 
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intensity holograms and of the modified Michelson interferometry; these are based on the use 
of the high monochromaticity of the lidar signal and make it possible to obtain under turbu- 
lent atmospheric conditions, within a single illumination pulse, a resolving power close to 
the diffractive value. 

One of the most important problems in laser radars is that of raising the efficiency of 
reception of reflected laser signals. The reception efficiency and the associated signal/ 
noise ratio determine the operating range of the lidar, as well as many other of its charac- 
teristics, including the accuracy. 

Traditional methods of receiving laser signals, based on direct photodetection of the 
received radiation, have been used so far principally in the visible range. In the near and 
particularly middle infrared, the efficiency of the existing photoreceivers is drastically 
lower. At the same time, it is just these bands, particularly 1.06 and 10.6 ~m, which attract 
the attention of the lidar developers, in view of the availability of sufficiently powerful 
lasers for these wavelengths, which furthermore are not greatly attenuated by the atmosphere. 
Recent revolutionary increase in the sensitivity of receivers for these wavelengths, on the 
other hand, were attained by using predetector laser amplification and parametric conversion 
of the frequency of the received radiation. 

A widely used method of increasing the sensitivity of microwave radars is heterodyne de- 
tection. The use of this method has now become possible also in laser radars because of the 
substantial success reached in the required stabilization of laser transmitters. Investiga- 
tions have shown that laser heterodyne receivers have much higher sensitivity than direct- 
detection receivers. Another important feature of the heterodyne-detection method is that in 
this case the electric signal at the output of the photoreceiver retains the information on 
the phase of the output field. A special role is therefore played by space-'time fluctuations 
of the ranging field, as well as by aberrations of the receiver-channel optical elements. 
Heterodyne detection is already coming into use in modern lidars for various purposes and will 
certainly find ever-increasing applications. 

Common to the foregoing methods is that they process, in real time, the laser ranging 
field ahead of the detector, and make use to one degree or another of the highmonochromaticity 
of the laser signal. At the same time, some of the methods used in laser radars do not re- 
quire the received radiation to be highly monochromatic. Speckle interferometry has already 
demonstrated its high effectiveness. As for adaptive optics, it still has to demonstrate its 
capabilities. 

The problems mentioned are by far not all encountered in laser radars, but are typical 
of them and give an idea of their highly promising capabilities. 
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CHAPTER I 

BASIC CHARACTERISTICS OF LASER RADAR SIGNAL 

For a correct understanding of any field-processing method used in laser radars, it is 
necessary to determine first the most important features of laser-radar signals and to form- 
ulate a mathematical model of these signals. The character of the information obtained from 
a laser radar depends to a considerable degree on such factors as the state of the atmosphere, 
the surface structure of the ranged object, and whether the laser operates in the pulsed or 
in the cw mode. The same factors determine the advantages of using a particular method of 
processing the radar field. Therefore, the mathematical model of the signal must adequately 
describe the spatial and temporal coherence of the field at the receiving aperture of the 
radar, the character of the reflection from the ranged object, the amplitude--phase distribu- 
tion of the reflected field, and the influence of atmospheric turbulence. 

The consideration of these problems must start out with a critical analysis of the forms 
of the laser signals used in laser radar. 

i.i. Forms of Signals of Laser Radars 

I. Basic Laser Types. The most widely used lasers used at present for laser radars are 
of three types: ruby laser (l = 0.69 ~m), neodymium-ion laser (l = 1.06 ~m), and carbon di- 
oxide gas laser (~ = 10.6 ~m). 

Ruby (A1203 matrix doped with Cr s+) was the first substance in which lasing was ef- 
fected. This was done by Maiman and co-workers in 1960 (see [I]). They determined somewhat 
earlier the lifetimes and probabilities of the transitions between the levels [2] as 
well as the ruby absorption spectra [3]. 

A ruby laser is pumped in accord with a three-level scheme (Fig. i.i). The ground band 
4F2 has a large absorption coefficient in the 0.55-um region. The nonradiative transition 
to the upper laser level 2E is much faster than to the ground level 4A2. This leads to ef- 
fective population of the 2E level and produces the necessary population inversion of the 
levels 4A2 and 2E. Lasing takes place at the wavelength ~ = 0.6943 ~m between the sublevel 

of the 2E level and the ground level ~A2. Owing to the difficulty of inverting the popula- 
tions of the working levels in a three-level scheme, ruby lasers operate predominantly in the 
pulsed mode. A typical pulse duration in the case of Q switching is 30-50 nsec. 

The main advantage of the ruby laser, from the point of view of laser radar, is that it 
operates in the visible region of the spectrum. This permits the use of highly sensitive 
photoreceivers, such as photomultipliers, for the radiation reception. 

The feasibility of lasing on neodymium ions Nd 3+ was first shown by Jackson and Nassu 
[4]. The matrix used was CAW04. The matrices most widely used at present are based on 
yttrium-aluminum-garnet (YAG) single crystals and amorphous matrices of special glass. 

Pumping and lasing in neodymium lasers is in accord with a four-level scheme (Fig. 1.2). 
Since the lower laser level 4111/2 is approximately 2-i0 s cm -I away from ground level ~I~/2, 
its population is quite low. This is the cause of the considerably higher efficiency of the 
neodymium laser compared with the ruby laser. Just as in the ruby laser, a neodymium laser 
is pumped optically, mainly through an absorption band in the range 0.5-0.8 ~m. The lasing 
corresponds to transition from the metastable level ~F3/2 to the levels ~19/2 41 , ~I/2, 4113/2 
with respective wavelengths 0.9, 1.06, and 1.33 ~m. The strongest luminescence line corres- 
ponds to the 4F3/2-41~2 transition with wavelength 1.06 ~m. The width of this line at room 
temperature is 20 nm for a glass laser and 0.67 nm for an YAG laser. The wavelength changes 
insignificantly with temperature. 

A neodymium laser can operate in either the pulsed or the cw mode. In lidars, however, 
the pulsed regime is used in most cases, since it is capable of ranging over an appreciably 
larger distance. 
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An YAG laser operates stably at pulse repetition frequencies up to I00 Hz. It is easy 
to obtain from a Q-switched standard crystal 60 mm long and 3 mm in diameter a power on the 
order of i0 MW at a pulse duration 10-20 nsec. 

The emission of a neodymium-ion laser can be effectively converted into X = 0.53 ~m vis- 
ible radiation by using second-harmonic generation in a nonlinear crystal. The energy con- 
version coefficient can reach 80%. Neodymium lasers with second-harmonic generation are 
quite promising for lidar use, since the generated wavelength is in the region of maximum sen- 
sitivity of photoreceivers. 

At the present time, of the three types of lasers used for lidars, the highest efficiency 
and largest average output power are those of gas lasers using the mixture COa:N2:He [15]. 
A laser of this type was developed in 1964 by Patel [5, 6]. Population inversion is produced 
in a C02 laser between vibrational levels (more accurately, between vibrational--rotational 
bands)i of the electronic ground state of the C02 molecule. The energy needed for population 
inversion is imparted to the C02 molecules by inelastic collisions with electrons and by res- 
onant transfer from vibrationally excited Na molecules. The vibrational-level scheme of the 
C02 and Na molecules is shown in Fig. 1.3a. 

The upper laser level of C02 (00~ is only 18.6 cm -~ higher than the vibrational level 
of Na (v = I). A very strong resonance interaction takes place, therefore, between these lev- 
els and leads to excitation of the upper laser level of CO2. The lower laser levels are C02 
(i0~ and (02~ The lasing transition (00~ + (i0~ occurs at the wavelength 10.6 pm, 
and the (00~ § (02~ transition at the wavelength 9.6 ~m. The laser levels are split into 
rotational sublevels corresponding to different values of the rotational quantum number j. 
Therefore, the laser transition consists of R modes (Aj = -i) and P modes (Aj = +i). The 
corresponding transitions are designated R(j) and P(j) (Fig. 1.3b). 

The high output emission powers, the possibility of both cw and pulsed operation, as well 
as the existence of a "transparency window" in the atmosphere at 10.6 ~m make the CO= laser 
one of the most promising devices for lidars. 

Besides those considered, mention should be made also of dye, excimer, and photodissoci- 
ation lasers, Although not yet extensively used in lidars, one can hope them to become suit- 
able for the solution of radar problems in the near future. 

2. Analytic Signal. We shall describe hereafter the optical fields of a laser signal 
by using the complex representation of the electric field intensity E(r, t), where r is the 
radius vector in the recording plane and t is the time. In most cases we shall confine our- 
selves to do consideration of plane-parallel radiation and use, without further stipulation, 
the scalar notation E(r, t). Cases when the radiation polarization plays a special role 

will be considered separately. 

The central point in the description of the laser radiation field by a complex function 
is occupied by the concept of the analytic signal. The foundations for a correct description 
of physical quantities by complex functions were laid by Gabor [7]. The term "analytic sig- 
nal" was first introduced by Ville [8]. The method for describing the fields consists of 
introducing, in lieu of a real physical quantity Er(r, t), a complex quantity E(r, t) called 

the analytic signal: 
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E ( r ,  t ) = E , ( r ,  t ) -~iE,(~ ' ,  t). ( l . l )  

Since the second term in the right-hand side of (i.i) is introduced artificially, for an ade- 
quate mathematical description of Er(r, t) we must impose definite conditions on the function 
Ei(r, t) [and hence on E(r, t)]. These conditions were formulated by Gabor [7] and reduce to 
the following. 

We first stipulate that the function E(r, t), on going into the complex plane of the 
argument, be regular and analytic in the upper half plane. Another requirement imposed on 
E(r, t) is that on going to the complex plane of the argument the modulus of the function 
E(r, t) tend rapidly to zero as the imaginary part of the argument tends to infinity in the 
upper half plane. It can be proved (we shall not dwell on this in detail) that Er(r, t) and 
El(r, t) turn out to be related by a Hilbert transformation [9]. This satisfies the condition 
that a representation in the form (I.I) be unique. 

By way of example of an analytic signal we can cite the function 

exp (i,,t - -  ikz) ~ cos (o)t - -  kz) -~- i sin (o~t - -  kz). (i. 2) 

I t  can be shown t h a t  cos(mt--kz)  and s in (~ t - -kz )  a r e  a p a i r  of  H i l b e r t  t r a n s f o r m s  [10] .  The c h o i c e  
o f  the  s i g n s  of  the  a rguments  i n  (1 .2 )  does  n o t  p l a y  a s p e c i a l  r o l e  and i t s  r e s u l t  i s  t h a t  
t he  f u n c t i o n s  t u r n  ou t  to  be a n a l y t i c  e i t h e r  i n  t he  upper  h a l f  p l a n e  when the  s i g n  of  the  a r -  
gument i s  p o s i t i v e ,  o r  i n  the  lower  h a l f  p l a n e  in  t he  o p p o s i t e  c a s e .  

The main a d v a n t a g e  of  t he  a n a l y t i c  s i g n a l  i s  t he  c o n v e n i e n c e  o f  o p e r a t i n g  w i t h  complex 
values, including with the complex values, including with the complex exponential (1.2). An 
analytic signal guarantees uniqueness of the representation of a real physical quantity, par- 
ticularly of the electric field intensity Er(r, t), in the form of a complex function. This 
eliminates automatically the ambiguity in the choice of the amplitude and phase of the field 
when modulated optical signals are consideredz the amplitude of the field is equal to the 
modulus of the analytic signal, and the phase of the field is equal to the argument of the 
analytic signal. 

In many cases, however, a rigorous expression for the analytic signal is difficult to 
write because of mathematical complications encountered in the calculation of Hilbert trans- 
forms. Moreover, even in those cases when such calculations can be carried through to con- 
clusion, the complicated form of the obtained analytic signal frequently brings to naught the 
advantages afforded by the transition to the complex domain. One frequently uses therefore 
for the electric-field intensity expressions that represent only approximately an analytic 
signal. 

One such approximation is the representation of a pulsed signal in the form 

E (t) = A (t) exp [ i ~ t - ~  i~ (t)], (1 .3)  

where A( t )  and ~ ( t )are  a r b i t r a r y  r e a l  f u n c t i o n s .  The r e a l  and i m a g i n a r y  p a r t s  of  ( 1 . 3 ) ,  e q u a l ,  
respectively, to 

E~ (t) - -  A (t) cos [gt ~- ~ (t)], E, (t) = A (t) sin [~t -~ ~ (t)], (1.4) 
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are, generally speaking, not Hilbert transforms. Consequently, expression (1.3) is not an 
analytic signal, and the amplitude and phase of the field can be chosen to some degree arbi- 
trarily. 

We elucidate in this connection the constraints that must be imposed on functions A(t) 
and ~(t) in order that (1.3) be approximately regarded as an analytic signal. To make the 
calculations that follow easily understood, we change to the frequency domain by taking the 
Fourier transforms of the expression in (1.4): 

V~ (~) = f E~ (t) exp ( -- i~t) dt, 

+ ~  

V, (m) = f E, (0 exp ( - -  i~t) dt. 

In the case when Er(t) and Ei(t) are Hilbert transforms, the complex functions Vr(m) and 
Vi(m) a r e  c o n n e c t e d  by t h e  r e l a t i o n  [11] 

(1.5) 

I '  (o0 = 
-iv,(oO, o~>O, 

O, o~ ~-- O, 
,: v,(,,,), o , < o .  

( i  .6) 

The Fourier transform of the initial signal (1.3) is written in the form 

+~ 

V ( w ) =  I E (t) exp ( -- io~t) d t =  V,(o~) @ i V ,  (w). 
(1.7) 

Using property (1.6), we find that in the case when E(t) is an analytic signal it is necessary 
to satisfy the condition 

2 V,(r ~ > 0 ,  
v ( ~ ) = ,  vr(~), ~ = o ,  (1.8) 

o, m < O .  

It can be shown that (1.8) is the necessary and sufficient condition for the function E(t) to 
be an analytic signal. Thus, for the function E(t) to be an analytic signal it is necessary 
that its spectrum V(~) vanish at ~ < 0. 

ExpressionA (t) exp[i T (t)]in (1.3) plays the role of a modulating function. We designate 
the spectrum of this function in the form 

+aO 

V,, (to) = f A (t) exp [iT(t ) - -  Aot ] dt. (1. 9) 
--OD 

The spectrum of the initial signal (1.3) is then expressed as 

V (r = i A (t) exp [@(t) - -  i (,o --  ~) t] dt m l z  ( . . . . .  ~)). ( 1 . 1 0 )  
- 0 o  

We define now the effective half-width A~M of the modulation spectrum as that value of 
at which the spectrum VM(m) is approximately zero: 

v~(~ )~o  ~t I~1>~%. 

In this case the necessary condition that the initial signal (1.3) be analytic takes the form 

V~ (m-- ~ ) - ~ 0  at m ~ O  

or, with allowance for the given definition, 

>~ A m~. (I. ii) 
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The modulated function (1.3) can therefore be approximately regarded as an analytic signal 
in the case of narrow-band modulation. The stronger the inequality (i.ii), the better the 
approximation of an analytic signal by the function E(t). 

The lasers used for ranging operate in either the pulsed or in the cw regime. In the 
pulsed regime the width of the laser emission spectrum is as a rule of the order of 10 I* Hz, 
whereas the emission frequencies of the ruby, neodymium, and C02 lasers are, respectively, 
4.3,1014 , 2.8.10 I~, and 2.8.1013 Hz. 

Thus, in the overwhelming majority of the cases the pulse modulation of the laser emis- 
sion can be regarded as narrow-band, and the representation of the electric field intensity 
in the form (1.3) as an analytic signal. Some of the lidars employed, both cw and pulsed, 
mostly C02, have an even narrower emission band, on the order of i0~-i05 Hz. In this case 
the analytic-signal approximation is even more accurate. 

3. Correlation Function of Single-Mode Laser Emission. We consider now quasimonochro- 
matic single-mode cw laser emission. Experiments show that the electric field intensity of 
this emission be represented in the form 

E (t) = a (0 exp [i~t ~- i T (t)l, ( 1 . 1 2 )  

where a(t) is the real envelope of the process and T (t) is the phase of the field. We are not 
considering here the dependence on the spatial coordinates. In practice, the envelope a(t) 
and the phase ? (t) are random functions. As a result, the function E(t) is also a random 
quantity. 

The fluctuations of the field amplitude are due mainly to fluctuations of the gain of 
the active medium. The field-phase changes are due to many factors: change of the refractive 
index of the medium, smooth variation of the cavity length, or vibrations of the cavity mir- 
rors. As a rule the amplitude fluctuations of the output emission are easier to suppress 
than the phase fluctuations. In many cases it is possible to lower the relative fluctuation 
amplitudes to a level less than 10%. The main contribution to the decrease of the field co- 
herence is then made by the phase fluctuations, and the field itself can approximately be 
represented as 

E (0 --~ ao exp [i~t -J7 iT (t)]. ( 1 . 1 3 )  

Since the phase T (t) of the field depends on many independent parameters, it obeys Gaus- 
sian statistics. By virtue of the arbitrary choice of the initial phase, it can be assumed 
that the mean value of ? (t) is zero. Let us obtain in this approximation the correlation func- 
tion of the field (1.13). The normalized correlation function of single-mode laser emission 
is of the form 

R (tl, t2) = <E (tl) E* (t2))/a ~. (i. 14) 

Here and below the angle brackets denote averaging over the ensemble, while an asterisk de- 
notes a complex conjugate. 

For an ergodic process such as the time-dependent laser-emission field, averaging over 
the ensemble is equivalent to time-averaging. Assume that the process E(t) is stationary. 
Then, as is well known, 

Substituting (1.13) in (i.14) we obtain 

R (~) - -  exp (i~x) <exp [i T (t -~- x) - -  i~ (l)I). 

Since T (t) is a normal random quantity with zero mean value, the difference 
is also a normal random quantity with a distribution given by 

(t + ~ ) - ~  (t) 

(i.15) 

( 1 . 1 6 )  

where 

w (x) dx ~-- (2=D) -112 exp ( - -  x2/2D) dx, ( 1 . 1 7 )  
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The averaging in (1.16) can be carried out directly with the aid of (1.17). Recognizing 
that we shall need such mean values in the future, we shall carry out the calculation in de- 
tail. To this end we consider the integral 

+co 

I = (2~D) -~/2 I exp (ix - -  x2/2D) dx. ( 1 . 1 8 )  
- c o  

After simple transformations of the argument of the exponential we get 

+co 

] --=- (2~D) -1/2 exp (--D/2)  I exp [ - -  (x - -  iD)~/2D] dx. ( 1 . 1 9 )  

B e s i d e s  t h e  i n t e g r a l  ( 1 . 1 9 )  we c o n s i d e r  t h e  i n t e g r a l  a l o n g  t h e  c o n t o u r  C ( F i g .  1 . 4 )  i n  
the complex plane of the argument z~ 

Iv = (2~D)-Xl~ I exp ( - -  z2/2D) dz. ( 1 . 2 0 )  
g 

Since the integrand in (1.20) is analytic within the integration contour, the integral (1.20) 
i s  e q u a l  t o  z e r o .  The i n t e g r a l s  a l o n g  t h e  l a t e r a l  p a r t s  o f  t h e  c o n t o u r  C a r e  e q u a l  t o  

- i D  

13 = (2~D) -~j~ exp (--R2/2D) f exp [(2Rix -~ x~)/2D] dx, ( 1 . 2 1 )  
0 

0 

I~ = (2~D)-i/2exp (--R~/2D) I exp [(2Rix @ x2)/2D] dx. ( 1 . 2 2 )  
-iD 

In the limit as R ~ co both integrals tend to zero, and the integrals along the horizontal sec- 

tions o f  t h e  c o n t o u r  C t e n d  t o  t h e  i n t e g r a l s  

+co 

11 = (2r~D)-l/2 f exp (--x~/2D) dz, 
- c o  

+co 

12 ~--- --(2~D)-~J2 I exp [ - - (x  - -  iD)2/2D] dx. 
- c o  

Since I C = I~ + 12 + Is + 14 = 0, we obtain the equality 

+co +CO 

(2"D)-~t~ f exp [ - - (x  -- iD)2/2O] dx = (2-D) - ~  i exp (--x2/2D) dx = 1. 
- o o  - c o  

(1.23) 

(1.24) 

(1.25) 

Thus, 
sion field of a single-mode laser is equal to 

R (~) = exp (i~x) exp { - -  <[~ (t -~ x) - -  2 (t)]~/2}. 

The averaging in (1.26) is carried out in the usual manner. As a result we have 

<[~ (t ~- x) - -  ~ (t)]~> = 2~$ [1 - -  C~ (x)], 

returning to (1.19), we see that the correlation function of the considered emis- 

(1.26) 

(1.27) 
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where =$ is the variance of the phase and C~(~) is the normalized correlation function of the 
phase. Substituting (1.27) in (1.26) we obtain ultimately 

R (z) ---- exp (i(0z) exp (--v~ [1 - -  C~ (~)1}. ( 1 . 2 8 )  

4. C o r r e l a t i o n  F u n c t i o n  o f  t h e  F i e l d  o f  Mul t imode  L a s e r  R a d i a t i o n .  We assume now t h a t  
t h e  l a s e r  e m i s s i o n  f i e l d  c o n t a i n s  N modes w i t h  d i f f e r e n t  f r e q u e n c i e s  ~m. I n  t h i s  c a s e  t h e  
model  ( 1 . 1 3 )  i s  v a l i d  f o r  e a c h  mode. The t o t a l  r a d i a t i o n  f i e l d  t h e n  t a k e s  t h e  fo rm 

N 

E (t) ---- ~ a~ exp [iw~t ~- i ~  (t)]. ( i .  29) 
m : - N  

L e t  us  o b t a i n  i t s  c o r r e l a t i o n  f u n c t i o n .  We n o t e  f o r  t h i s  p u r p o s e  t h a t  t h e  p h a s e s  o f  
e a c h  o f  t h e  modes a r e  s t a t i s t i c a l l y  i n d e p e n d e n t .  I n  a d d i t i o n ,  t h e  p h a s e  o f  t h e  f i e l d  and i t s  
a m p l i t u d e  a r e  two i n d e p e n d e n t  p a r a m e t e r s .  On t h i s  b a s i s ,  we o b t a i n  

N N 

<E(t)E* (Z~-x)> = ~=-~ ~=~=_ <a~a~><exp[--i~(t~-x)~-i?k(t)] > exp[i(~k_o)~)t_i(%x]. (1.30) 

Since we regard the amplitude and the phase of the field as statistically independent quan- 
tities, the averaging over these parameters is carried out independently. In addition, by 
virtue of the independence of the phases of the different modes, we have 

<exp { - - i  [y~ (t -~ x) - -  Tk (t)I)> = <exp { - - l i t  m (t ~-  x) - -  y~ (t)]}> ~k ,  ( 1 . 3 1 )  

where  6mk i s  t h e  K r o n e c k e r  d e l t a .  A v e r a g i n g  t h e  e x p o n e n t i a l  i n  ( 1 . 3 1 )  y i e l d s  t h e  s l o w l y  
v a r y i n g  p a r t  o f  t h e  c o r r e l a t i o n  f u n c t i o n  o f  t h e  s i n g l e - m o d e  r a d i a t i o n  f i e l d  ( 1 . 2 8 ) .  Summing 
i n  ( 1 . 3 0 )  w i t h  5mk , we o b t a i n  

N 

( E  (t) E* ( t -~  x)~ __-- ~ ~a~} exp { - - i ~  - -  ~ [1 - -  C~m(~)]}. ( 1 . 3 2 )  
m~--N 

To analyze in detail the behavior of (1.32), we make the simplifying assumption that all 
the o,, and C,~�9 are the same, and that the ~m are equidistant on the frequency axis: 

Then 

%, : O~o-~- A~ m . (1.33) 

N 

<E (t) E* (t ~- ~)> = R (z) ~ exp (--i A~m) <a,$>l<a~>, 
m=-N 

where R(T) is the correlation function of the field of one emission mode. 
N i s  so l a r g e  t h a t  

(1.34) 

In the case when 

<a~>/<a~> ~ I, (1.35) 

the summation limits in (1.34) can be extended to infinity. In this case the series in (1.34) 
is a Fourier series of a periodic function of argument T with a period 2~/hm. We denote this 
function by F(T). The correlation function of the multimode-radiation field can then be 
written in the form 

<E (t) E* (t ~- z)> = R (~) f(z). ( 1 . 3 6 )  

I f  t h e  c h a r a c t e r i s t i c  w i d t h  o f  t h e  s p e c t r u m  o f  t h e  m u l t i m o d e  r a d i a t i o n  i s  A~ ( F i g .  1 . 5 ) ,  
t h e  c h a r a c t e r i s t i c  d e c a y  t i m e  o f  t h e  f u n c t i o n  F(~)  i s  A~ - ~ .  The c h a r a c t e r i s t i c  d e c a y  t i m e  
o f  t h e  f u n c t i o n  R(T) ( i . e . ,  t h e  c o h e r e n c e  t i m e  o f  one mode) i s  e q u a l  i n  o r d e r  o f  m a g n i t u d e  
t o  t h e  r e c i p r o c a l  o f  t h e  s p e c t r a l  w i d t h  o f  one mode. S i n c e  t h e  t o t a l  s p e c t r a l  w i d t h  i n  m u l t i -  
mode l a s e r  e m i s s i o n  i s  as  a r u l e  much l a r g e r  t h a n  t h e  s p e c t r a l  w i d t h  o f  one mode,  t h e  c o h e r -  
ence  f u n c t i o n  o f  m u l t i m o d e  r a d i a t i o n  i s  d e t e r m i n e d  m a i n l y  by  t h e  f u n c t i o n  F ( ~ ) .  

We c o n s i d e r  now m u l t i m o d e  p u l s e d  l a s e r  e m i s s i o n .  I t s  f i e l d  can  be  r e p r e s e n t e d  i n  t h e  
f o r m  

N 

E(t )=a( t )  ~_~ a exp(i%~t t-i%n). (1.37) 

In this model, a(t) is the real envelope of the radiation pulse, ~m and am are the frequency 
and amplitude of the m-th radiation mode excited during the pulse-generation time. Since 
the pulse is as a rule very short, the phase of an individual mode has no time to change sub- 
stantially. We shall therefore not consider the time dependence of the phase in this model. 
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We obtain now the correlation function of a pulsed radiation field in the form (1.37). 
Proceeding as in the case of cw radiation before, we obtain 

N 

<E (t) E* (t-I- z)> = a (t) a (t-~ x) ~ <a~> exp ( - - i ~ ) .  (1 .38)  
m~--N 

We note first that in this case we are dealing with a complex correlation function of a non- 
stationary process. This circumstance calls for additional clarification. In the analysis 
of correlation functions of stationary random fields the fact that the expressions obtained 
were complex did not introduce additional complications. 

In fact, the complex correlation function of a stationary analytic signal is uniquely 
connected with the real correlation function of a real physical field. This connection is 
expressed in the form [9] 

RB (~) ----= 2 [ R,  (~) ~- iR,, (z)]. (1 .39)  

Here RE(T) is the correlation function of the analytic signal E(t), Rr(z) is the correlation 
function of the real part of the analytic signal Er(t), and Rri(T) is the mutual correlation 
function of the real and imaginary parts of the analytic signal. Expression (1.39) is a con- 
sequence of the fact that Er(t) and El(t) are Hilbert transforms and are furthermore station- 
ary random functions. 

When pulsed signals are considered, Er(t) and El(t) are not, as indicated, exact Hilbert 
transforms and are not stationary random processes. Therefore relation (1.39) is generally 
speaking not applicable in this case. If, however, the pulse duration is long compared with 
the coherence time of its carrier, relation (1.39) can be used approximately for normalized 
correlation functions that turn out to be approximately stationary during a time interval 
equal to the pulse duration. 

5. Propagation of Radiation in Free Space. We consider now the laws of the spatial 
distribution of the field of a sounding signal in the target region. We disregard the time 
dependence of the field and deal only with the dependence of the field on the spatial coordi- 

nates. 

To find the field distribution in the target region we must solve the problem of the 
diffraction of a light field of known form by the radiating aperture. To gain a clear idea 
of the restrictions inherent in the results that follow, we derive in detail the fundamental 
diffraction equation that will be used subsequently throughout the book. We use as the basis 
the Green-function formalism [12]. 

Our task is to find a function that would connect the amplitude E of the light-wave 
electric field intensity at an arbitrary point Po of a space ~, on the one hand, with the 
amplitude E of the electric field intensity on the surface Z of the given region, on the 
other (Fig. 1.6). 

The amplitude E of the light-wave field in free space is known to satisfy the Helmholtz 

equation 

AE -~ k~E ~--- O, (i. 40) 
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where k = 2~/l is the wave number and A is the Laplace operator. For brevity, we shall de- 
note hereafter the operator A + k = by the single letter L. Equation (1.40) then takes the 
form 

with boundary conditions 

LE =O (1.41) 

E e ~ = E ( P ) ,  (1.42) 

where E(P) is an arbitrary function specified beforehand. 

The Green function for the considered problem is defined as a function G(P, Po) of two 
variable points P and Po, and satisfies the following conditions: 

Le G (P, Po) = 0 ~r the entire region 9, 
excluding the point Po; ( l .  43) 

G(P, Po)ee~ - :  O; 

G(P, Po)=exp(ikr)/4~r-~g(P, Po). 

Here Lp denotes the action of the operator L over the variable P; g(P, Po) is a function that 
is regular in the region ~ and satisfies Eq. (1.41) at each point of the region ~; the function 
exp (ikr)/4~r is called the fundamental solution of the Helmholtz equation; r is the distance 
between the points P and Po. 

With the aid of the Green function constructed in this manner we can relate the field 
E(Po) at the point Po with the field E(P) on the boundary of the region ~. This connection 
is expressed in the form 

dG(P, Po) d~, (1.44) 
E (Po) = I E (P) dn 

where n is the inward normal to the surface Z. Without stopping to prove (1.44), we note 
only that it is based on the use of the known Green formula in the region ~ [12]. 

The problem is now to find a suitable function g(P, Po). Obviously, the form of this 
function depends on the concrete form of the surface Z, since the condition (1.43b) must be 
satisfied. We, therefore, use a more specific formulation of the problem and consider dif- 
fraction by an opening in a flat screen. Sommerfield [13] proposed for this case the following 
convenient form of the function g(P, Po): 

g (P, P0) = - -exp (ikr')/4=r', ( 1 . 4 5 )  

where  r '  i s  t h e  d i s t a n c e  b e t w e e n  t h e  p o i n t  P o f  t h e  s u r f a c e  Z and a p o i n t  P~ s y m m e t r i c  t o  t h e  
f l a t  p a r t  o f  t h e  s u r f a c e  Z ( F i g .  1 . 7 ) .  For  t h i s  c h o i c e  o f  t h e  f u n c t i o n  g ( P ,  Po) by  v i r t u e  o f  
t h e  c o n s t r u c t i o n ,  t h e  Green  f u n c t i o n  G(P,  Po) i s  e x a c t l y  e q u a l  t o  z e r o  on t h e  f l a t  p a r t  o f  t h e  
s u r f a c e  Z. On t h e  r e m a i n i n g  p a r t  o f  Z t h e  Green  f u n c t i o n  i s  g e n e r a l l y  s p e a k i n g  d i f f e r e n t  f rom 
z e r o .  T h e r e f o r e ,  a f u n c t i o n  b a s e d  on ( 1 . 4 3 )  and (1 . 45 )  i s  a p p r o x i m a t e .  

Substituting (1.45) in (1.43c) we obtain 

G (P, P0) = exp (ikr)/4~r --  exp (ikr')/4~r'. ( 1 . 4 6 )  

C a l c u l a t i n g  t h e  d e r i v a t i v e  dG(P,  P o ) / d n  c o n t a i n e d  i n  ( 1 . 4 4 )  we g e t  
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_ cosa . c~ ~ex (ik--~). (1.47) d~('~ ) ( ~ k _ ~ ) _ _ ~ r ,  p dn ~ exp (tkr) (ikr') 

The m e a n i n g  o f  t h e  a n g l e s  a and B i s  c l e a r  f r o m  F i g .  1 . 7 .  On t h e  f l a t  p a r t  o f  t h e  s u r f a c e  E 
t h i s  d e r i v a t i v e  i s  o b v i o u s l y  

dG(P, Po)~ = - - 2 ~ e x p ( i k r ) ( i k - - t ) .  
-~ /PeN 

N e g l e c t i n g  t h e  i n t e g r a l  o v e r  t h e  r e m a i n i n g  p a r t  o f  t h e  s u r f a c e  E, we o b t a i n  

z~, cos a ( i k r ) ( i k l ) d E .  ( 1 . 4 9 )  E (Po) ---~ - -  I E ( r )  ~ exp 

(1.48) 

We make an additional approximation. Inasmuch as in the optical band the following in- 
equality is obviously valid 

k = 2~/k >> t/r, ( l .  50) 

we can neglect the term i/r compared with ik in the parentheses of (1.49). In addition, we 
confine ourselves to problems in which the angle a is small enough, so that cos e in (1.49) 
can be replaced by unity: 

In this approximation we obtain 

cos = ~  1. (1.51) 

l E(p)lexp(ikr)  ( 1 . 5 2 )  E (P0) ~ ~ f dE. 

From the practical point of view, however, Eq. (1.52) is useless, inasmuch as to solve the 
diffraction problem with its aid and find the field E(Po) we must know beforehand the field 
distribution E(P) on the right-hand side of the screen, i.e., know beforehand the solution 
of the diffraction problem. The usual way out of the resultant difficult situation is to use 
the Kirchhoff approximation. In this approximation the field E(P) on the right-hand side of 
the screen is assumed equal to zero, and the field E(P) in the plane of the aperture o is 
assumed equal to the field that would be present in this plane in the absence of the screen. 
Under all these approximations we obtain ultimately 

i E (P) $ exp @r) E(P~ f ~" ( 1 . 5 3 )  
q 

6. Fresnel and Fraunhofer Diffraction Approximations. Using Eq. (1.53) we obtain the 
distribution of the laser-radiation field near the target (Fig. 1.8). We choose on a planar 
aperture o an arbitrary origin O~. From this point we draw along the normal ~ an axis and 
choose on it an ~,arbitrary origin 02 in the region of the target. The distance between the 
points O~ and Oa will be designated L. According to (1.53) the field at an arbitary point r 

on the target surface is 

E (r) ---- V E (~) ~ exp [~kR (r, ~)] d~. (1.54) 

Usually (we consider everywhere from now on just this case) the distance L to the target 
is much larger than the sizes of the aperture and of the target. We can, therefore, put ap- 
proximately in the denominator R(r, p) z L and take this quantity outside the integral sign. 
We then obtain the following expression for the field at an arbitrary point r of the target 

region: 

E(r)  i ~ I E (p) exp [ikR (r, ~)] d~. ( 1 . 5 5 )  
q 

We consider now in greater detail the dependence of R on the coordinates r and p. From 

geometric considerations we have the obvious equality 
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R ( r ,  ~ ) = ] L n - ~ - r - - ~ ]  (1.56)  

or 

R (r,  ~) = ~(Ln -~- r - -  ~)2. 

By simple transformations, recognizing that n and p are perpendicular, 

(1.57)  

we obtain 

Recognizing that 

n~=O, (1.58) 

R(r, ~ ) = n ( l  ~- ~ L+~ P~ ~_2 T__  2 N ] . r  ~p.~I/2. (1.59) 

r, p~L, (1.60) 
we can expand (1.59) in powers of the small parameters r/L amd p/L and confine ourselves to 
the first terms of the expansion. Then 

~L~ ~ L Zx . (1.61)  

Since the dimensions of the target are comparable with those of the aperture, all the terms 
in the expansion (1.61) are of the same order. Therefore, (1.55) takes the form 

q 

Even though condition (1.60) is always satisfied for laser radars, the exponential under 
the integral sign in (1.62) cannot be set equal to unity, and its variation with changing p~ 
must be taken into account in the integration. In fact, substituting the numerical values 
Ipl '= 1 m, L = I00 km, I = 0.69 ~m, we obtain 

k p 2 / 2 L ~ i S O ~ ,  

i.e., the integration interval spans approximately 70 periods of the exponential. 

The amplitude distribution of the field in the region of the target is determined by the 
modulus of the complex function 

q 

The expression in the right-hand side of (1.63) is called the Fresnel transform of the func- 
tion E(p) [14], and it is stated in this case that the object is located in the Fresnel dif- 
fraction zone. 
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If the dimensions of the radiating aperature are so small that the condition 

kp2/2L ~ = ( i .  64) 
is satisfied, we can neglect on the entire surface of the aperture the corresponding term in 
(1.63). The amplitude distribution function is then 

A ( r ) =  I E (p)exp(--i 2~r ~-Z) dz, (1.65) 
a 

i.e., when condition (1.64) is satisfied the function A(r) and the field at the transmitting 
aperture are connected by a Fourier transformation. It is then said that the target is in 
the Fraunhofer diffraction zone. 

Let the field at the radiating aperture consitute an assembly of fields of several laser 
modes: 

N 

E (p)---- ~ Ek(p) (1.66) 
k=0 

The laser modes are mutually orthogonal in the plane of the exit pupil, i.e., the following 
relation is satisfied: 

i Ek (~) E~ (p) dz _- ~mPk, (i. 67) 

where 6km is the Kronecker delta and Pk is the total power of the k-th mode at the exit aper- 
ture. We shall not dwell in detail on questions connected with the theory of laser modes. 
We note only that relation (1.67) is a consequence of the fact that Ek(P) is an eigenfunction 
of the equation for the field in the laser cavity. 

We shall show that the field Ek(r) produced in the target region by the k-th mode of the 
laser radiation is orthogonal to the field of the Em(r) of the m-th mode on a flat surface 
parallel to the aperture plane. To this end we calculate directly an integral of the form 

S 

where S is the area of the plane over which the integral is calculated. 
in (1.68) we obtain 

(1.68) 

Substituting (1.62) 

]~ ' - - - - f  l exp[__i2:: .2~. 2 p~)]dzzdz2d2r. I I 
In this expression we calculate first the integral 

(1.69) 

I exp {--i 2~ ikL) ~ f )-~[r~ (Pl~ -- P2x)@ ru (Plu -- P2~)]} dr~dr~, 
8 

where 0x, Py are the projections of the vector p in Cartesian coordinates. 
t h a t  

+co 

~ r~ (P1~ -- (P1~ P2~), 
-oo 

(1.70) 

We use the fact 

(1.71) 

where ~(P,x -- P2x) is the Dirac delta function. Then, extending the integration limits in 
(1.70) to infinity we obtain after substituting (1.71) in (1.69) 

~t  o2 

(1.72) 

where we have introduced the notation 

~ @I - -  P~) = ~ ( ~  - -  P~) ~ (Pi~ - -  P~) (1.73) 
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The integral (1.72) can be easily integrated with respect to do~ 
the selectivity property of the delta function, we obtain 

(o r  d~2). Then, using 

] ~m = f E~ (~2) E:  (~2) d% ---- Bk~Pk. (1 .74)  
~2 

Thus, the fields Ek(r) and Em(r), which belong to different modes, turn out to be orthogonal. 
Obviously, if we put k = m in (1.74) we obtain an expression that follows from the energy 
conservation law: 

] k k : P k .  (1.75) 

This equality means that the total radiation power Pk that left the transmitting aperture 
passed completely through the plane S over which the integral Jkk was calculated. 

1.2. Types of Targets and Character of Reflected Signal 

i. Model of Target and Description of Reflected Field. The great variety of target 
types encountered in lidar installations calls for finding for the target a mathematical mod- 
el (or several models) describing correctly the main properties of the target. Such a model 
may possibly not affect the secondary parameters individually -- target parameters that do not 
alter the general character of the signal reflected from the target. 

Experimental data show that to facilitate the mathematical description all the possible 
target types can be subdivided into two basic classes, regardless of their sizes and of the 
distances to the receiving aperture, namely diffusely and specularly reflecting. 

Diffusely reflecting targets have very rough surfaces, and light reflection from such a 
surface is described by Lambert's law. Experiments have shown that a diffusely reflecting 
target is equivalent to an aggregate of a large number of radiating point sources randomly 
disposed over the target surface. The amplitude of the light wave formed by an individual 
point source is proportional to the reflection coefficient of the given region of the target 
surface. The phases of the elementary sources can be regarded as independent. In such a 
model, the field reflected from the target surface is delta-correlated: 

<E (~1) E@ (r2)> ---I  (9'1) ~ (~1 - -  ~2), (1 .76)  

where l(rt) is the average intensity of the laser radiation on the target surface at the point 
r~. Property (1.76) is valid for a diffusely reflecting target and does not depend on the 
correlation properties of the sounding radiation. 

The radiation field reflected from the target and considered at the receiving aperture 
can be represented as a superposition of the fields from the individual point sources on the 
target surface. Introducing on the target surface a coordinate r, and on the receiving aper- 
ture a coordinate p (Fig. 1.9), the field Ek(O , r k) radiated by the k-th source located at 
the point r k of the target surface is written at the point P of the receiving aperture in 
the form 

E k (p, r~)  ----- a~ R (p, ~k) (1.77) 

Expression (1.77) is, as indicated in Sec. I.i, a fundamental solution of the Helmholtz equa- 
tion; it describes a spherical wave propagating from the point r k. 

The total field E(p) from all the point sources on the target surface is equal to the 
sum of all the fields, namely 

E (p) -~- ~] E. (~, ~'k). (i. 78) 
k 

Representing each k-th source as a delta function, we can formally express the right-hand 
side of this equation with the aid of an integral over the object surface ~: 

E (~) ~-c I E (r) H(p~ exp [ikR (p, r)] ~, (I. 79) 

where 
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E (~') ----~ ~ a k e '~k c -1 ~ (~' - -  r~). 
k 

This expression should, on going in the limit to a plane surface ~, coincide with Eq. (1.54). 
From this we get 

i 
c----7~. (1.80) 

If the object contains one or several regions that produce specular reflection in the 
direction of the receiving aperture, it can be assumed that the object is "specular." The 
justification for this is the obvious argument that the radiation power incident on the 
receiving aperture from specular regions exceeds by many orders of magnitude the radiation 
power incident on the receiving aperture from diffusely reflecting regions, so that it is 
technically impossible to record the diffuse component of the reflecting signal. Such objects 
are, therefore, seen by the observer as an assembly of a small number of specularly reflecting 
regions. 

If the specular-reflection regions are not pointlike but have finite areas, it is ob- 
vious that the object-surface sections corresponding to them are flat (or almost flat) and 
parallel to the receiving aperture. In this case the field E(p) at the receiving aperture is 
a superposition of fields reflected from each specular region OmZ 

E (p) = ~ E~ (#) ( i .  81) 
fn  

The f ie ld  Em(p) reflected from a f l a t  region o m can in turn be calculated by Eq. (1.54) i f  
the distr ibut ion of the f ie ld Em(r) in the region o m is known: 

i I E,. (p)=~ I E,~(r)~) exp[ikR(r, P)]~m. (1.82) 

Substituting (1.82) in (1.81) we obtain 

i i 
E (p) = ~ f E (r)  ~ exp [ikR (~, ~)] dz, ( 1 . 8 3 /  

w h e r e  t h e  i n t e g r a t i o n  i s  o v e r  a l l  t h e  s p e c u l a r  r e g i o n s  o f  t h e  t a r g e t ,  and  t h e  f i e l d  E ( r )  i s  
t h e  t o t a l  f i e l d  on t h e  t a r g e t  s u r f a c e :  

E (~) : ~. E m (~). (i. 84) 

Obviously, the field E(r) is here not delta-correlated. The correlation properties of E(r) 
are determined by the correlation properties of the sounding radiation and by the sizes ~ 
of the specular regions. :Therefore,-even though (1.83) and (i~79) are outwardly identical in 
form, the signals recorded at the receiving aperture in the case of diffuse and specular tar- 
gets are different in character. The processed signals reflected from the diffuse and specu- 
lar targets turn therefore out to be different. 

The character of the reflection from the target influences also the statistics of the 
field (or the intensity) of one mode of the reflected signal, i.e., inside the region of spa- 
tial coherence of the field at the receiving aperture. In diffuse reflection from the target, 
many reflection points participate in the formation of the field of one reflected-signal mode. 
The number of this point is very large, and the amplitude of each is random. Therefore, by 
virtue of the central limit theorem, the field of one radiation mode reflected from a diffuse 
target obeys Gaussian statistics. The statistical properties of the recorded signal of the 
photoreceiver on whose input acts a field of the described type have been well investigated 

[16]. 
In reflection from a specular target, the contributions made to the field by one reflec- 

ted-signal mode comes mainly from a limited number of specular regions. In this case the 
field of one mode of the reflected signal cannot, generally speaking, be regarded as Gaussian. 
The statistics of the amplitude and intensity of such a field was investigated in a number of 
papers, e.g., in [17, 18]. It was established there that if the total number of specular regions 
is less than six, the statistics of the field differ greatly from Gaussian, and in the case 
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when the total number of reflecting elements exceeds six, the statistics of the received 
fiedl can be regarded as approximately Gaussian. 

2. Spatial Coherence of Signal Field at the Aperture. We consider the case of a dif- 
fusely reflecting target. The signal E(p) on the surface of the receiving aperture is ex- 
pressed in terms of the field E(r) on the surface of the target in the form of the integral 
(1.79) on the target surface, 

i E (p) = ~  f E (r) ~ e x p  [ikR (~', p)] dz. (1 .85)  
a 

We have already encountered (in Sec. i.i) such an expression in the description of the 
field formed by a radiating aperture in the target region [formula (1.54)]. Now we must solve 
the inverse problem. 

We introduce a coordinate frame similar to that assumed in Fig. 1.9. We carry out the 
same transformations as in Sec. i.i. We obtain then a final formula similar to (1.62), but 
with the vector r replaced by the vector p: 

E(~)~.7~.~exp[ikL~_ik~__f] I E( r )exp[ ,k (~z  rpL ~-nr)]dz.  (1 .86)  

The integration in (1.86) is over the surface of the target. 

Using (1.86), we obtain the correlation function of the field E(p) on the surface of the 
receiving aperture 

<E (p~) E* (~)> 

Substituting (1.86) we get 

<E(@1) E*(~e)>=~ex p [ik~]I I<E(r~) E*(r2) ) exp[ik(r~Lr~ 
The field on the surface of a diffusely reflecting target is delta-correlated: 

<E 0'~) E* (e'2)> : I (r~) ~ (r a -- 9.2). 

Substituting (1.88) in (1.87) and integrating with respect to do~ (or do2) we obtain 

(1.88) 

<E(px) E*(p2)>= ~ e x p  - -  I l(r) L (1.89) 

Equation (1.89) is the van Zittert--Zernike theorem, which establishes the connection between 
the correlation function of a field at an aperture and the distribution ~ the intensity l(r) 
on the surface of a diffusely radiating body. 

If the object is pointlike, i.e., 

I (r) = I o ~ (r  o --  r), 
the correlation function is found to be 

Io Ii k p~Lp~ <E (Pl) E* (~2)> : ~ exp -- 

(1.90) 

ik ro (P1 --P2)] i j " (1.91) 

Thus, in this case the correlation function oscillates with change of the coordinates of the 
points p~ and P2. This behavior of the correlation function is due to the "fact that the wave- 
front incident on the receiving aperture from the point ro is spherical and "inclined" to the 
aperture plane at an angle 0 = Irol/L. As a result, the phases of the waves at the points 
p~ and p= are different, and it is this which leads to a relation of the form (1.91). 

Introducing the field correlation function for a point source placed at the point r = 0 
and denoting this correlation function by B(p~, P2),we can rewrite (1.89) in the form 

(1.92) 
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where In(r) is the normalized intensity distribution on the target surface and is equal to 

In( r ) : l ( r ) / l~  I /n(r) d ~ : t .  (1.93) 

Expression (1.92) shows that an increase of the target size leads, at fixed wavelength 
and range, to a decrease of the coherence region of the field at the receiving aperture. 
Since a pointlike source produces on the aperture a spatially coherent field, the decrease of 
the coherence in the case of an extended source was determined by the modulus of the integral 
in the right-hand side of (1.92). The function 

] (1.94) 

determines the dimension d~ of the coherence region. For example, if the target is a uni- 
formly illuminated circle of radius ro, it can be easily shown that the function F(Ap) first 
vanishes at 

] As I = t'22Lk/2ro" (i. 95) 

The size of the coherence region can, therefore, be estimated by means of the quantity 

---- L~/ro 

We rewrite (1.96) in a somewhat different form 

(1.96) 

2% = 2Lk/~. ( I .  97) 

On the other hand, it is known that the minimum target size 2ro, resolved in accord with the 
Rayleigh criterion by a telescopic system with a receiving aperture diameter D, is (19) 

~ = 2 r o ~ 2 L k / D .  (1.98) 

Analyzing relations (1.97) and (1.98) we arrive at the following important conclusion: if 
the target is not resolved by the receiving aperture, the field reflected from the target is 
spatially coherent on this aperture. If, however, the receiving aperture resolves N elements 
on a diffusely reflecting target, the same aperture will span N coherence regions of the re- 
flected field. 

3. Spatial Coherence of the Field of a Signal Reflected from a Specular Target. We now 
obtain the correlation function of a field produced at a receiving aperture by an assembly of 
specular regions present on the target surface. In this case the field E(p) on the surface of 
the receiving aperture is expressed in terms of the field Em(r) of the specular region on the 
target surface by means of Eq. (1.83): 

I I (r, p)] ~ ,  (1.99) E = E I 8= (r) exp [i R 
m 

~m 
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where the integral is calculated over the surface o m of each specular region. 

Before we proceed, we introduce some additional notation (Fig. 1.10)i. As before, we 
choose on the aperture the origin 0~. On the continuation of the normal m to the plane of 
the aperture we choose the origin O~ at a distance L from the aperture. In the target region, 
at the center of the cluster of specular regions, we choose a point O' such that it is equi- 
distant on the average from all the specular regions Om. The characteristic dimension of the 
m-th specular region we denote by fm. The vector joining the point 02 with the center of the 
m-th specular region will be denoted rm. The following equality holds in this case (Fig. 
i.i0): 

r ~ _  ro H- L, (1.1oo) 
It follows from (1.99) that the field at the receiving aperture is a superpositlon of 

fields from individual specular regions, each of which produces at the aperture a field 

1 i 
E~ (p) = 7i I E~ (r) ~ exp [~kR (r ,  ~)] dz~. 

Carrying out the same calculations as in the derivation of (1.86), we obtain 

(i. i01) 

i exp[ik(L_~L)]  I Em(r)exp[~k(~_ ~ ~', iLnr)]d%,. (1 .102)  
~m 

We i n t r o d u c e  now a d d i t i o n a l l y  a v e c t o r  x l o c a t e d  i n  t he  p l a n e  o f  the  m - t h  s p e c u l a r  r e g i o n  
and e q u a l  to  

Expression (1.102) then takes the form 

(l.1o3) 

thz~  L \ 
~m 

nx--r"~L ~)]~x. (1.104) 

We note now that the surface of the specular region is approximately perpendicular to 
the normal n. We can therefore put approximately in (1.104) 

nx--0. (1.105) 

In addition, it follows from the experimental data that the characteristic dimension fm of 
the specular regions is small enough and as a rule does not exceed 0.i m. Under these con- 
ditions it can be assumed that 

k/,~/2L ~ ~. 

For example, at fm : 0.i m, % = i0.6 ~m, and L = i0 km we obtain 

k/ ~/2L ~ O A ~. 

Thus,  we can n e g l e c t  i n  (1 .104)  t he  te rm kx2/2L in  t h e  a rgument  o f  t he  e x p o n e n t i a l .  
r e s u l t  we g e t  

(1.106) 

(1.107) 

As a 

2 r m  p 

Assume t h a t  t h e  t a r g e t  i s  u n i f o r m l y  i l l u m i n a t e d  o v e r  t h e  e n t i r e  s u r f a c e .  I n  t h i s  c a s e  
we can pu t  

E m (r  m -~ x) = E 0 exp (ikOx), (1 .109)  

where 0 i s  t he  a n g l e  a t  which  r e f l e c t i o n  t a k e s  p l a c e  f rom t h e  s p e c u l a r  r e g i o n .  The i n t e g r a l  
i n  ( 1 . 1 0 8 ) ,  which d e s c r i b e s  the  a m p l i t u d e  d i s t r i b u t i o n  o f  t he  f i e l d  on t h e  a p e r t u r e  s u r f a c e ,  
can be w r i t t e n  i n  t he  form of  a c e r t a i n  f u n c t i o n  Am( p -- rm -- L e ) ,  and t he  f i e l d  E(p)  can be 
r e p r e s e n t e d  as  the  sum o f  t he  f i e l d s  Em(p):  
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In (i.ii0) we have introduced the notation 

and t h e  f a c t o r  exp  ( i k L ) / i X L ,  f r o m  ( 1 , 1 0 8 )  i s  i n c l u d e d  i n  Am(O --  r m -- L@). 

In the case when each individual specular region e m is not resolved by the receiving 
aperture, i.e., when the condition is 

( l . l l 0 )  

(1.111) 

),LID >~ t~, (1. l l2)  

where D is the diameter of the receiving aperture, we can assume approximately that within the 
limits of the receiving aperture 

A,,, (~ - -  r ~  - -  LO) ~ A,,. (1.113) 

In fact, the function Am(0 -- r m -- LS) is the Fourier transform of the distribution of the 
field on the area o m. Since we have assumed a uniform distribution of the field on Om, the 
dimension fm of this area is connected with the characteristic width Ap of the function A m 
by a relation known from the theory of Fourier transforms: 

Ap/,.~kL (1.114) 

Inasmuch as by assumption an individual region o m is not resolved by the receiving aperture, 
i.e., relation (1.112) holds, it follows from (1.114) and (1.112) that 

~p~D. ( 1 . 1 1 5 )  

Consequently, the function A m changes little within the limits of the aperture, and relation 
(1.113) is valid. 

Thus, by using (i.i00), we can finally write 

\ ~- ~-/ j  
m 

We now obtain the correlation function of the field E(p). From (1.116) we have directly 

, z m 

( l . i i 7 )  

where we have introduced, by definition, the correlation function of a point source 

in 

The correlation function (1.118) is completely analogous to the previously introduced corre- 
lation function (1.91) of a point source. The only difference is that in (1.118) the role of 
the total intensity is played by the sum of the intensities of all the specular components. 

Assume that the fields reflected from each specular region are statistically independent. 
In addition, it is natural to assume that the dimension of the specular region and its rela- 
tive position on the surface of the target are statistically independent. Then the mean val- 
ues of all the cross products in (1.117) vanish because the m-th and n-th fields are inde- 
pendent, and the averages over the phases and over the amplitudes of the diagonal terms are 

separated. As a result we get 

- - s ~ l  @i-- P2) <lAin 15] -I. (1.119) 

If the average statistical properties of all the specular regions are the same, Eq. 
(1.119) simplifies and reduces to the form 

<E  (~,) E *  (p~)> = B (p,, p~) exp - ,  Z Z (p~ - -  P2) , ( 1 .  120) 
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where the vector Z pertains to an arbitrary specular region. The problem has thus been re- 
duced to finding the mean value of the second factor in (1.120). The averaging should be 
carried out over the angle a between the vectors ~ and Pz-P2 and over the modulus of the vec- 
tor I. 

In accordance with the remarks made earlier concerning the choice of the point O' in the 
target region (Fig. I.i0), the probability densities for the angle a and for the modulus of 
the vector I can be assumed to be uniform: 

P (~) = t/2=, P ([ l I) = t / R ,  ( 1 . 1 2 1 )  

where R is the mean radius of the target. The averaging over the angle is carried out using 
the integral representation of Bessel functions [20]: 

0 

where Jo is a Bessel function of zero order. We now average over the amplitude: 

R 

= I = l 
70 k 1 ] k (1.123) 

0 

The function H(x) introduced in this expression is equal to 

(i. 124) 
(x) = ~ ]o (Y) @" 

0 

We obtain ultimately the following expression for the correlation function of the field re- 
flected from a target with specular regions that are not resolved by the aperture: 

In the limiting case R § 0 the correlation function of the field goes over into the correlation 
function for a point source. Appendix I contains a detailed table of the values of the func- 
tions H(x) and H(x)/x. 

1.3. Effect of Atmosphere on Laser-Signal Propagation 

i. General Description of the Atmosphere. The action of the atmosphere on laser radi- 
ation propagating in it reduces mainly to three factors: attenuation of the radiation by 
scattering and absorption, refraction, and turbulent distortion of the wave front. 

Attenuation in an atmosphere free of clouds and fog consists of scattering of the light 
by the gas and water-vapor molecules, and of selective absorption. In the visible part of 
the spectrum, at wavelengths 0.4-0.75 ~m, the principal attenuation is due to scattering of 
the radiation by molecules and solid particles. The coefficient of molecular scattering is 
proportional to X -4, where X is the radiation wavelength. The empirically obtained law gov- 
erning the variation of the coefficient of scattering by solid particles is of the form 
X-1.75. The role of the selective absorption in the wavelength range 0.4-0.75 ~m is negli- 
gible. At wavelengths above 1 ~m the principal role in the attenuation of the radiation is 
played by selective absorption (Fig. i.ii). The spectrum sections with high transmission co- 
efficients are called the "transparency windows" of the atmosphere. The "transparency win- 
dows" are largest in the ranges 0.95-1.06, 1.2-1.3, 1.5-1.8, 2.1-2.4, 3.3-4.0, 8.0-12.0 ~m. 
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Astronomic refraction is the refraction of rays coming from a celestial luminary or 
another source (at high altitude) to the observer. When the ray passes through a layer of 
the atmosphere whose refractive index increases as the earth's surface is approached, the ray 
trajectory is convex towards the zenith. Depending on the zenith angle of observation, the 
refraction error can range from zero (at the zenith) to several minutes of degree. The re- 
fraction error must be calculated beforehand with sufficient accuracy. 

2. Radiation Propagation in a Turbulent Atmosphere. The atmosphere's refractive index 
is not constant. Wind and local temperature inhomogeneities cause the atmosphere's refrac- 
tive index to become dependent on the time and the coordinates. These inhomogeneities, called 
turbulences, lead to random changes of the amplitude and phase of laser radiation propagating 
through the turbulence region. Random amplitude-phase modulation of laser radiation from the 
target leads to loss of coherence of the propagating radiation, to random displacements of 
the laser beam, and to an overall deterioration of the lidar-signal processing conditions. 

The propagation of laser radiation in a turbulent atmosphere is the subject of many stud- 
ies (see, e.g., [21, 22]). Without undertaking to summarize all these investigations or to 
single out the most general approach to this problem we shall attempt, following the character 
of exposition used earlier, to demonstrate in illustrative form one of the possible solutions 
of this problem. In so doing we shall follow [23] and [24]. 

The mathematical formulation of the problem is the following: it is required to find the 
value of the complex field E(P) at an arbitrary point P in space, given the distribution of 
the refractive index n(P) of the medium in the considered space and the field distribution 
E(PI) at an arbitrary point P~ on a finite surface g of the target. 

We consider next the scalar equations for the field, assuming them to be the indentical 
and independent for each orthogonal component of the field polarization. Under these condi- 
tions the equation for the electric field intnesity of a monochromatic light wave is of the 
form 

[~p ~- kin ~ (P)J E (P) = 0, ( 1 . 1 2 6 )  

where Ap is the Laplace operator acting on the coordinatesof thepoint P; k = 2~/~ is the wave 
number. In (1.126) it was assumed that the distribution of the refractive index n(P) does 
not manage to change while the field E propagates in the considered volume of space. This 
condition is satisfied in practically all cases. 

The experimental data show that the time interval during which the distribution of the 
refractive index does not manage to change is about i msec. During this time the laser beam 
covers an approximate distance 300 km. Recognizing that the length of the turbulence region 
that must be taken into account does not exceed as a rule several dozen kilometers, it be- 
comes clear that the condition indicated above is satisfied with a large margin. We shall 
assume that an average refractive index n(P) = i in the entire considered space, and that the 
fluctuations of the refractive index are themselves small: 

n(p)=l - } -n l (P) ,  <nl (P)>=O,  In,(P)l~t ( 1 . 127 )  

Our problem is to find the solution of (1,126) in a closed volume V, given the boundary 
conditions on the boundary g of the volume V (Pig. 1.12). A consistent rigorous application 
of the Green-function formalism to the solution of this problem turns out to be impossible, 
since great difficulties are encountered when it comes to ensuring zero boundary conditions 
when the Green functions are chosen (Eq.(l.43)). We shall therefore use another solution 
method, but one similar to the Green-function method. 

We note first of all that at n,(P) = 0 the fundamental solution of Eq. (1.126) is of the 

form 

t [ikr (P~, P)], (1.  128) Vo (Pl, P) - -  r (P,, P) exp 

where r(P~, P) is the distance between the points P, and P. The basic assumption that we 
shall use throughout is that Eq. (1.126) has in the general case a singular solution with a 
pole in the form i/r(P:, P) and that this solution can be represented as 

v(P~, P)~vo(P i, P)exp [~ (Pl, P)], (i. 129) 
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where ~(P,, P) is an analytic function. The basis for this statement is that in the limiting 
case of geometric optics a solution in the form (1.129) exists, with 

(PI, P) = i k  I n, (p) ds. (1. 130) 

The curvilinear integral in (1.130) is calculated along the path of the light beam propaga- 
ting from the point P, to the point P (or back). 

When Eq. (1.126) has a solution that satisfies all the foregoing conditions, any other 
solution E(P) of (1.126) is expressed in terms of v(P,, P) [25]: 

1 

where I is the inward normal to the surface o, while the point P, is located on o (Fig. 1.13). 

We now stipulate more specifically the surface o and assume that the field E differs 
from zero only within an area that is part of an infinite plane. Since the functions E and 
v satisfy the Sommerfield radiation condition, the integral over an infinite closed part of 
the surface o is zero. In addition, we assume that the wave-front curvature radius on the 
surface a is much larger than the wavelength. This condition permits considerable simplifi- 
cation of (1.131). In fact, the normal derivative of the function E, which is contained in 
(1.131), is none other than the scalar product of the gradient of the function and the in- 
ward normal to the surface ~ (Fig. 1.13)" 

O_~E__ (rE l). (1. 132) 
Ol- 

In accord with the assumption made that the wavelength is short compared with the curva- 
ture radius of the wave front on the surface 6, a small-enough section of the wave front can 
be regarded as a segment of a plane wave propagating in a direction of the normal no to the 
wave front. We can thus write approximately 

OE 
a-T ~ (ikno " l) E. ( i .  133) 

As a result, the first term under the integral sign in (1.131) is written in the form 

--v (P~, P) OE (Pj 1 T ~ - -  E (p~) ~ exp [~r (p. p) § ~ (p. p)] iknJ. (1.134) 

We consider now the second term. Substituting the expression for the function v(Pz, P) 
we obtain 

E(P,) av(P3; P) = E(p1)( V { ~ e x p [ i k r ( P 1  ' p)_[_#(p,, p)]}. 1). (1.135) 

The gradient ?{...}, contained in (1.135), is equal to 

exp[ikr(P1, P)-~-~(P1, P)] {V(r(pz: r(P~, P) (1.136) 

where nr is a unit vector in the direction from the point P, to the point P. Recognizing 
that 
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V (1.137) r (P~, P) = n,~ r-~(pl ' p), 

we obtain 

V i ikn~ ._uv+ (P~. p)[ {~exp[ikr(Pl, P)-[-*(P1, P)]}=exp[ikr(Pl, P ) ~ - *  (Px P)] {~(~1  r, p) r(pl ' p ) - - ~ j - .  (1~ 

Since we are considering a case when the distance r(P~, P) is larger than the wavelength 
by many orders, the first term on the right in the curly brackets of (1.138) can be neglected 
in comparison with the second. Next, recognizing that in the geometric-optics approximation 
the function ~(P~, P) is determined by Eq. (I.130), we obtain 

V 4 (Pl, P) ~ ikn~ (Pl) no, (i. 139) 

where n~(Pa) is the fluctuating part of the refractive index. Since the absolute value of 
these fluctuations is small (]na] = i0-'), the third term in the curly brackets in (1.138) 
can also be neglected compared with the second. 

Taking the foregoing remarks into account, we can write Eq. (1.131) in simpler form: 

ie i [(n 0 �9 l)-~-(n,. /)1 ~. (1.140) E (P) =-- ~ I E (PI) exp [ikr (P~, P) ~- ~ (P~, P)] r (p~, P) 

Usually the paraxial approximation is sufficient when solving radar problems. The reason 
is that the dimensions of the target and the dimensions of the receiving aperture are much 
shorter than the distance that separates the target and the receiving aperture. The relative 
changes of the vector mr on going from point to point on the surface of the target or of the 
aperture are quite small. The plane a can be chosen to be perpendicular to the direction to 
the receiving aperture. The directions of the vectors mr and I are the approximately the 
same and we can put 

(n,. ~)-- I. 

Taking this into account, Eq. (1.140) can be written in the form 

~k 
/)I r (p~, p) d~" (1.141) E (P) : -- ~ I E (Pl) exp [ikr (PI, P) ~- ~ (PI, P)] [I ~- (n i 

In this expression the vector no is a function of the coordinates of the point Px. 

We introduce one more restriction. Assume that the normal no to the wave front of the 
field changes little within the limits of the plane surface a. This assumption corresponds 
in laser radars to the case when the reflection from the target is specular. Let, according 
to this assumption, the normal to the wave front change so little that we can write approx- 
imately 

(n 0 �9 t)~-1. (1.142) 

Equation (i.141) takes then a still simpler form 

i I E(P)=~ I E(P1)exp[ikr(P1' P)-~9(PI, P)] r(P,, P) d~ (1.143) 

This equation is in fact a generalization of Eq. (1.53) to the case of field propagation 
in a turbulent medium. Besides the analyticity requirement referred to above, it is nec- 
essary to impose on the function, ~(Px, P) one more condition that ensures satisfaction of 
the reciprocity (reversibility) principle. The reciprocity principle consists in the fol- 
lowing. Assume that a source located at the point PI produces at the point P a field with 
complex amplitude A. Then, when placed at the point P, the same source will produce at the 
point PI a field whose complex amplitude is also A. 

For the reciprocity principle to be satisfied when (1.143) is used, we must have 
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l exp [ikr (P1, P)-~- ~ (P1, P)I r (Pl, P) 
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i exp Iikr (P, Pl) @ q~ (P, Pl)l- 
r (P ,  /)1) 

( 1 . 1 4 4 )  

In the absence of turbulence, i.e., when ~(Px, P) = ~(P, Px) = 0, Eq. (1.144) is obviously 
satisfied, since the distance r between the points P~ and P does not depend on their permu- 
tation. It turns out that in the presence of turbulence Eq. (1.144) is also satisfied, and 
Eq. (1.143) satisfies the reciprocity principle if, as assumed above, the function v(P1, P) 
~Eq. (1.129)) is a solution of the wave equation (1.126). A proof of this statement is given 
in Appendix II. 

If we wished to used Eq. (1.143) to calculate the field reflected from the target and 
passing through a turbulent atmosphere, we could formally use this equation only in the case 
of a specularly reflecting target. The assumptions made to deri~e this equation are valid, 
as indicated, only in this case. Nonetheless, by the same reasoning as in Subsec. i of Sec. 1.2, 
we can generalize (1.143) to the case of a diffusely reflecting target. The integral is then 
calculated not over a plane surface, but over the target surface, and the field E(Px) is 
delta-correlated. 

3. Effect of Atmospheric Turbulence on Spatial Coherence of the Signal Field. We con- 
sider now the correlation properties of a field passing through a layer of turbulent atmo- 
sphere. When solving this problem we follow the approach developed in [26]. 

Assume that the target is illuminated by laser radiation. The reflected radiation, after 
passing through the layer of turbulent atmosphere, produces at the receiving aperture a random 
field E(@). This field is random for two reasons~ the random character of the reflection 
from the target surface and the random fluctuations of the turbulent atmosphere. The influ- 
ence of the character of the reflection from the target surface on the correlation properties 
of the field at the aperture was investiagated by us earlier, and we shall therefore not con- 
sider this question further. 

We introduce a coordinate system that relates the target with the receiving aperture 
(Fig. 1.14). We choose the origin 0 in the target region, and direct the z axis from the 
origin perpendicular to the aperture plane. We specify the coordinates of the receiving- 
aperture points by a vector p that starts out from the point of intersection of the z axis 
with the aperture plane. The points on the target surface are specified by a vector r lo- 
cated in the a plane (perpendicular to the z axis and passing through the origin O), and by 
the coordinate z of the given point. In other words, the vector r is the projection, on the 
o plane, of the radius vector of a point of the target surface. An arbitrary point of space 
in the turbulence region, defined by a radius vector x, will be characterized by the coordi ~ 
nate z and by a vector p that is a projection of the vector x on a plane passing through the 
given point and perpendicular to the z axis. 

Under these conditions the field E(@) at the receiving aperture is expressed in terms 
of the field E(r) at the target surface by Eq. (1.143). In the new notation this equation 
takes the form 
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i 
E(~)=~ I E(r)v(~, r)dz,  (1.145) 

where the integration is on the target surface, and 

i exp[ikR(p, r ) - [ -4 (p ,  r)]. (i.146) v @, r) -- ~ (p, ~) 

Here R(p, r) is the distance between the point p of the receiving aperture and the point r 
of the target surface. 

To obviate the need for retaining in the subsequent calculations cumbersome terms of 
little significance, we make the following simplifying assumption. Namely, we assume that 
the target is planar and its surface is perpendicular to the z axis. The integration over 
the target surface is automatically transformed into integration on the flat area ~. 

The correlation function of the field at the receiving aperture is equal to 

E* r~)>dzldz~. <E(pI)E*(~)> ~I  I <E(r~) (r~)><v(~'r~)v*(P2' (1.147) 

It was naturally assumed in (1.147) that the field E(r) at the target surface and the atmo- 
spheric fluctuations are statistically independent quantities. Substituting for the func- 
tion v(p, r) its explicit expression (1.146), we obtain 

<U(~l, ~l) V*(~2, T2)>:[~(pl, ~1)~(~2, T2)] -I exp[ikR(pl, r~)--ikR(@2, r~)]F(~l, r~, ~s, ~), (1.148) 

where we have introduced the notation 

FCp1, rl, ~2, v2)=<exp[4(~, r~)~-4*(P~, r~)]>. (1.149) 

Thus, to find the correlation function of the field at the receiving aperture from a 
specified correlation function of the field at the target surface we must know the function 
F(pl, rl, P2, r=). It is easy to explain its physical meaning. Assume that in the target 
plane o are located two mutually coherent point sources at the points r, and r2. The coher- 
ence function of the combined field, considered at the points p, and P2 of the aperture, is 
the function F(pl, r,, pc, ra). The light field propagating through the turbulent medium 
passes through a large number of elementrary turbulence sections. There are therefore 
grounds for assuming that ~(p, r) is a Gaussian random function. In this case, taking (1.28) 
into account, we have [26] 

F (~i, rl, ~, r2) = exp (-- [<I ~ ~s> _ <4 (@i, ~i) ~* (~2, ~2)>]}" (I. 150) 

Thus, the problem of calculating the correlation function of the field at the aperture 
was reduced to the problem of calculating the correlator 

<4 (~,, rl) 4" (~, ~)>. 

C a l c u l a t i n g  t he  v a l u e  o f  t h i s  c o r r e l a t o r  a t  p,  = P2,  r~ = r 2 ,  we o b t a i n  t he  second  moment 
<1@I2> c o n t a i n e d  i n  Eq. ( 1 . 1 5 0 ) .  To c a l c u l a t e  t he  c o r r e l a t o r  we must  f i n d  t h e  e x p l i c i t  form 
of  t he  f u n c t i o n  @(p, r ) .  

Assume t h a t  we know the  f i e l d  ET(P, r )  p r o d u c e d  a t  a p o i n t  p o f  t he  r e c e i v i n g  a p e r t u r e  
by a p o i n t  s o u r c e  p l a c e d  a t  t he  p o i n t  r o f  t he  t a r g e t .  The f i e l d  ET(P, r )  t a k e s  i n t o  a c c o u n t  
the  t u r b u l e n c e  o f  t he  a t m o s p h e r e .  L e t ,  in  a d d i t i o n ,  t he  f i e l d  Eo(P,  r )  f rom the  same s o u r c e  
i n  t he  a b s e n c e  o f  t u r b u l e n c e  be known. Then,  o b v i o u s l y ,  t h e  f u n c t i o n  @(p, r )  s a t i s f i e s  t he  
e q u a t i o n  

expl4(p, ~)]=E,(@, ~)/Eo( ~, r). (1.151) 

I t  i s  n a t u r a l  now to  expand t h e  l e f t -  and r i g h t - h a n d  s i d e s  o f  (1 .151)  i n  te rms  of  a 
s m a l l  p a r a m e t e r ,  such  as t he  f l u c t u a t i n g  p a r t  n , ( x )  o f  t he  r e f r a c t i v e  i n d e x .  E q u a t i n g  t he  
te rms  of  l i k e  powers  o f  n~(x)  i n  t he  l e f t -  and r i g h t - h a n d  s i d e s  o f  ( 1 . 1 5 1 ) ,  we o b t a i n  an ex -  
p r e s s i o n  f o r  the  f i r s t  a p p r o x i m a t i o n  of  the  f u n c t i o n  @(p, r ) :  
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w h e r e  t h e  f i r s t  t e r m  o f  t h e  e x p a n s i o n  i s  [21]  

( 1 . 1 5 2 )  

~2 

E~ (p, ~')----~ i Eo(w' r) n~ (x) ~ e x p [ i k R  (w, p)] a~x, ( 1 . 1 5 3 )  
g 

I exp [ikR (x, r)] (i. 154) E o ( x ,  r )  - -  a (~, ~-) 
The integration in (1.153) is over the entire volume in which the radiation propagates. 

With the aid of (1.152)-(1.154) we obtain 

<~(~1:' '1~1)~*(~2, "g'2)> -'~" (2-~)~ [EO(~l, ~/'1)~;(~2, T'2)I-1 f IBn(~l ,  ~2) X 
v'~' (1.155) 

• s0 (x~, ~1) ~ (x~, ~) [n (x~, ~) ~ (x~, p~)]-~ exp @ [~ (~, p~)- ~ (x~, ~)]) d%d%, 

In the case when the turbulent medium is stationary and isotropic, 
written in the form 

(I.156) 

the function B n can be 

B. (za, x2) ---- B. (x~ - -  x 2, "q), ( 1 . 1 5 7 )  

where n = (z~ + za)/2, and z~ and z2 are the coordinates of the points x1 and xa on the z 
axis. This form of the function B n takes into account the slow variation of the properties 
of the atmosphere along the route. 

In the calculation of R(x, p) we use the same approximation as before [Eq. (1.161)]. 
Namely, we replace the function R(x, 0) in the denominator by the z-axis segment corresponding 
to the points x and p. As a result we get 

/k2z \2  { _ _ ~ [ ( r l _ _ ~ l )  __(iv,2--~2)2]}>< 

( i  1 B.(x,--x~, ~)expf~kF(P'-~'0~t L (1.158) X 

(P1 -- 101) z (~ -- P~))]) daXld,X2. (p2 -- ~z) ~ + 
2z~, 2 (z -- zl)  2 (z --- z~) JJ 

We now express the function B n in the form of a Fourier integral of the two-dimensional 
spectral density of the refractive-index fluctuations: 

B~ (~ -- ~, ~) = I f" (~' ~' ~) exp [--~ (p~ -- P~)] d~, (1. 159) 

where E = z:--z=~ and Fn(B , ~, $) is the two-dimensional (in B) spectral density of the re- 
fractive-index fluctuations. The Fourier expansion in (1.159) is with respect to two coordi- 
nates in a plane perpendicular to the z axis. The dependence of z:--z= remains in parametric 
form. Substitution of (1.159) in (1.158) yields 

/ k~z \  2 f ~k 
(1. 160) 

i Q@= f f x 
F~ V~ 

- -  r~)~ (P~ - -  ~'2)~ (P~ - -  P~)~ (P" - -  P-')~] - - i ~  ( p ~  - -  P 2 ) }  d%~d3x2 �9 X exP {/k ['(Pi 2"~z 1 ~z 2 ~ 2 (z_~ i  ) ~ z  _-- - ~2) "j 

(1.161) 

In (1.161) we can integrate directly with respect to d2pl and dap2, omitting the integration 
with respect to dz: and dz2. These calculations are similar to those used in the integration 
of (1.18). As a result we get 

z 

0 0 
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Fig. i. 15 

z rl z r2 -~-~-~z z1(z--zl)--z2(z--z2) dzldz2 (1.162) 

We transform from the variables z~ and z2 to the variables 

~=zl--z~, ~=(z12cz2)/2. (1.163) 

This is accompanied by a corresponding change of the integration region (Fig. i. 15). The inte- 
gration changes from a square of side z to a parallelogram. Since with respect to the coor- 
dinate 5 the function Fn(8 , ~, 5) differs from zero only in the small interval (--Z, +Z), in 
which the correlation function Bn differs from zero, the integration with respect to the co- 
ordinate ~ can be extended to infinity. 

Next, with respect to the coordinate 8 the function Fn(8 , ~, ~) differs from zero only 
within the region 181 < ~-~. This allows us to neglect the last term in the exponential un- 
der the integral sign in (1.162). In fact, we have 

~z[ZI (Z -- ZI)- Z2(g -- Z2) ] : ~  

T a k i n g  t h e  f o r e g o i n g  i n t o  a c c o u n t ,  we f i n d  t h a t  t h i s  t e r m  i s  o f  t h e  o r d e r  o f  ~ / l  << l ;  i t  can 
therefore be neglected. 

Finally, since the function Fn is even in ~, the integration with respect to ~ can be 
expressed in terms of an integral only over the positive ~ axis. As a result we get 

z co 
/2~\ 2 

Q ( ~ ) = Z [ ~ J  exp{~[(r1--~1)2--(z~--~2)2]} I I F~(~' ~, $)exp{--i[~-~ (~--})'r~]}dSd~, ( 1 . 1 6 5 )  
0 0 

where  t h e  n o t a t i o n  p = 0 ~ - - 0 2 ,  r = r~--r2 was i n t r o d u c e d .  

We now c a l l  a t t e n t i o n  to  t h e  f o l l o w i n g  c i r c u m s t a n c e .  The t h r e e - d i m e n s i o n a l  s p e c t r a l  
d e n s i t y  ~n o f  t h e  f l u c t u a t i o n s  o f  t h e  r e f r a c t i v e  i n d e x  can  be  o b t a i n e d  f rom F n by  an a d d i -  
t i o n a l  F o u r i e r  t r a n s f o r m a t i o n  w i t h  r e s p e c t  t o  t h e  c o o r d i n a t e  5. The t h r e e - d i m e n s i o n a l  v e c -  
t o r  ~ o f  t h e  s p a t i a l  f r e q u e n c y  i s  c o n n e c t e d  w i t h  t h e  t w o - d i m e n s i o n a l  v e c t o r  8 by  t h e  r e l a t i o n  

where  6 i s  a c e r t a i n  c o n s t a n t  o r t h o g o n a l  t o  B" 

~ = 0 .  

Thus ,  

i fF , (~ ,  7, $)exp(--i~})d}. v (v, (1.166) 

0 

Whence it follows directly at 6 = 0 that 

o0 

(1.167) 

0 

With allowance for this equality, Eq. (1.165) is written in the form 

2=a ~k #~)~]} i ~ , ( ~ ,  3) e x p { - - i [ ~ # ~ - ( l  ~ ) ~ ] } d ~ .  ( 1 . 1 6 8 )  
0 
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Let now the turbulence region, which is homogeneous in its properties, be bounded by a 
distance region (za, Zb). The function ~n(~, ~) can then be represented in parametric form: 

where 

r176 (~, ~) = r (D s (~), (1.169) 

t, z ~ z ~ ,  (1.170) 
S('~)----- 0, ~ z ,  and ~>Zb-  

From (1.160) and (1.168) we get 

<~ (~, r~) ~* (~, ~ ) )  =- 2~k ~ I ~.o (~) 
0 

(1.171) 

We transform in the inner integrals to the dimensionless variable 

t=__ ~ 
z 

and integrate with respect to the angle coordinate in the outer integral. We then obtain 

i " <~(~,, r~)~*(~2, r2)} =4z:2k2z ~,,0({~[)]~l I ]o[[ tp-~- ( l - - t ) r l l~ l ]d td[~] ,  ( 1 . 172 )  
0 ta 

where  t a = z a / z  , tb  = Zb/Z,  and Jo i s  a B e s s e l  f u n c t i o n  o f  z e r o  o r d e r .  S u b s t i t u t i n g  (1 .172)  
i n  (1 .150 )  we g e t  

P(f;, r)=f( fa~, ,  r ~2, ~'2)--exp f f '~"~ �9 (1.173) 
~a 0 

In most cases of practical importance the spectrum ~no(18[) can be approximated by the 
power law [21]." 

%0 (I i~ I) = 0A32C~ l ~ [ -uI3, (1. 174) 

where Cn 2 is called the structure constant of ~ refractive-index fluctuations. Substitution 
of (1.174) in (1.173) and the corresponding calculations yield [27] 

F(~, r ) ~ e x p  --t'45C~k~z I [ t f~@(~-- t )  r[  sj3dt " (1.175) 
ta 

We consider a few particular cases. We find first the correlation function of the field 
produced by a point source located in target plane z = 0. Equations (1.147)and (1.175) yield 

<E (~1) E* (Pl -~- ~)> ---- B (~) f (~, 0), (1.176) 

where B(p) is the correlation function of a point source in the absence of turbulence and is 
already known to us. Calculating F(p, 0) directly, we obtain 

F (e, O) ---- exp [--0.540~k2z I P Y (4 ~ - -  r (1.177) 

If the turbulence occupies the entire space between the target and the aperture, then tb = i, 
t a = 0, and we have 

F (~, o) = ~xp [ - 0  5~c~k~ I~ 1~]. (1 .178)  
Such a r e l a t i o n  i s  a f e a t u r e  o f  r o u t e s  o f  s h o r t  l e n g t h  n e a r  t h e  g round .  

I n t r o d u c i n g ,  by d e f i n i t i o n ,  t h e  c o r r e l a t i o n  r a d i u s  o f  t h e  f i e l d  a t  an a p e r t u r e  n e a r  t h e  
ground 

Oo - -  (0,54C~k2z) -3is, (1 .179  ) 

we can r e w r i t e  ( 1 . 178 )  i n  t h e  form 

F (~, 0) ~- ex9 [ - ( I  ~ l/p0?/3] �9 (1.180) 
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TABLE i. Dependence of Structure Con- 
stant of Refractive-lndex Fluctuations 
on the Height 

Altitude, c~,, rn-2/3 
km weak medium strong 

turbulence turbulence turbulence 

O,Ol 
2,0 
4,0 
6,0 
8,0 

52. iO -17 
l,O 
0,38 
0,36 
0,3i 

75 �9 lO -16 
2,5 
1,5 
l , i  
0,75 

t0.  t0 -1~ 
0,65 
0,59 
0,35 
0,t8 

When ranging an object in outer space (say an artificial satellite), the atmosphere occupies 
a very small part of the route over which the radiation propagates. In that case t b = i 
and ta = t b. By taking the limit as z + ~ we obtain from (1.177) 

Z ( ~br'8/3 __ t~/3) = z [1 - -  (I __ L/z)Sja] ~ T 

where L = z b -- za is the length of the atmospheric section. Accordingly, 

F (~, O)=exp[ - - ia5C~k2LI  ~ I~la]. 

I f  t h e  f i e l d  c o r r e l a t i o n  r a d i u s  i s  a s s u m e d  t o  b e  

( 1 . 1 8 1 )  

Po = ( t -45 C~k2L) -3/~, ( 1 . 1 8  2)  

we arrive again at (1.180). 

The foregoing analysis does not take into account the dependence of the structure con- 
stant of the refractive-index fluctuations on the altitude. Such a dependence actually exists 
and is characterized by the data listed in Table i [28]. Nevertheless, the results can be 

used for estimates. 

We consider one example. Assume that the object range is an artificial satellite with 
orbit altitude z = 300 km. For the structure constant we assume the value corresponding to 
medium altitude at 2 km altitude, namely Cn 2 = 2.5-10 -*~ m -z/s. We obtain the field correla- 
tion radius Po for the wavelengths l~ = 0.69 ~m, 12 = 1.06 ~m, and %a = 10.6 ~m, assuming 
that the atmospheric section of the route has an effective length L = i0 km. From (1.182) we 

obtain 

p o 1 = 3 . 2  cm,  p o ~ = 5 . 4  cm.  p o 3 = 0 . 8 6  m, 

which agrees quite well with the experimental data. 
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CHAPTER 2 

HOLOGRAPHIC AND INTERFEROMETRIC METHODS 

OF PULSED-SIGNAL RECEPTION 

One of the principal problems of laser radar is to obtain information on the geometric 
dimensions and shape of an object. The main difficulty in solving this problem is that the 
atmospheric turbulence distorts the target information contained in the wave front of the 
light wave reflected from the target. The simplest method of recognizing objects is to form 
their image with a telescopic system. However, the turbulence of the atmospheric layer 
through which the radiation reflected from the target propagates impairs the resolving power 
of the system. 

Experiments show that when an image is formed by an ordinary telescopic system the at- 
mospheric turbulence makes impossible a resolving power better than 1-5 sec of angle in the 
visible band [I, 2]. Yet the tasks of laser radar require a resolving power better than 0.5 
sec of angle. It is therefore obvious that special methods must be found for processing the 
laser signals if the influence of the air turbulence is to be eliminated. 

In this chapter we consider three basic methods used in laser radar to solve the forego- 
ing problem: the intensity-hologram method, the modified-Michelson-interferometer method, 
and the Goodman method. 

2.1. Intensity-Hologram Method 

I. General Description of Method. The main reason why the atmosphere impairs the re- 
solving power of optical systems is that the atmospheric turbulence distorts the wavefront of 
the wave reflected from the object. The problem would be solvable if there existed some meth- 
od of determining the wavefront distortions due to the atmosphere from the wavefront distor- 
tions due to the object itself (more accurately, due to its not being pointlike). It would 
only be necessary to separate the "atmospheric" distortions and remove them, after which 
usual methods could be used to form the now undistorted image of the object. 

Under real conditions, however, we have no a priori information whatever on the object. 
It is therefore impossible in principle to separate the "atmospheric" distortions of the. 
wavefront from the "object" ones. We must consequently adopt an extreme viewpoint and as- 
sume that the "phase" information on the object is completely "spoiled" and must be discarded. 
We are left then only with amplitude information from which we must deduce the shape and size 
of the investigated object. It is precisely this discard of the phase information which is 
the basis of the intensity-hologram method proposed in 1968 by Kuriksha [3]. 

To elucidate the gist of the intensity-hologram method, we confine ourselves first to a 
simplified analysis. Let the remote object be illuminated by a short laser-radiation pulse. 
The radiation reflected from the object is recorded on a photographic plate (or film) 
located at the exit pupil of a telescope (Fig. 2.1a). If the illuminating pulse satisfies 
definite monochromaticity conditions (these conditions will be discussed in Subsec. 4) and 
its duration is too short for a noticeable displacement of the object (i.e., spatial coher- 
ence of the reflected field is preserved), an interference pattern will be recorded on the 
photographic plate. This photograph is called the intensity hologram. 

We assume throughout that the photographic density of the plate emulsion is proportional 
to the field intensity. The transmission coefficient T(p) of the photographic plate can then 
be expressed in the form 

T(~):I --sLE(~)[ 2, ( 2 . 1 )  

where  ~ i s  a c o e f f i c i e n t  t h a t  r e l a t e s  t h e  p h o t o g r a p h i c  d e n s i t y  o f  t h e  p l a t e  e m u l s i o n  w i t h  t h e  
i n t e n s i t y  o f  t h e  i n c i d e n t  l i g h t ;  E(p)  i s  t h e  f i e l d  i n  t h e  r e c o r d i n g  p l a n e .  
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Fig. 2.1 

We assume next that the target is in the Fraunhofer-diffraction zone relative to the re- 
ceiving aperture. In addition, we assume for simplicity that the target is planar and paral- 
lel to the receiving aperture. In the absence of atmospheric turbulence, as shown in Chap. 
i, the field E(p) at the aperture surface is then connected with the field E(r) on the tar- 
get surface by the Fourier transformation: 

(p) = ~ exp (g k k 
E 2 

-fL- p2) I E (f) (2.2) 
= 

where ~ is a constant coefficient of no importance in this particular case, and L is the dis- 
tance between the origins 01 and 0=. 

In the presence of atmospheric turbulence the phase distribution of the field E(p) at 
the aperture is changed~ Since the illuminating pulse is very short, it can be stated that, 
within the time that it is recorded, the state of the atmosphere remained unchanged. As a re- 
sult, we have 

k 2 exp( - - i  k pf)d2r, ( 2 . 3 )  

where the function ~(0)describes the phase distortions introduced by the atmosphere. Sub- 
stituging (2.3) in (2.1), we obtain for the transmission coefficient of the photographic 
plate the expression* 

where we introduced the abbreviated notation El = e ] a ]  a.  

The reduction of the recorded intensity hologram consists in the following. The de- 
veloped plate is placed in a parallel-ray beam. Directly behind the photographic plate is 
placed a lens and the image produced in its focal plane is recorded (Fig. 2.1b). It is known 
[4] that the field E(v) in the focal plane of the lens is connected with the field E(p) in 
the plane of this lens by the Fourier transformation. 

k ~v) d20, ( 2 . 5 )  

where c is a certain coefficient of no importance in the analysis that follows, and f is the 
focal length of the lens. The field passing through the photographic plate is equal to 

E (~) = A T  (~), (2.6) 

where A is the amplitude of the incident plane wave. 

Using (2.4)-(2.6), we obtain the field in the focal plane of the lens: 

*Strictly speaking, when making this substitution, account must be taken of the cha~ge of 
the coordinate scale, due to the fact that the telescope magnification is not equal to unity. 
This scale change, however, is so trivial that it will be omitted hereafter for brevity. 
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The first term in (2.7) can be approximately written in the form 

-~-v ) I exp cA exp(i k 2 (__i k 2 k " -]-~v)d p ~-~cAk2f2exp(i -f]-v2)~ (v), ( 2 . 8 )  

where  ~(v)  i s  t h e  D i r a c  d e l t a  f u n c t i o n .  Thus,  t he  f i r s t  t e rm in  ( 2 . 7 )  d e s c r i b e s  the  f i e l d  
d i s t r i b u t i o n ,  which  i s  a n a r r o w  maximum o f  t he  f o c u s e d  r a d i a t i o n  on t h e  l e n s  a x i s  in  i t s  
f o c a l  p l a n e .  Th i s  p a r t  o f  t h e  f i e l d  E(v)  c o n t a i n s  no i n f o r m a t i o n  on t h e  o b j e c t .  

The i n f o r m a t i o n  on t h e  o b j e c t  i s  c o n t a i n e d  i n  t he  second  te rm o f  ( 2 . 7 ) .  This  term can 
be a p p r o x i m a t e l y  w r i t t e n  i n  t he  form 

Integrating next with respect to the coordinate ra, we obtain 

�9 k 2 E * ( r  L 
_ 

Substituting (2.8) and (2.10) in (2.7), we obtain the following expression for the field 
in the focal plane of the lens: 

E(v)=cAk2/2exp(i k 2 L 

When r e c o r d i n g  t h i s  f i e l d ,  t he  c e n t r a l  maximum d e t e r m i n e d  by t h e  f i r s t  t e rm i n  the  s q u a r e  
b r a c k e t s  can  be f i l t e r e d  ou t  by a s u i t a b l e  s c r e e n .  The a r e a  o f  t h i s  s c r e e n  must  be s m a l l  
enough n o t  to  o b s c u r e  t he  b a s i c  i n f o r m a t i o n - c a r r y i n g  p a r t  d e t e r m i n e d  by t he  second  te rm i n  
t he  s q u a r e  b r a c k e t s  o f  ( 2 . 1 1 ) .  We i n t r o d u c e  f o r  t h i s  t e rm a s p e c i a l  d e s i g n a t i o n  

= n V) d2r, (2 .12)  

where  e2 i s  a c o n s t a n t  c o e f f i c i e n t .  

The f u n c t i o n  F(x)  d e f i n e d  by an i n t e g r a l  o p e r a t i o n  on t h e  f u n c t i o n  ~ (y ) ,  o f  t h e  form 

F (x) = I ~ (y) ~* (y + x) d~y, (2.13) 

i s  c a l l e d  t he  a u t o c o r r e l a t i o n  f u n c t i o n  [ 5 ] .  Thus,  i f  t h e  t r i v i a l  phase  f a c t o r  p r e c e d i n g  t h e  
i n t e g r a l  i n  (2 .12 )  i s  d i s c a r d e d ,  t h e  i n f o r m a t i v e  p a r t  o f  t he  f i e l d  i n  t he  f o c a l  p l a n e  o f  t h e  
l e n s  i s  t h e  a u t o c o r r e l a t i o n  f u n c t i o n  o f  t he  t a r g e t - i m a g e  f i e l d .  

The p h o t o g r a p h i c  p l a t e ,  p l a c e d  i n  t he  f o c a l  p l a n e  o f  t h e  l e n s  t h a t  a f f e c t s  the  F o u r i e r  
t r a n s f o r m a t i o n  of  t h e  image in  t h e  r e d u c t i o n  o f  t h e  i n t e n s i t y  h o l o g r a m  r e s p o n d s  t o  t he  f i e l d  
i n t e n s i t y .  I t  w i l l  t h e r e f o r e  r e c o r d  an e m u l s i o n  p h o t o g r a p h i c - d e n s i t y  d i s t r i b u t i o n  p r o p o r -  
t i o n a l  n o t  t o  t h e  f i e l d  a u t o c o r r e l a t i o n  f u n c t i o n  E i ( v )  , bu t  t he  s q u a r e  o f  i t s  modulus  ( i n -  
tensity), 

L + ~ -  v)d2rld2r~. .14) 

T u r n i n g  a g a i n  t o  t h e  e x p r e s s i o n  f o r  E i ( v ) ,  we see  t h a t  t he  f i e l d  formed as  a r e s u l t  o f  
p r o c e s s i n g  t h e  i n t e n s i t y  h o l o g r a m  does  n o t  depend on t h e  t u r b u l e n t  s t a t e  o f  t h e  a t m o s p h e r e .  
Th i s  was a c c o m p l i s h e d ,  however ,  a t  t h e  c o s t  o f  l o s i n g  p a r t  o f  t h e  i n f o r m a t i o n  on t h e  o b j e c t .  
G e n e r a l l y  s p e a k i n g ,  i t  i s  i m p o s s i b l e  to  r e c o n s t r u c t  u n a m b i g u o u s l y  t h e  image of  t he  o b j e c t  by 
means o f  t h e  a u t o c o r r e l a t i o n  f u n c t i o n  o f  t h e  image f i e l d .  Yet some i n f o r m a t i o n  on t he  s i z e  
o f  t h e  o b j e c t  r e m a i n s :  t h e  d i m e n s i o n  o f  t h e  r e g i o n  o c c u p i e d  by t h e  a u t o c o r r e l a t i o n  f u n c t i o n  
a l o n g  any d i r e c t i o n  i s  e q u a l  a p p r o x i m a t e l y  to  d o u b l e  t he  d i m e n s i o n  o f  t he  o b j e c t  i n  t h e  same 
d i r e c t i o n .  

Thus ,  by m e a s u r i n g  t he  w i d t h  o f  t h e  f i e l d  a u t o c o r r e l a t i o n  f u n c t i o n  [more a c c u r a t e l y ,  o f  
t h e  i n t e n s i t y  I i ( v ) ]  , we can  e s t i m a t e  t he  d i m e n s i o n s  o f  t h e  o b j e c t  i t s e l f .  F i n a l l y ,  i t  i s  
p o s s i b l e  to  p r e p a r e  b e f o r e h a n d  an a s s e m b l y  o f  s t a n d a r d  a u t o c o r r e l a t i o n  f u n c t i o n s  c o r r e s p o n d -  
i ng  t o  o b j e c t s  o f  known s h a p e ,  and compare t he  unknown c o r r e l a t i o n  f u n c t i o n s  w i t h  t he  s t a n d -  
a rd  ones .  P rob lems  c o n n e c t e d  w i t h  t h e  e f f e c t i v e n e s s  o f  such  c o m p a r i s o n s  a r e  a l r e a d y  in  t he  
r e a l m  o f  i m a g e - r e c o g n i t i o n  t h e o r y  and w i l l  n o t  be c o n s i d e r e d  h e r e .  
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2. Averaging over Realizations of a Gaussian Field. We return now to Eq. (2.14). The 
intensity distribution Ii(v) recorded on the photographic plate was the result of reduction 
of one sounding laser pulse. The distribution of the field E(r) corresponding to one pulse 
can differ strongly from the field distribution corresponding to another pulse. As a result, 
the recorded picture of the intensity distribution Ii(v ) is different for different realiza- 
tions. 

Assume that the target is immobile. In this case the general relative positions of the 
target and aperture do not change from pulse to pulse. However, owing to the different types 
of the external actions on the target and on the receiving apertures, there are always small 
shifts of the target relative to the aperture. As a result of these microscopic shifts (of 
the order of the wavelength) the amplitude-phase distribution of the field E(r) is different 
for different pulses even if the target is immobile. 

This raises the following question: What is the average intensity distribution in the 
plane of the photographic plate when several intensity holograms are processed? 

We consider first the case of a diffusely reflecting target. According to (2.13) we 
have 

Consequently, to solve the problem, it is necessary to calculate a correlation function of 
the form 

<E (rl) E* (r2) E (~8) E" (r~)>. (2 .16)  

This can be done by assuming that the field reflected from the target surface is Gaussian. 
This assumption is valid only for a diffusely reflecting target. In this case the field is 
the result of the action of a large number of random parameters determined by the diffuse 
character of the reflection. By virtue of the central limit theorem, such a field can be 
regarded as Gaussian. It must be emphasized that a field reflected from a specular target 
cannot be regarded as Gaussian. Therefore, the result obtained below pertains only to the 
case of a diffusely reflecting target. 

The following equality holds for the random Gaussian quantity E(r) [6]: 

<~(rl)'E*(~'2)E(~'8)E*(~'4)> -~-<E(~'I)E*(~'2)><E(~'8)E*(r4)> -~<E(rl)E*(r~)>(E*(r2)E(r~)~, (2.17) 
and is a particular case of a more general property of Gaussian fields [6]: 

�9 * . . * . . . E * < E l ,  , ~nEn+l , E2n>mZ<E1E:+a(1,> < ~E~+a(n)>, (2 .18)  
a 

where a(j) denotes all the possible permutations of the numbers I, 2, ..., n, and the summa- 
tion is over all these permutations. Equation (2.18) is valid for a Gaussian quantity E with 
a zero mean value. 

We shall use (2.17) to calculate the integral (2.15). The integrand is here 

<E(rl) E'(r2)E'(r 1 +/v)E(r2+-~-v)>=<E(rl)E'(r2)><E'(rl +/v)E(~'~-~--~-v)>--~- (2.19) 

The field at the surface of a diffusely reflecting target is delta-correlated. We therefore 
obtain ultimately for the integrand 

L L v ) > ~ ( r l _ _ r 2 ) ~  - 
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where I(r) is the intensity of the field at the target surface. Substituting (2.20) in 
(2.15), we obtain 

it can be seen that the mean value of the intensity in the focal plane of the lens that 
affects the Fourier transformation in the reduction of the intensity hologram consists of 
two terms. The first term of (2.21) carries information on the object in the form of the 
autocorrelation function of the average value of the intensity. The second term in (2.21) 
describes a narrow intensity maximum in the center of the focal plane, with an amplitude 
that depends on the total energy reflected from the target. This term contains no informa- 
tion on the shape of the target, and can be easily filtered out by a suitable screen. 

Taking this into account, we are justified in writing down the informative part of the 
mean value of the intensity in the form 

The intensity values in (2.22) are averages over many realizations. This means that the dis- 
tribution <I(r)> in the integrand corresponds to the usual and not to the atmosphere-dis- 
torted target image obtained in white light. The spotty structure typical of images obtained 
in coherent light is smoothed out by the averaging. The average distribution of the informa- 
tive part of the signal recorded by reducing the intensity hologram is thus the autocorrela- 
tion function of the object image obtained in white light and not distorted by the atmosphere. 

We consider by way of example the autocorrelation functions typical of some simplest ob- 
jects. An illustrative method of forming the autocorrelation function of images with uniform 
intensity distributions is to shift the object image relative to itself and calculate the 
area of the common section of the two shifted figures (Fig. 2.2). Figure 2.3 shows the auto- 
correlation functions of certain objects. The ordinates are the amplitudes of the autocor- 
relation functions. 

It is important to note that the main fraction of the information obtained from the holo- 
gram-intensity method is information on the target size. These data are contained within the 
boundaries of the autocorrelation function. These boundaries, however, are smeared out since, 
as can be seen from Fig. 2.3, the amplitude of the autocorrelation function on the boundaries 
tends to zero. The last circumstance complicates greatly the analysis and the reduction of 
the intensity holograms. 

3. Inclusion of the Fresnel Approximation in the Hologram-Intensity Method. The pre- 
ceding analysis is valid when the target is in the Fraunhofer-diffraction zone relative to 
the aperture and is planar. The field at the target surface and the field at the aperture 
are connected by Fourier transformation only in this case. In most cases it is necessary, 
when determining the propagation of the field from the target to the aperture, to take into 
account in the integrand terms quadratic in the coordinates (see Chap. i). It is necessary, 
in addition, to take the longitudinal dimensions of the target into account. In place of Eq. 
(2.2) we then have the following expression for the field at the aperture: 

E 
= 

where a is a factor inessential for the analysis that follows. 

In the presence of a turbulent atmosphere we should write, in accord with (1.143), 

�9 k 2 . ~2 

where the function ~(r, p) takes into account the turbulence of the atmosphere. We note that, 
in a rigorous analysis to which we now proceed, it is necessary to take into account in the 
function ~ the dependences on both p and r. Therefore, Eq. (2.3), in which only the depend- 
ence of the function ~ on p is considered, is, generally speaking, approximate. The validity 
of such an approximation will be discussed later. 
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Using (2.24) for the field at the receiving aperture, we obtain an expression for the 
transmission coefficient of the photographic plate that records this field: 

T{f~)---'~i --sl I E(rl)E* (r2)exp{ ikF~-r~ ( - ~ 7 )  ] P ) -~  ( 2 , *  r p)}d2rld2r2, (2.25) 

where, as before, ~i = ~ l al 2 Double integration is carried out in (2.25)over the target 
surface. After processing the recorded intensity hologram, the field at the focal plane of 
the lens is equal to [in accord with (2.5) and (2.6)] 

E(v)=cAexp(i k_~]. v ) I e x p 2  (--i k-T f~v)X [t --~1 f E(r,)E*(r2)exp{ik[~-~ - (2.26) 

The first integral in (2.26) is calculated in the plane of the lens that affects the 
Fourier transformation. This integral breaks up into two terms. The first is of the form 

2,~ R 

k cosO) lp]d l~ fdO ' El(v)=cAexp(i ~v~) I Iexp(-i-T]Pllv I (2.27) 
O 0 

where 9 is the angle between the directions of the vectors p and v, and R is the radius of 
the lens. It is easily seen that the distribution of the field El (v) is the well-known dif- 
fraction distribution in the focal plane of the lens: 

In the limit a~ R § ~ this distribution goes over into the distribution (2.8). 

The second term in (2.26), the informative part of the field in the focal plane of the 
lens, is 

(2.29) 
2L ~-(n--~-)(r l--r2)]-]-*(r l ,  ~)-~-**('~'2, P)ld2r, d2r2d2p �9 

It can be seen that, in the general case, the informative part of the field obtained as 
a result of the data reduction is not equal to the autocorrelation function of the image field 
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E(r). In addition, the field Ei(v) is found to depend on the turbulent state of the atmo- 
sphere. Obviously, total compensation for the atmospheric turbulence is possible only under 
the condition 

~ ( r  1, p ) : - - ~ * ( r ~ ,  p). (2.30) 

The function ~(r, p) describes both the phase and the amplitude distortions of the field at 
the receiving aperture. In 1 of Sec. 2.1 we used a phase approximation for the function 
and assumed furthermore that the function ~ which describes the phase fluctuations of the at- 
mosphere depends only on the coordinate p on the receiving aperture: 

(r, p) ~ i~ (p), (2 .31)  

where ~ (p) is a real function. In this approximation the intensity-hologram method cancels 
out completely the distortions due to the atmospheric turbulence. 

Equation (2.31) imposes simultaneously two conditions on the function ~(r, p). The 
first is that account be taken of only the dependence on the coordinate p. In the geometric- 
optics approximation this means that all the rays that go from different points r of the ob- 
ject surface to one point p of the receiving aperture pass through the same sections of the 
turbulent layer of the atmosphere. Obviously, the smaller the object, i.e., the closer to 
one another the outermost points r on its surface, the more accurately is the equality 
~(r, p) = ~(p) satisfied. The range of coordinates r within which this equality holds is 
called the isoplanatism region or zone. When objects in outer space are viewed from the 
earth's surface, the principal role is played not by the linear but by the angular dimension 
of the isoplanatism zone. For observation angles close to that of the zenith, this dimension 
is equal to several seconds of angle at a wavelength X = 0.5 pm. 

The second condition is that the real part of ~(r, p) be discarded as insignificant. By 
the same token, account is taken of the phase and not of the amplitude field fluctuations 
due to the passage of the radiation through the turbulent atmosphere. If the atmospheric- 
turbulence region were an infinitely thin phase transparency placed in front of the receiv- 
ing aperture, condition (2.31) would be satisfied for points r separated by arbitrary dis- 
tances, and the isoplanatism region would be infinitely large. Equation (2.31) is therefore 
frequently called the phase-transparency approximation. 

Let us assume that condition (2.31) is satisfied, and let us examine how the terms quad- 
ratic in r of the expansion in the exponential under the integral sign of (2.29) influence 
the result. In accord with the foregoing we have 

(2 .32)  
f rT2 T2 

X exp ~ik~-&~L' 2 + n  ( r  1 - -  r2) - - ( ~ + ~ - ~ - ) p ] }  d2rld2r2d~p. 

We separate in this expression the integral with respect to the coordinate p, calculated 
in the plane of the Fourier-transforming lens: 

f 
If the dimensions of the integration region are allowed to tend to infinity, the integral in 
(2.33) can be assumed approximately equal to 

(2.34) 

( where ~ ~i --r~- Tv is the Dirac delta function and the subscript p of the vectors r:p 

and r2p denotes the projections of these vectors on the aperture plane. Since the integra- 
tionwill hereafter be carried out everywhere on the target surface visible from the receiv- 
ing aperture, a one-to-one correspondence exists between the vector r and the vector rp. The 
vector r is then represented as the sum rp + rn, where rn is the projection of the vector r 
on the vertical axis of the receiving aperture, whose direction is specified by the unit 
vector n. The scalar products rp is then equal to rpp. In addition, owing to the one-to- 
one correspondence between the vector r and the vector rp, a delta function of type (2.34) 
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has the same "cut-out" action on the functions that depend on rp and on the functions that 
depend on r. 

An approximation such as (2.34) for the integral (2.33) is valid when the minimum dimen- 
sion d of the region we wish to distinguish on the target surface satisfies the relation 

dD/Lk>~i, (2.35) 

where D is the diameter of the aperture. The physical meaning of this inequality is that 
the size of the diffraction resolution element on the target should be many time smaller 
than the minimum size of the region we wish to resolve on the target. 

With allowance for these values, expression (2.32) reduces to 

2 2 L v~d2rld2r2 ' ]  Ei(v)~-%exp(i ~--Tv2) f E(r')E*(r2)exp[ik(rl--'22L + n ( r l - - r ~ ) ) ] 3 ( r l e - - r 2 o + T  (2.36) 

where a3 = c3L2X 2. In view of the one-to-one correspondence between r and rp, the field E 
can be written as a function of the argument rp. We integrate in (2.36) with respect to the 
argument r2. This calls for putting r2p = r~p + [(L/f)v] everywhere in the integrand. This 
value of the projection on the aperture plane is possessed by the vector r2, whose projection 
on the n direction is equal to r2n. In this notation, we obtain 

Ei(v)=%exp(i~--~v2)f E(r]~ )E (r iP-]-- i -v)  exp f 2~ v ~  2L 

where r~ n is the projection of the vector r~ on the n direction. It must be emphasized that 
r~n, unlike r~n, is in this expression the n-projection of a vector r~ such that its projec- 

L 
tion on the aperture plane is r2~----r~-~v. Thus, r=n is a function of r~ . 

It follows from (2.37) that allowance for the quadratic terms of the expansion in (2.29) 
connects the informative part of the field in the focal plane of the transforming lens with 
the field on the target surface by a more complicated integral transformation than the auto- 

correlation transformation. It must also be emphasized that the exponential exp(--i~l~V) 

in (2.37) is rapidly oscillating and cannot be replaced by unity. In fact, the maximum value 
of the argument of the exponential is of the order of 

2~Dtl~'l/~f, (2 .38 )  

where D t is the transverse dimension of the target. From elementary geometric relations we 
have* 

n v/ l  I = I I ( 2 . 3 9 )  
As a r e s u l t  we f i n d  t h a t  t h e  maximum v a l u e  o f  t h e  a rgument  o f  t h e  e x p o n e n t i a l  i s  

:!~/)~]i~L. (2 .40 )  

As a r u l e  Dt = D. I t  f o l l o w s ,  t h e r e f o r e ,  f rom (2 .35 )  t h a t  

2~D~/~L~.2~ (2 .41)  

and ,  c o n s e q u e n t l y ,  t h e  e x p o n e n t i a l  i n  (2 .37 )  i s  r a p i d l y  o s c i l l a t i n g .  Thus ,  i n  each  i n d i v i d u -  
a l  r e a l i z a t i o n  t he  r e s u l t  o f  the  i n t e n s i t y - h o l o g r a m  r e d u c t i o n  d i f f e r s  f rom the  a u t o c o r r e l a -  
t i o n  f u n c t i o n  o f  the  f i e l d  a t  t he  t a r g e t  s u r f a c e .  

Le t  us see  to  what  the  r e d u c t i o n  r e s u l t  a v e r a g e d  ove r  a l l  t h e  r e a l i z a t i o n  c o r r e s p o n d s .  
From (2 .37 )  we o b t a i n  the  s o u g h t  e x p r e s s i o n  f o r  the  r e s u l t a n t  i n t e n s i t y  d i s t r i b u t i o n  

</i(v)>-~-Is3] 2 E(r~e) E (r~e) E r~ , I (2 .42)  

{ [ ~ - -v~ ,~Lr~ t-r~j~_rl,, . , ., /-1 . ,  ltd2rld2r,r Xexp /'k 'PI?, - -  ? 2n-- tin-J[- ? 2n (?*lo '~]p) V 

*We disregard here the scale change due to the magnification of the telescope (see footnote 

on p. 444). 
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We consider only the case of a diffusely reflecting target. 
basis of (2.20), 

We then obtain, on the 

- -  - -  a " q a  r I -~ h~ v , 

(2.43) 

where h is a certain constant whose exact value is immaterial to us. The second term in this 
equation is a narrow intensity maximum at the center of the pattern and contains no informa- 
tion on the shape of the object. Of interest is only the first term, which after integration 
with respect to the coordinate r~ is transformed ultimately into 

All the terms containing rn cancel each other, since rln = r'in at rlp = r'~p. Thus, the in- 
tensity averaged over all the realizations is the autocorrelation function of the average in- 
tensity distribution over the object. 

It must be emphasized once more that this result pertains only to the case of a diffuse- 
ly reflecting target. In the case of a specular target, as indicated earlier, the result of 
the reduction is not the intensity autocorrelation function. This fact is confirmed by ex- 
periments. We note also that the intensity hologram is not sensitive to changes of the re- 
flected-field polarization. The last circumstance is quite obvious. In fact, if we intro- 
duce the unit vector e(p) of the field polarization at the aperture, the field takes the form 

F(~)=e(~)E(~). 
Calculating the field intensity, we get 

1 ( o ) = e ( p ) e ( p ) l E  (~)12=1 E (~)l 2 , 

i . e . ,  t h e  i n t e n s i t y  h o l o g r a m  d o e s  n o t  d e p e n d  on  t h e  p o l a r i z a t i o n  o f  t h e  i n c o m i n g  r a d i a t i o n .  

4. Resolving Power of the Intensity-Hologram Method. It is clear from the foregoing 
that the intensity-hologram method does not always, generally speaking, eliminate completely 
the influence of the atmospheric turbulence. In the general case, therefore, the possibility 
of target recognition is determined both by intrinsic (instrumental) properties of the ap- 
paratus and by the turbulence of the atmosphere. 

In some cases, as shown, the intensity-hologram method cancels out completely the at- 
mospheric turbulence. The character of the recorded pattern is then determined only by the 
properties of the recording apparatus itself. In contrast~ however, to the usual systems 
that produce a simple image of the target, the intensity-hologram does not make it possible 
to establish a one-to-one correspondence between the object and the recorded pattern, which 
is the autocorrelation function of the image of this object. Therefore, the standard concept 
of resolving power, based on the Rayleigh criterion, cannot be applied directly in this case. 
Nonetheless, in practice it is necessary to assess the suitability of some particular optical 
system for use in the intensity-hologram method. We must therefore establish some criterion 
for the quality of optical systems used in the intensity-hologram method. 

To this end, we turn again to Eq. (2.32), which expresses the informative part of the 
field at the plane where the autocorrelation function is recorded in terms of the field dis- 
tribution on the target surface. An exponential factor in the form 

is contained in (2.32) and in the entire preceding algebra, in the form of a multiplier of 
the distribution of the field E(r) on the target surface. It is therefore natural to intro- 
duce a generalized amplitude--phase distribution of the field El(r) defined as 

�9 ~ nr~]. (2.44) /J  
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The part 

E (r) exp (iknr) 

of (2.44) constitutes the field reflected from the target and considered in a plane perpen- 
dicular to the axis of the receiving aperture (the n direction) and passing through the ori- 
gin of the vector r (Fig. 2.4). 

We set the generalized field distribution El (r) in correspondence with the correlation 
function 

F (X) = f E1 (f) E1 (P -~ X) a~r. (2.45) 

The integration in (2.45) is over the target surface. Since a one-to-one correspondence 
exists between the vector r and its projection rp on the aperture plane, the vector rp can be 
chosen as the argument of the function El. The integration in (2.45) can also be transformed 
to a plane parallel to the receiving aperture, replacing d2r by Jd2rp, where J is the Jacobian 
of the transformation. 

In the case of a specular target, its surface is parallel to the aperture plane (i of 
Sec. 1.2) and the Jacobian is equal to unity. If, however, the target is diffuse, the in- 
tegration over the target surface is, in accord with what was said in i of Sec. 1.2, in fact 
summation over individual independent point sources, and the function El(r) is proportional 
to the density of placement of these sources. The number of summed points does not depend on 
the Jacobian that transforms the elementary integration areas. Therefore, Eq. (2.45) can be 
formally written in the form 

F (~) = I E1 (rp) E~ ( r  @ x) dzp, (2.46) 

where the vector x lies in the same plane as the vector rp, and the symbol dqp denotes inte- 
gration over this plane. 

The intensity-hologram method forms in each realization an analog of distribution (2.46); 
this analog is somewhat "spoiled" by the optical data-reduction system. It can thus be as- 
sumed that, in the intensity-hologram method, the primary autoeorrelation function F(x) is 
transformed into the recorded autocorrelation function FI(x). The more accurately F~(x) 
duplicates F(x), the better the data-reduction system. 

We show now that F1(x) is the result of a linear transformation of the function F(x). 
In fact, it follows from (2.32) and (2.33) that the informative part of the recorded field is 

where 

B 

The i n t e g r a t i o n  in  (2.47) i s  over  a s u r f a c e  p a r a l l e l  to the  r e c e i v i n g  a p e r t u r e  and in  (2.48) 
over the surface of the transforming lens. 
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We introduce a new system of variables 

L (2.49) 

Expression (2.47) can thus be written in the form 

Ei(~ ) : __,2exP (/ k_~.. ~fl ) I .~1 ( , ~ l p ) 2  E~(~I ~ _}L TV  _ L  ,l~) G ( . )  d~pld~u, (2.50) 

where d~ u denotes integration over a new region defined by the transformation (2.49). Using 
(2.46), we obtain 

E i (v)~-----e2exp(i ~--~]-V2) IF(-~-V-- u)G(u)dz u (2.51) 

As indicated in 2 of Sec. 2.1, for an ideal optical system with infinite resolving power we 
have 

G (u) = k2L2~ (u). 

S u b s t i t u t i n g  t h i s  e x p r e s s i o n  i n  ( 2 . 5 1 )  we h a v e  

whe re  c = %2L292. 

A c t u a l l y ,  any  r e a l  o p t i c a l  s y s t e m  h a s  a f i n i t e  r e s o l v i n g  power .  
found  t o  be  p r o p o r t i o n a l  t o  t h e  f u n c t i o n  F ~ [ ( L / f ) v ] :  

where Fx is a linear transformation of the function F: 

(2.52) 

(2.53) 

The recorded field is 

(2.54) 

F 1 (x) ~--- i F (w -- u) G (u) d%. (2.55) 

Equation (2.55) is a perfect analog of a formula, known from the theory of optical systems, 
which connects the image field E(x) at the entry to the optical system with the image field 
El(y) at the exit from the optical system [4]: 

E1 (Y) ~ f E (y - -  x) G (x) ~x ,  ( 2 . 5 6 )  

where  t h e  f u n c t i o n  G(x)  i s  t h e  s o - c a l l e d  s c a t t e r i n g  f u n c t i o n  o f  t h e  s y s t e m .  

The s c a t t e r i n g  f u n c t i o n  i s  u s u a l l y  i n t r o d u c e d  f o r  image  t r a n s m i s s i o n  s y s t e m s .  I t s  
p h y s i c a l  mean ing  i s  t h e n  t h e  d i s t r i b u t i o n  o f  t h e  f i e l d  p r o d u c e d  in  t h e  r e c o r d i n g  p l a n e  by  a 
p o i n t  s o u r c e  a t  t h e  s y s t e m  e n t r y .  The w i d t h  o f  t h e  s c a t t e r i n g  f u n c t i o n  d e t e r m i n e s  t h e  r e s o l u -  
t i o n  o f  t h e  s y s t e m  f o r  image t r a n s m i s s i 6 n .  For  an a b e r r a t i o n - f r e e  o p t i c a l  s y s t e m ,  t h e  f u n c -  
t i o n  G(x)  n o r m a l i z e d  to  u n i t y  a t  z e r o  i s  e q u a l  t o  

2~ ,~,('2~ I x I R] /~ I , ,  x In ,  (2.57) G(x) 
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where R is the radius of the exit pupil of the optical system, f is the focal length of the 
lens, and J1 is a Bessel function of first order. The form of the function G(x) is shown in 
Fig. 2.5. 

In optics, the resolving power of incoherent optical systems is determined by using the 
Rayleigh criterion [7]. According to this criterion, the measure of the resolving power of 
an ideal incoherent optical system is taken to be the distance between the origin and the 
first zero of the function G(x). In accordance with this definition, for an incoherent 
optical system the minimum resolvable size of an element in the target plane is equal to 

where D is the diameter of the exit pupil. 

The basis for the Rayleigh criterion is the experimental fact that the human eye is cap- 
able of distinguishing between the images of two incoherent point sources if they are separ- 
ated by a distance not less than (AX)mi n. In this case, the intensity in the minimum between 
two images is about 70% of the intensity at the maximum. When an image is formed in coherent 
light, this relation is satisfied at 

aX)m:~ ~ ~ ~ = 1.7 -5" [" (2.58) 

The d i s t r i b u t i o n  o f  t he  t o t a l  f i e l d ,  o b t a i n e d  i n  t h i s  c a s e ,  i s  shown i n  F i g .  2 . 6 .  

Us ing  t h e  c o m p l e t e  a n a l o g y  b e t w e e n  ( 2 . 5 5 )  and ( 2 . 5 6 ) ,  we i n t r o d u c e ,  s t a r t i n g  w i t h  
( 2 . 4 8 ) ,  t h e  s c a t t e r i n g  f u n c t i o n  f o r  t h e  i n t e n s i t y - h o l o g r a m  me thod :  

W ~!~) d p. (2.59) G ( u ) =  f exp(__i k 2 
8 

I t  can  be  s e e n  t h a t  t h e  i n t r o d u c e d  s c a t t e r i n g  f u n c t i o n  c o i n c i d e s  w i t h  t h e  s c a t t e r i n g  f u n c t i o n  
f o r  an i d e a l  o p t i c a l  i m a g e - f o r m a t i o n  s y s t e m  i f  we r e p l a c e  i n  t h e  l a t t e r  t he  f o c a l  l e n g t h  f o f  
t h e  l e n s  by  t h e  d i s t a n c e  L to  t h e  t a r g e t .  

Assume now t h a t  t h e  d a t a  we re  r e d u c e d  u s i n g  t h e  i n t e n s i t y  h o l o g r a m  o f  t h e  f i e l d  p r o d u c e d  
by  two p o i n t  s o u r c e s ,  

E (r) -~ ~ (r ~- d/2) Jr- ~ (r - -  d/2), ( 2 . 6 0 )  

where  d i s  t he  d i s t a n c e  b e t w e e n  t h e  s o u r c e s .  The u n d i s t o r t e d  a u t o c o r r e l a t i o n  f u n c t i o n  i s  
(Fig. 2.7) 

F (r) = ~ (r -~ d) ~- ~ (r - -  d) ~- 2~ (r). 

The r e c o r d e d  a u t o c o r r e l a t i o n  f u n c t i o n  i s  o b t a i n e d  by s u b s t i t u t i n g  ( 2 . 6 1 )  i n  ( 2 . 5 5 ) :  

( 2 . 6 1 )  

F 1 (x) ---- G (x -~- d) @ G (x -- d) @ 2G (x), (2.6 2) 

where x = Lv/f. 

If the optical system used to reduce the intensity hologram is aberration-free, we have 
for a round aperture, according to the definition (2.59), 
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2] [2= ~R~t2~ G ($) ---- lk). L ]lkL XR. ( 2 . 6 3 )  

Hence ,  a c c o r d i n g  to  t h e  R a y l e i g h  c r i t e r i o n ,  a d i s t i n c t i o n  can  be  made b e t w e e n  t h e  i n d i v i d u a l  
componen t s  c o n t a i n e d  i n  ( 2 . 6 2 )  i f  d > (AX)min, where  t h e  minimum r e s o l v a b l e  s i z e  o f  an e l e -  
ment  i n  t h e  t a r g e t  p l a n e  i s  

(2.64) ( ~ z ) ~  = t .7 -5- L. 

The picture, corresponding to this case, of the distribution Y1(x) in the registration plane 
is shown in Fig. 2.8. 

The angular resolution of the intensity-hologram method is thus 

( ~ ) ~  (~) ~ 
- -  L = l '7-b-  �9 (2.65) 

Comparison of (2.65) with (2.58) shows that the intensity-hologram method has the same 
angular resolving power with respect to the autocorrelation function as are possessed, rela- 
tive to an object image in the absence of turbulence, by diffraction-limited optical image- 
formation systems. 

5. Radiation Monochromaticity Requirements. One of the features of the intensity- 
hologram method is the need for ensuring high monochromaticity of the sounding laser radia- 
tion. The point is that the interference pattern on the surface of the receiving aperture 
must be maintained stationary during the entire length of the sounding pulse. This means, in 
turn, that the field on the entire surface of the target should be spatially coherent at each 
instant of time. 

The field of the sounding radiation is in first-order approximation on assembly of trains 
within which the field is coherent in time, while the individual trains are not coherent with 
one another. As a result, when such a wave is incident on an object, surface regions are 
produced on it with fields that are not mutually coherent. These regions move over the ob- 
ject together with the sounding wave, causing blurring of the interference pattern on the re- 
ceiving aperture. Let us consider this phenomenon in greater detail. 

Let the field on the aperture be E(p, t). The spatial coherence of the field is deter- 
mined by the interference term E(~I, t)E*(p2, t). The intensity hologram calls for conserva- 
tion of the spatial coherence over the entire duration T of the sounding pulse, i.e., the 
function 

T 

S(Pl, P2)= I E(~I , t)E*(P2, t)dt (2.66) 
o 

must be close to its maximum value for all p~, 02 on the receiving aperture. In each realiza- 
tion, the fields E(p, t) are different. It is therefore necessary to require that the mean 
value of the function S(pl, 02), which is equal to 

T 

<S(~1, P2)>= f <E(~t, t)E*(p 2, t)>dt, (2.67) 
o 

be close to the maximum for all Pl, p2. 

We express the field E(O, t) of the receiving aperture in terms of the complex reflec- 
tion coefficient C(r) from the target surface. Assume that the sounding field is a plane 
wave propagating perpendicular to the aperture in the direction toward the target: 

A(t--~-)exp(iknr) ,  (2.68) 

where n is a unit vector in the direction of the outward normal to the aperture, and A(t -- 
nr/c) is the complex amplitude of the field. Then the field reflected from the target surface 
is equal to 

E(r, t) m-C (r)A(t--n-~-~c )exp(iknr). ( 2 . 6 9 )  
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Taking (2.68) and (2.69) into account, the field on the receiving aperture is 

E (p, t) i (t ~r R (Pc' v) :TFE I _4 c )C( r )  exp[ikR (~, r)--~-iknr]~r, (2.70) 

where L is the distance to the target and R(p, r) is the distance between the points p and r. 
The integration is over the surface of the target. Carrying out the usual expansion of the 
function R(@, r) (Chap. i), we confine ourselves to the principal term of this expansion: 

R (~, r )  : n~" -6 L. 

S u b s t i t u t i n g  (2.71) and (2.70) in  (2 .67) ,  we ob t a in  

<S(~t' ~2)>=~LL 2 i f  ~A(t--2 njh L),A.(t__2nrc2 
0 

X exp [ik (R (~1' r l )  - -  R (~2' ~2) ~-- n ( r  I - -  r2))] cPrld2r2dt. 

(2.71) 

L )} C (rl) C* (r2) X 
(2.72) 

Since we are interested only in the temporal coherence of the sounding radiation, only the 
function A in (2.72) need be averaged. By definition, the temporal correlation function of 
the sounding field is equal to 

B (~) = <A (t) A* (t ~ x)>. (2.73) 

Expression (2.72) is then reduced to the form 

<S(~l ,  ~2)>_____ ~ - - ~ i S ( 2  I ? ~ ( ~  - r 2 )  l )C(~l)C*(T2)oxp'[[k(~(~l, ~ 1 ) - - ~ ( ~ 2  , ~ 2 ) + n ( T l - - ~ 2 ) ) ] ~ 2 F 1 d 2 F 2  . (2.74) 

The distribution of the recorded intensity hologram is obtained from (2.74) by putting 
p~ = p2. In fact, when the intensity hologram is formed, the photographic density of the 
emulsion is proportional (within the limits of the linearity region) to the total radiation 
energy absorbed at a given point p of the photorecorder, i.e., proportional to the quantity 

T 

I[E(p,  t)]2dt=S(p, ~). 
0 

The mean value of this quantity is expressed, obviously, by Eq. (2.74) at p~ = P2. 

If the coherence of the sounding radiation is so small that the function B in (2.74) 
changes much more rapidly than the exponential in the same formula, the correlation function 
B can be approximately represented in the form 

B(2 )n(r~ce2)))=e<IA]2);(rl--r~), (2.75) 

where ~ is a normalization coefficient. We carry out the normalization in such a way that 
the mean value of the power incident on the receiving aperture corresponds to uniform scat- 
tering into a solid angle of 2~ sr. Such a normalization corresponds to the considered case 
of a diffusely reflecting target. 

Substituting (2.75) in (2.74) we obtain the following expression for the average power 
P(p) at the point p of the receiving aperture: 

<S(P,T p)5 __ p (~)__-- ~--~ ~ l  A [ =} IIC(r) l~d2r. (2.76) 

Since this expression is independent of p, the total power incident on the entire aperture is 
obtained from (2.76) by simple multiplication by the area S a of the receiving aperture. On 
the other hand, calculating the average power that propagates after reflection from the tar- 
get into the solid angle subtended by the receiving aperture, we find that the total power in- 
cident on the aperture is equal to 

S~ P = 2-f~-<l A 12> I 1C (r)]2d2r. (2.77) 

Comparing (2.77) and (2.76), we arrive at the conclusion that the normalization coefficient 

is 

456 



= =~2=. (2.78) 

Returning to (2.74), we find that, under condition (2.75), the distribution of the re- 
corded intensity hologram is of the form 

j2 <S(~, ~)>-----f~U-</A[2>flC(~) d2r (2.79) 

and does not depend on p. Consequently, its contrast is zero in the considered case, and the 
intensity hologram itself contains no information whatever on the shape of the object. 

In order for the contrast of the recorded hologram to be close to the maximum, it is 
necessary to satisfy the condition 

{2 r'  }ma (2.80) 

where T c is the coherence time of the sounded radiation. As an estimate of the left-hand 
side of (2.80) we can assume 

) m a x  C 

where D t i s  the  l o n g i t u d i n a l  d i m e n s i o n  of  t he  t a r g e t  a long  the  v e c t o r  n .  C o n s e q u e n t l y ,  t he  
condition imposed on the sounding-radiation coherence time is of the form 

To>> 2 D t .  (2.82) 
C 

The spectral width AX of the sounding radiation is therefore obtained from the formula 

c~ " 

Let us cite some estimates. Let % = 0.69 ~m and Dt = 1 m. We then obtain from (2.82) 

Ak~2--~t =2.10-4 nm. 

The formulated requirement on the coherence of the sounding radiation is very stringent. 
The physical explanation of such stringent requirements is that, in the intensity-hologram 
method, one has interference of waves from different points of the target surface. It is 
therefore necessary that the coherence length of the sounding radiation be much greater than 
the longitudinal dimensions of the target. The development of lasers with sufficient output 
pulse energy and with approximate spectrum width i0 -4 nm is a complicated problem. It is pre- 
cisely the stringent requirements on the coherence of the laser radiation which limit the use 
of the intensity-hologram method, despite the relatively simple apparatus needed for its 
realization. 

6. Experimental Results. An experimental setup for the intensity-hologram method is 
illustrated in Fig. 2.9. Figure 2.9a shows only the receiving part of the installation. A 
pulsed ruby laser (X = 0.69 ~m) operates in the free lasing regime. An optical system guides 
the radiation to the object located about 1 km away. The reflected radiation is received 
with a telescope. A special optical system transforms the focused radiation at the output of 
the telescope into a parallel beam and directs it to the recording photographic film. Thus, 
the image of the input pupil of the receiving telescope is changed in scale and is transferred 
to the photographic film. Part of the parallel beam is diverted to an objective that forms 
in its focal plane the object image recorded on the film. 

The recorded hologram is processed in accordance with the scheme shown in Fig. 2.9b. 
The reconstruction is by a laser operating at 0.63-~m wavelength in the fundamental trans- 
verse mode. A diaphragm placed in the focal plane of the first lens affects additional mode 
selection. The photographic film with the recorded hologram is placed in the parallel beam 
ahead of a second focusing objective. The autocorrelation function is recorded in the focal 
plane of the objective. 

Figure 2.10 shows successive films of originals of different objects (a), their images 
(b) distorted by turbulent atmosphere, the intensity holograms (c), and the autocorrelation 
functions reconstructed from them (d). 
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The first object comprises three pointlike sources. The angular dimension of the ob- 
ject is =6 sec of angle. In the direct image channel this object can hardly be resolved. 
The images of the individual points are strongly blurred by the amplitude and phase fluctua- 
tions of the atmosphere, and also by the aberrations of the receiving optical system. The in- 
tensity hologram of such an object has a regular structure not distorted by the atmosphere. 
Against the background of the ordered structure of the intensity hologram are visible the 
amplitude fluctuations. Six points at the vertices of a regular hexagon are located in the 
reconstructed autocorrelation function around the zeroth order. An estimate of the quality 
of the obtained autocorrelation function has shown that the resolving power of the method 
was, in this case, =i sec of angle. The diffractive resolving power of the employed tele- 
scope in coherent light at a wavelength 0.69 ~m was 0.51 sec of angle. 

The second object comprises two point sources. The angle distance between the two 
points is 0.3 sec of angle. In the direct-image channel this object cannot be resolved at 
all, but the obtained autocorrelation function made it possible to resolve distinctly two 
points symmetric about the center. In this experiment, the diffractive resolving power of 
the receiving telescope in coherent light of 0.69-~m wavelength was 0.15 sec of angle. 

2.2. Method of Modified Michelson Interferometer 

I. General Description of Method. The main feature of the intensity-hologram method 
considered in the preceding section is the need for using lasers having a very high degree of 
radiation monochromaticity. The modified-Michelson-interferometer method, hereafter called 
for brevity simply the interferometric method, relaxes substantially the requirements im- 
posed on the laser-emission coherence [8]. 

The interferometric method is based on a modification of the Michelson interferometer 
(Fig. 2.11) [9, i0]. Two cube-prisms mounted in the interferometer arms are skewed 90 ~ rela- 
tive to each other. In the recording plane A the interferring fields are those reflected 
from each cube-prism. If a field E(x, y) enters the interferometer, the field interferring 
in the recording plane A are E~ = E(--x, y) and E2 = E(x, -y). By making the change of vari- 
able xl =--x, we find that El = E(@), E2 = E(-~), where @ = (xl, y). Thus, one of the two 
interferring fields is equal to the other, but is turned through 180 ~ 

It will be shown below that for a practical realization of the interferometric method 
it is necessary to tilt the cube prisms in the interferometer arms. If the edge of one of 
the cube prisms is deflected from the vertical axis by an angle ~, and the edge of the other 
is deflected from the horizontal by an angle a2, the fields interferring in the recording 
plane A are 

E~ = E (~) exp (ik~g), E~ = E (--~) exp (iko~x). 

As a result, the interference term is equal to 

EIE ~ = E (~) E ~ (--~) exp (tk~p), (2.83) 

where a = (--~2, ~I), k = 2~/~ is the wave number. By the same token, an additional spatial 
frequency ka is introduced into the interference term. 
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The fields interferring in the modified Michelson interferometer are produced by each 
individual target-surface point in the two interferometer arms. To produce the interference 
pattern, it is not at all necessary to have, during the recording interval, total coherence 
of the fields produced by the different points of the target surface. On the contrary, as 
will be made clear in the following, the interferometric method calls for absence of coher- 
ence during the recording interval between the individual radiating points on the target sur- 
face. 

At the same time, the sounding radiation must not be excessively broadband, since mutual 
coherence of the fields in the interferometer arms is essential. Namely, the coherence 
length of the sounding radiation should be larger than the path difference of the rays in the 
interferometer arms. In practice, it is not particularly difficult to achieve a ray-path dif- 
ference not larger than 1 mm. At a wavelength X = 0.69 ~m such a coherence length corresponds 
to a spectrum width AX = 0.48 nm. It is therefore usually required that the width of the 
sounding-radiation spectrum be equal to several millimeters, so that the field on the target 
surface can ~e regarded as spatially incoherent during the recording interval. 

We consider now the gist of the interferometric method (Fig. 2.12). The field reflected 
from the target passes through a layer of turbulent atmosphere and is incident on the plane 
of the receiving aperture, thus producing a certain field distribution E(p). This field 
passes further through the modified Michelson interferometer and produces an interference 
pattern in the recording plane. The recorder is a TV camera tube. The video signal and the 
output of this tube is proportional to the field intensity in the recording plane. 

When working in the pulsed regime, the TV tube memorizes the pulsed intensity distribu- 
tion during one frame. The video signal picked off the TV tube is square-law-detected. The 
detector output signal is proportional to the square of the field intensity in the recording 
plane. The detected signal is extracted in the form of a picture on the screen of a video 
monitor. The image on this screen is the photographed and Fourier-transformed as described 
in the treatment of the intensity hologram in Sec. 2.1 (Fig. 2.13). 

We proceed now to a detailed description of the interferometric method. When account is 
taken of the turbulence of the atmosphere, the field at the receiving aperture is expressed 
in the form [Eq. (2.24)] 

2 . T2 E(~)=aexp(ik~fSL ) I E(r)exp[~k(~@nr--~-~-~)@,(~., p)]~r, (2.84) 

where a is a constant factor of no significance in what follows, E(r) is the field on the 
target surface, n is a unit vector normal to the aperture, ~ is a function that takes into 
account the turbulence of the atmosphere, and L is the distance to the target. 

Since the sounding radiation is not coherent during the recording interval, Eq. (2.84) 
must be supplemented by the time dependence of the field. We then obtain an expression sim- 
ilar to (2.70): 

nr L " ~= ~-) @ * (r, p)]~r (2.85) 

Here A(t) is a random function of the time and describes the time dependence of the sounding 
field, C(r) is the complex reflection coefficient of the target reflection; the integration 
is over the target surface. 
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The field intensity at the interferometer output is 

I(~, t ) = l E ( p ,  t)+E(--~, t)[ 2, (2.86) 

and the TV transmitting tube responds to the total field energy received during the recording 
time: 

T 

I , ( ~ ) ~  f I (~, t) dt, ( 2 . 8 7 )  
0 

where T is the recording interval. Substituting (2.86) in (2.87), we obtain 

T T T T 

0 0 0 0 

We i n t r o d u c e  t h e  skew o f  t h e  i n t e r f e r o m e t e r  c u b e - p r i s m s .  We t h e n  o b t a i n  f rom ( 2 . 8 3 )  

T T T 

I,(~) = I IE(~, t) lidt + f ]E(--~, t)]idt + e x p ( i k ~ )  f E(~, t)E*(--~, t)dt + 
( 2 . 89 )  

0 0 o 

T 

+ exp i E* t) E t) dt. 
0 

The integration with respect to time in (2.89) means, in fact, averaging over time. Sub- 
stituting (2.85) in (2.89), we obtain, apart from an inessential constant, the following ex- 
pression for the first term in (2.89): 

i , l (~)~_~<A(t__2n,,  L )A.(t__2n~ ~ L]\. C(r~)C*(r~)exp[ik ' 2 (-f-C (r, -- r~) + n (r, -- ri) 7 ~ ~ , /  
(2.90) 

The a n g l e  b r a c k e t s  i n  t h i s  e x p r e s s i o n  mean t im e  a v e r a g i n g .  

We now make two i m p o r t a n t  a s s u m p t i o n s .  F i r s t ,  t h a t  t h e  a t m o s p h e r e  can be r e p r e s e n t e d  i n  
t h e  form o f  a phase  t r a n s p a r e n c y .  We t h e n  h a v e ,  a c c o r d i n g  to  ( 2 . 3 1 ) ,  

(r, p) ~ i? (p). (2.91) 

The second assumption is that the time dependence of the field can be regarded as delta-func- 
tion correlated. The validity of this assumption is based on the fact that the coherence 
length of the sounding field is very small and does not exceed several millimeters at A% = 0.3 
nm. Taking this into account, we obtain 

I~1 (p) • <[ A 12> I J C (r)1 ~ dir. ( 2 . 92 )  

An a n a l o g o u s  e x p r e s s i o n  i s  o b t a i n e d  a l s o  f o r  t h e  second  t e rm  i n  ( 2 . 8 9 ) :  

IT2 (P) ---- <I A ]2> i ] s (r)12 d2r. (2.93) 

The first two terms describe uniform illumination on the TV camera tube. For the sum 
of the third and fourth terms of (2.89) we obtain 

1, 3 (~) qL I~, (~) = 2 f <1A l b l C  (r)12 cos [ - -2  k ] d~. (2. 94) 

The uniform illumination described by (2.92) and (2.93) is not sensed at the output of the 
TV camera tube. As a result, the video signal at the input of the square-law detector is 
describable by Eq. (2.94). The product <IAI2>IC(r) I 2 in this expression can be interpreted 
as the average intensity of the reflected field I(r). 

The intensity of the image on the screen of the video monitor is proportional to the 
square of expression (2.94): 
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( 2. 95 ) 
X cos [--2 -E r ~  + ~ (~) --  ~ (--~) -~ k ~ ]  d~r~d~r~. k 

An intensity distribution of the form (2.95) is called an interferogram. The interferogram 
is photographed on a film whose transmission coefficient T(O) is determined by Eq. (2.1): 

T(~)= J -- e4(P)" (2.96) 

The subsequent reduction of the interferogram consists of placing the photographic film 
on a lens, transilluminating it with coherent laser emission, and recording the intensity at 
the focal plane of the lens. The unity term in (2.96) gives an intensity distribution in the 
focal plane of the lens in the form of a delta function that contains no information on the 
shape of the object. 

We now consider the informative part, determined by the second term of (2.96), of the 
field in the focal plane of the lens. The field E(v) in the focal plane of the lens is ex- 
pressed in terms of the field E(O) in the plane of the lens by Eq. (2.5): 

E ( v ) = a  I E(~)exp(i-zfvk 2__~T. k ~v)d2p" (2.97) 

The informative part of this field is obviously equal to 

Ei(v)~-~al f /v(p)exp(i-~-vk 2__~.k ~v)d2p ' (2.98) 

where we have introduced the notation a~ =--ae. 

We represent the intensity Iv( p ) as a sum of two terms: 

(2.99) 

It can be seen that the first term does not depend on the fluctuations of the atmosphere. 
The information concerning the object after separation of this term is not distorted by the 
atmosphere. It is found that this term is separated automatically in the focal plane of the 
lens because the second term of (2.99) contains an additional spatial frequency 2k~. As a 
result, the second term is shifted in the focal plane of the lens relative to the first by a 
distance ~v = 2f~. 

It now becomes understandable why a skew must be introduced in the arms of the inter- 
ferometer: this enables us to separate that part of the field which is independent of the 
atmosphere's fluctuations. This part, in accord with (2.98) and (2.99), is equal to 

E i ( v )  = 2ffl exp(~ 2-~-~2)I /(~1)/(~2)cos [--2 ~-L P O' l - -r2)]exp(- - i~Pv)~r l~r2d2p �9 (2.100) 

In this expression the integration with respect 
lens. 

If the resolving power of the lens is high 

f cos [__2 ~ ~ (rl -- r2)] exp (--i k ' 

Substituting the last expression in (2.100), we 

to d2p is in the plane of the transforming 

enough, we can write approximately 

§ 2 (rl -- r2)l%L) §  ~ (vl~t - -  2 (rl - -  r~)l~L). (2. 101 ) 

get 

(2.102) 

where a= is a new constant. The two terms in the right-hand side of this expression are 
equal, as can be easily verified by making, e.g., the change of variable r' = r -- Lv/2f in 
the second term. We ultimately have 

(2.103) 
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Thus, the modulus of the informative part of the field produced by the interferometric 
method is proportional to the autocorrelation function of the field intensity at the target. 
The recorded intensity in the focal plane of the transforming lens is proportional to the 
square of the autocorrelation function of the field intensity at the target: 

+ 

Since the autocorrelation function of the intensity is real and positive, the contours of the 
recorded picture are determined by the first power of this function. The characteristic form 
of the autocorrelation function was considered earlier for a number of objects in the in- 
vestigation of the intensity-hologram method. 

2. Influence of Polarization of Received Field. Worthy of a separate consideration is 
the role played in the interferometric method by the field polarization. For the intensity- 
hologram method, the field polarization is immaterial, as is quite obvious. In the inter- 
ferometric method the interferring fields come from different sections of the aperture, so 
that the existing difference between the field polarizations at different points of the aper- 
ture can influence the interferogram. 

Actually, however, this is not the case. In fact, of principal importance for the inter- 
ferograms are the last two terms of (2.89): 

T 

IT3(~ ) -~-I~(~)=exp(ik~) I E(~, t)E*(--~, t)dt t e x p ( - - i k ~ p )  I E*(~, t)E(--p, t)dt. (2 .105 )  
0 0 

We i n t r o d u c e  t he  v e c t o r  e ( r )  o f  t h e  f i e l d  p o l a r i z a t i o n  on t h e  t a r g e t  s u r f a c e .  The v e c t o r  
f i e l d  E ( p ,  t )  on t h e  a p e r t u r e  s u r f a c e  i s  t h e n  [Eq. ( 2 . 8 5 ) ]  

k ~ . ~ E(~, t)------aexp(i-~)I A(t--2 7 ~)e(r)C(r) exp[~k(-~-~-nr--Y-~--~)-~(r, p)]d2r. (2 .106 )  

We w r i t e  down (2 .105)  w i t h  a l l o w a n c e  f o r  t h e  v e c t o r  c h a r a c t e r  o f  t h e  f i e l d  E (p ,  t ) .  We 
t h e n  o b t a i n ,  f o r  t he  f i r s t  t e rm  of  t h i s  f o r m u l a ,  

T 

i~3(~)~a.exp(ik~)f I IA(t__2nr~c Lcj~ A,(t__2nr~c ~)dte(~)e(re)C(rl)C,(~e) X 
(2.107) 

G~0 

1 re ) p] _~ + (rl, p)_~ r (r2, __p)} dmrld2rm. 

Integration with respect to time is equivalent to averaging over the recording time T. If 
A(t) is a delta-correlated random function, then 

T 

A t--2 ~ -c A* t--2 ~ ~ dt =a2<lAp>~ 2 n(~,--~)c , ( 2 .108 )  
0 

where  a ,  i s  an i n e s s e n t i a l  c o n s t a n t  t h a t  depends  on the  assumed n o r m a l i z a t i o n .  The a rgument  
o f  t he  d e l t a  f u n c t i o n  has  t he  d i m e n s i o n  o f  t i m e ,  and t h e  d e l t a  f u n c t i o n  (2 .108 )  i n  e x p r e s s i o n  
(2.107) effects "cut-out" with respect to the coordinates r~ and r~ Transforming to the 
argument r~ -- r~ in the delta function in (2.108), we get 

a ~ ( 2  n (~ ~-- ~)  ) ~ - a ~  ( r~ - -  r~), (2 .109)  

where a3 is a new constant. 

Assuming, as before, that function A(t) is delta-correlated, and using the phase-trans- 
parency approximation for the function ~(r, 0), we get, apart from an inessential constant, 

I I <1A p> ~ - ~ )  e (r~) e (r2) x 1,3 (~) (~a,~) ~xp 
, ~ (2.110) 
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Fig. 2.14 

In the integration with respect to d2r2 we are left in the integrand with a scalar product 
e(rl)e(rl) equal to unity. As a result, we get 

Carrying out similar transformations for the second term in (2.105) and adding the result, 
we obtain (2.94). 

3. Analysis of the Effect of the Tracking Error. A distinguishing feature of the inter- 
ferometric method, compared with the intensity-hologram method, is the clearly pronounced de- 
pendence of the recorded interferogram on the angle B between the normal n to the receiving 
aperture and the target-sighting line 002 (Fig. 2.14). 

As a rule, laser radar systems are designed to keep the target at the center of field of 
view of the receiving telescope. In this case, the vector n is directed toward the target 
and the angle B is zero. In practice, however, owing to all the possible perturbing actions 
as well as because of the target motion, it is impossible to keep the target at the center 
of the field of view at all times. In this case, the angle fl, which we call the tracking 
error, differs from zero. 

The main result of the tracking errors is that the field at the receiving aperture is 
addi~ionally phase-modulated in space. This spatial phase modulation is due to the inclina- 
tion, by an angle B, of the wavefront of the wave reflected from the target. In the intens- 
ity-hologram method the quantity recorded is the field intensity at the aperture. Therefore, 
the tracking errors, which cause only phase modulation of the field at the aperture, are of 
no importance in the intensity-hologram method. 

The situation is different in the interferometric method. Interference takes place 
here between values of the field at different points of the aperture. Therefore, all sorts 
of phase distortions influence the complete form of the recorded interferogram. Further re- 
duction can filter out the phase distortions that find their way into the interferogram. We 
have already shown, however, that this calls for artificially producing skews in the inter- 
ferometer arms and for introducing spatial amplitude modulation into the interferogram. 
Without this modulation we cannot filter out the phase-distorted interferogram components. 
The tracking errors are therefore important in the interferometric method. Let us examine 
this question in greater detail. 

To obviate the need of performing all the calculations for the case B # 0, we use the 
formal possibility of taking the tracking error into account directly in the final formula 
(2.99). We note for this purpose that, in the derivation of (2.99), no restrictions what- 
ever were imposed on the relative scales of the vectors ~ and r. All we assumed was satis- 
faction of the condition 

I ~ I/L, f~I/L~1, (2.112) 

with the vector r originating on the point O: on the receiving-aperture axis (Fig. 2.14). 

In accord with the notation of Fig. 2.14, we introduce the vector ro defined as 
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ro---r--r ' ,  (2.113) 

where r' is the radius vector of a point on the target vector and is reckoned from a point 02 
in the target region. At a sufficiently small angle 8, we then have 

~'o/L (2.114) 

or 

r:~L~-r'. (2.115) 

The term 8L can be regarded as constant during the recording time. We can thus transform in 
Eq. (2.99), which describes the intensity on the screen of the video monitor, from the argu- 
ment r to the argument r'. All the changes reduce then only to redefinition of r as r' and 
introduction of an additional term proportional to 8L in the argument of the cosine. 

To simplify the notation we shall omit the prime symbol of the vector r'. We then ob- 
tain the following expression for the intensity distribution on the screen of the video 
monitor: 

(2.116) 

k ] 
-+ 2 I I (T1) 1 (r2) cos [ - -2  --~- ~ (T 1 "-~ #'2) - -  2 k ~  --~ 2 k ~  --[- 2 (~ (~) - -  ~ (--~))j d2qd2r2. 

Analyzing this expression, we conclude that the tracking error 8 is equivalent to introduc- 
ing an addition to the spatial frequency of that interferogram term which must be filtered 

out. 

Let us examine the consequences of the uncontrollable spatial-frequency change that 
takes place in the interferogram as a result of random changes of the tracking error. 

First, the summary spatial frequency a -- 8 may "turn out to be equal or close to zero. 
In this case it may turn out to be impossible to isolate the first (undistorted by the at- 
mosphere) term of the interference pattern from the second (which depends on the turbulence 
of the atmosphere). Since 8 is a random quantity, it is impossible to compensate for the 
change of 8 by a proper skew in the interferometer arms (i.e., by choosing a). 

Second, it may turn out that the modulus of the spatial frequency I~ -- 81 is so large 
that the interferogram modulation frequency is smaller than the resolution element of the re- 
cording systems. The interferogram modulation is then smoothed out, and the effectiveness 
of separating the two terms in (2.116) is decreased. It is therefore necessary to ensure 
small tracking errors in the interferometric method. 

4. Resolving Power of the Modified-Michelson-Interferometer Method. We consider now 
the question of the resolving power of the interferometric method. We shall use the same ap- 
proach as for the determination of the resolving power of the hologram-intensity method. Let 
us recall the gist of that approach. We introduce formally the undistorted intensity auto- 
correlation function on the target surface 

F (x) ~- I I (r) I (v ~- x) d2r. (2 .117 ) 

We f i n d  n e x t  f o r  the  a u t o c o r r e l a t i o n  f u n c t i o n  the  G r e e n ' s  f u n c t i o n  t h a t  c o n v e r t s  f o r m a l l y ,  
v i a  a l i n e a r  i n t e g r a l  t r a n s f o r m a t i o n ,  t he  f o r m a l l y  i n t r o d u c e d  u n d i s t o r t e d  a u t o c o r r e l a t i o n  
f u n c t i o n  i n t o  the  t r u e  a u t o c o r r e l a t i o n  f u n c t i o n  o b t a i n a b l e  i n  t h i s  method .  The r e s o l v i n g  
power i s  t h e n  d e t e r m i n e d  by t he  o b t a i n e d  G r e e n ' s  f u n c t i o n .  The s p e c i f i c  f o r m u l a  f o r  t he  
a n g u l a r  r e s o l v i n g  power i s  d e t e r m i n e d  by the  R a y l e i g h  c r i t e r i o n .  

To f i n d  the  G r e e n ' s  f u n c t i o n  f o r  the  a u t o c o r r e l a t i o n  f u n c t i o n  we t u r n  to  Eq. ( 2 . 1 0 0 ) .  
Th i s  e q u a t i o n  d e s c r i b e s  the  i n f o r m a t i v e  p a r t ,  o f  i n t e r e s t  t o  u s ,  o f  the  f i e l d  i n  the  f o c a l  
p l a n e  o f  the  t r a n s f o r m i n g  l e n s :  

The l i m i t s  o f  i n t e g r a t i o n  w i t h  r e s p e c t  to  t he  c o o r d i n a t e  p a r e  a c t u a l l y  s e t  i n  t h i s  e q u a t i o n  
by t he  d i m e n s i o n s  o f  the  r e c e i v i n g  a p e r t u r e  on which  t he  i n t e r f e r o g r a m  was r e c o r d e d .  
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We integrate now with respect to the coordinate !p. For the case of a round aperture we 
have 

k k I cos[--2kp(rl--r2)]exp(i-]-~v)d2P=�89 ~v~-2- / ( r l - - r2)R}X 
(2.119) 

'~'r -' 1 211{ ~ 9~(r__r2)IR} { I v _ 2  k X{ ~ v + 2 T ( , - - r ~ )  R} -~-TS v--  - / (r i --r2)  lR}'  L 

Here J, is a Bessel function of first order, R is the radius of the aperture, and S = ~R z is 
the area of the aperture. 

Expression (2.119) contains the well-known Airy function: 

G (x)= 2]~ (I x ])/I x ]. 
We substitute (2.119) in (2.118). Taking the notation (2.120) into account, we have 

+a,S l I (rg'l)/ (~2 )G[2 - - - i~ (~ f  y - - r l  + 

We note that the first and second terms of (2.121) are equal. To check on this it suffices 
to replace rl by r2, and vice versa. The result is 

F_~ (v)~__2alSIl ( r , ) I  (ru)G[2 kR / L , r l_r2) ]d2r ld2r . .  --Z- (-~v --f- (2.122) 

(2.120) 

(2.121) 

We introduce a new system of variables 

@' ---- ~1~ U = ~'2 -- O'I" 

Substituting (2.123) in (2.122), we obtain 

(2.123) 

(~-[ v -- u)]d2u. (2.124) 

The inner integral in this equation is equal to the previously introduced undistorted auto- 
correlation function (2.117). We can thus write 

~Z--L~v (2.125) 

This expression shows that the informative part of the field is a linear integral transforma- 
tion of the undistorted autocorrelation function, and in this transformation G(x) assumes the 
role of the Green's function. 

Before we proceed to the question of the resolving power of the interferometric method, 
we call attention to one substantial circumstance. Namely, in Eq. (2.125), the role of the 
distance to the target is played by the quantity L' = L/2. In fact, if f is the focal length 
of the converting lens, the coordinate v in its focal plane is transformed in the plane u of 
the undistorted autocorrelation function in accord with the equation (Fig. 2.15) 

L ~1=~v" (2.126) 

Consequently, treatment of the interferogram alters the scale of the obtained autocorrelation 
function; this is equivalent to decreasing the distance to the object plane by one-half. This 
effect is due to the square-law detection of the video signal picked off the TV transmitting 
tube. 

Using the "equivalent" distance L', we rewrite (2.125) in the form 

Ei (ul) ~- 2alS f f (u) G [ ~ ,  (u 1 -  u)]d2u, (2.127) 

where, in accord with (2.126), u, is the value of the coordinate v recalculated into the plane 
u of the undistorted autocorrelation function. 

We shall use the Rayleigh criterion to determine the resolving power. The basis for 
this approach in the case of coherent optical systems was cited earlier in the analysis of 
the intensity-hologram method. From the criterion established in item 3 of Sec~ 2.1, the 
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linear dimension of the smallest object resolvable in the plane of the undistorted autocor- 
relation function is equal to 

(Au)m~= = 1.7 ~ L ' ,  ( 2 . 1 2 8 )  

where D is the diameter of the receiving aperture. From this we easily obtain the angular 
resolution of the interferometric method: 

(A0)m~ = --_ (~u) m~,L, ---- ].7 ~-  . ( 2 . 1 2 9 )  

Thus, the limiting resolution angle of the interferometric method is equal to the angu- 
lar resolving power of a coherent diffraction-limited optical system for image formation in 
the absence of a turbulent atmosphere. Consequently, the resolving power of the interfero- 
metric method and the resolving power of the intensity-hologram are identical. 
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Fig. 2.18 

5. Experimental Results. We consider some results of the use of the interferometric 
method in laser radars. Figure 2.16a shows schematically one of the possible practical 
realizations of this method. A laser transmitter illuminates the target through a collimat- 
ing optical system. The reflected radiation passes through the layer of turbulent atmosphere, 
is gathered by a receiving telescope, and is incident on the interferometer. The interfero- 
gram at the exit from the interferometer is recorded with a TV transmitting tube whose output 
video signal is square-law-detected and fed to the screen of the video monitor. 

The laser transmitter can operate in either the cw or the pulsed regime. In the latter, 
special synchronization is necessary to ensure that the interferogram is read from the tube 
during one frame. Otherwise, the screen might be photographed at instants at which the in- 
terferogram had not yet been read, or was already read and its image no longer on the tube. 

The reduction procedure for the interferograms is practically the same as for the inten- 
sity holograms (Fig. 2.16b). 

Provision was made in the experiment for obtaining the direct image of the object. To 
this end, part of the received signal was diverted from the output of the receiving telescope 
to a TV camera tube of the image channel. By switching the outputs of the TV camera tubes, 
it was possible to display on the screen either the image of the target distorted by the at- 
mosphere or the interferogram of the reflected field. This made it possible to compare the 
resolving powers of the image and interferogram channels. 

The investigations have shown that the interferometric method, just as the intensity- 
hologram method, permits a substantial increase of the resolving power of a laser radar sys- 
tem under turbulent-atmosphere conditions. Figure 2.17 shows as an example a photograph of 
an interferogram recorded from an object in the form of three points located at the vertices 
of an equilateral triangle. The resolving power of the receiving telescope at 0.69-~m wave- 
length in coherent light was 0.5 sec of angle. 

2.3. Goodman's Method 

i. General Description of Method. The methods considered in the preceding sections, 
notwithstanding their high resolving power, do not yield an object image undistorted by the 
atmosphere. Both in the intensity-hologram method and in the interferometric method, the ob- 
ject must be discerned by using the autocorrelation function of the field (or of the intens- 
ity) on the surface of the object. There is, however, no one-to-one correspondence between 
the autocorrelation function and the object image. 

Goodman (see [ii]) proposed a method that makes it possible to obtain, in principle, a 
target image undistorted by the atmosphere. This method was named Goodman's method. It con- 
sists of placing in the immediate vicinity of the object a pointlike reflector and recording 
on the receiving aperture a hologram of the radiation reflected from the target. The refer- 
ence is the radiation reflected from the pointlike reflector. Since the reference radiation 
from the pointlike reflector and the radiation reflected from the target pass through the 
same region of the atmosphere, the distortions introduced by the atmosphere cancel one another 
in the recorded hologram. 

Goodman's method can be regarded as a particular case of the hologram-intensity method. 
In fact, the target, together with the reflector placed alongside, can be treated as a single 
composite target (Fig. 2.18). In this case, the field of the composite target can be repre- 

sented as 

(r) ---~ E (r) ~- ~ (r -- r0), (2. 130) 

where E(r) is the field at the target itself, and ro is the coordinate of the reflector. On 
the receiving aperture is recorded a hologram of the intensity of the field reflected from 
the entire composite target. Assume that the atmosphere can be represented by a phase trans- 
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Fig. 2.19 

parency. Reducing the intensity hologram, we obtain for the field in the focal plane of the 
converting lens [see Eq. (2.12)] 

( 
Substituting (2.130) in (2.131), we obtain 

(2.131) 

L L 

The first two terms in this expression describe the autocorrelation function of the field on 
the target surface and a narrow deltalike maximum located at the center of the obtained pic- 
ture. 

The basic information is contained in the third and fourth terms of (2.132). They con- 
stitute two distributions proportional to the field distribution on the target surface, sym- 
metrical about the center of the field pattern obtained, and at a distance from the center 

~ ---- T ~0" 

If the modulus of the vector ro is larger than double the target size, the third and 
fourth terms of (2.132) are separated from the central autocorrelation function and do not 
overlap it. Since the quantity recorded is not the field El(v) but its intensity Ii(v) , we 
get on the photographic film two symmetrically placed images of the target I(r): 

where. F[(L/f)v] is the intensity of the autocorrelation function together with the central 
deltalike maximum. It can be seen that the two symmetric images of the target I[ro+ (L/f)v] 
and I[ro -- (L/f)v] do not depend on the turbulence of the atmosphere. 

We shall not investigate Goodman's method further from the viewpoint of the resolving 
power, the required coherence of sounding radiation, and similar questions. All the results 
obtained for the intensity hologram remain in force also for Goodman's method. We note only 
one circumstance. 
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To prevent overlap of the target image and the autocorrelation function, it is desirable 
to choose as large a vector ro as possible. On the other hand, the larger the modulus of the 
vector to, the larger the differences between the conditions for the propagation through the 
atmosphere for the wave from the target and for the reference wave from the reflector. The 
region of target-space points for which these conditions are identical is called the isoplan- 
atism region or zone. The vector ro must thus lie in the isoplanatism zone around the target. 
In this case, the phase-transparency approximation can be used to take the atmosphere into 
account. 

2. Experimental Results. Interest attaches to certain experimental results of Good- 
man's method. The experimental setup is similar to that used in the intensity-hologram meth- 
od. Alongside the object, whose angular dimension is 4 sec of angle, is placed a pointlike 
mirror reflector. Figure 2.19 shows photographs of the composite object (a), its direct 
image obtained by photography through the turbulent atmosphere (b), the recorded hologram (c), 
and the result of using Goodman's method (d). Two images of the object are distinctly seen 
and are symmetric about a central spot, whereas on the photograph obtained by the direct meth- 
od the object is not resolved. The resolving power of the employed telescope in coherent 
light was 0.5 sec of angle at 0.69-~m wavelength. 

Thus, Goodman's method actually improves the resolving power when an image of an object 
is produced under turbulent-atmosphere conditions. Among all the experimental investigations 
performed to date by Goodman's method, notice should be taken of experiments under natural 
conditions [12, 13], which demonstrated the feasibility of obtaining undistorted images of 
cosmic objects with the spaceship "Gemini" as the example. 
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CHAPTER 3 

METHODS OF AMPLIFYING AND TRANSFORMING LASER SIGNALS 

The development of laser radar has led to the development of a number of promising meth- 
ods of predetector processing of radar signals. The gist of these methods is that, to in- 
crease the effectiveness of further recording, the received radar signal is processed before 
it reaches the photodetector. We consider in this chapter two such methods: predetector 
amplification of the signal with the aid of a laser amplifier, and parametric conversion of 
the signal frequency in a nonlinear crystal. Both methods are intended principally for use 
in infrared laser radars (lidars) at long wavelengths, where the efficiency of receivers for 
direct detection is insufficient for radar applications. 

3.1. Laser Amplifiers 

I. Equations for the Density Matrix. We consider the principles of the amplification 
of optical signals on the basis of the quasiclassical model first proposed by Lamb. In this 
model the field is described by Maxwell's classical equations, while the active medium, which 
consists of a set of active atoms, is treated quantum-mechanically. The interaction of the 
field with the atoms is taken into account by perturbation theory. Only two working levels 
of the active atoms, a and b, are taken into consideration (Fig. 3.1). The upper and lower 
working levels are described by the wave functions ~a and ~b, respectively. 

As a result of the interaction of the atom with the external field, the wave function of 
the atom becomes equal to the superposition of the wave functions ~a and ~b: 

--~a (t) ~= + b  (t) @b, (3. i )  

where a(t) and b(t) are time-dependent coefficients, while the atom acquires a dipole moment 

H--p(a~ ~a~). (3.2) 

Here p is the matrix element of the dipole-moment operator between the states with wave func- 
tions Oa and ~b. Expression (3.2) is obtained by direct calculation of average of the 
dipole-moment operator. Since the dipole moment is certainly different from zero in this 
case (these are the only transitions considered), the wave functions Oa and Ob are wave func- 
tions with different parity [2]. 

The terms a*b and ab* in (3.2) are elements of the density matrix p(t, {i}), where {i} 
denotes the entire aggregate of parameters that characterize the given atom, viz., coordinates, 
velocity, transition frequency ~, etc. Besides their position in space, the atoms can differ 
in the rate of translational motion (for a gaseous active medium) and in the transition fre- 
quency (for atoms in a liquid or in a solid). The result can be the so-called inhomogeneous 
broadening of the active laser line. 

In the model considered, the atom, together with the field acting on it, form a closed 
system with a definite wave function. The density matrix for a system having a definite wave 
function ~ is written in the form (see Chap. 2 of [2]): 

Taking the foregoing into account, the density matrix of the system is given by 

p(t, " . . . .  [Pa~( t, (0) p~b(t, {~}}~__/[a] z ab~  
~))- -~?ba( t , { i} )  ?b~(t, ( i})]--\a*b Ib[Z] ' ( 3 . 3 )  

where the coefficients a and b also depend on the set of parameters {i} and on the time t. 
Using (3.3) and (3.2), we write the dipole moment of the atom in the form 

H = p [ p ~ b ( t ,  {i})--~Pba(t, {i})]- (3.4) 
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The macroscopic polarization per unit volume of the active medium can be obtained by 
summing the dipole moments of all the atoms located in the given volume 

P(r,  t)----- ~p[p~(t,  {i})-{-9b~(t, (i})], 
{0 

(3.5) 

where r is the radius vector of the considered point of space. 
seopic polarization P(r, t) of the active medium. The passage of the field through the 
active medium can then be calculated by using Maxwell's classical equations 

aB 
div D ---- O, rot .E Ot ' 

div B - -  O, rot H=-- J - I -  OD 
Ot " 

Assume that we know the macro- 

(3.6) 

Here D = soE + P is the electric induction (bias); B = ~oH is the magnetic induction; P = 
P(r, t) is the macroscopic polarization of the medium~ J = oE is the current density in the 
medium and is introduced formally to take the radiation absorption into account; eo and ~o 
are the dielectric constant and the magnetic permeability. Simple transformations yield 

rot rot E -~- O~ O~E O~P ~oZ-~  ~ ~oSo -gF" ~ --~o at~ '- 

We confine ourselves hereafter to analysis of plane-parallel radiation. 

_ E ( r ,  t ) = e E ( r ,  t), P ( r ,  t ) ~ - e P ( r ,  t), 

where e is the polarization unit vector. Recognizing that the speed of light in vacuum is 
co = (~o~o) -I/2, we obtain from (3.7) 

rot rot E -~ ~0z ~ ~- 
d~p 

Co~ ~ ~ --P'o c)t r '  . (3.8) 

The polarization P(r, t) in this expression can be represented by two terms: the "active" 
polarization Pa, which describes the amplification of the signal, and the "passive" one Pp 
due to the passive medium: 

.P--~- P~ -~ -Pp. 

In this case, Pp = X E, where X is the dielectric susceptibility of the passive medium, and 
Pa is determined by Eq. (3.5). As a result, we have the following equation for the field: 

ro t  ro t  E _t_ ~toZ_7_[_ _~ c-2 - -  (3 .9 )  c)t a - - - - ~ ' o  c)t 2 , 

where c i s  t he  speed  o f  l i g h t  i n  t he  medium. 

To s o l v e  t h e  p rob lem o f  f i e l d  p r o p a g a t i o n  i n  an a c t i v e  medium, we must  supp lement  (3 .9 )  
w i t h  e q u a t i o n s  t h a t  r e l a t e  t he  p o l a r i z a t i o n  w i t h  t he  f i e l d .  We t u r n  a g a i n  to  Eq. ( 3 . 5 ) .  The 
e q u a t i o n  o f  m o t i o n  f o r  t he  d e n s i t y  m a t r i x  i s  o f  the  form [1] 

dp__ ~ 1 d-T_--~[7#, p]--T{r, p}, (3.10) 

where F is a phenomenologically introduced diagonal matrix that accounts for the relaxation 
of levels a and b with relaxation rates Ya and Yb, respectively: 

~ $),  

(3.7) 

We can then put 
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is the Hamiltonian of the system, the square brackets denote the commutation operation, 
and the round brackets denote anticommutation. 

The Hamiltonian of the system is written, in the framework of perturbation theory, in 
the following form: 

w h e r e  W a and W b a r e  t h e  e n e r g i e s  o f  l e v e l s  a and  b ,  r e s p e c t i v e l y .  
the following system of equations for the density-matrix elements: 

(3.12) 

As a result, we obtain 

dp~ --P E (P,,b-- Pb=), 
dt -~---'faPaa-- i h 

dpbb 
dt -------%Obb + / } E (P,b -- OJ, (3.13) 

~___ P 
apab at --(%~ + ~m) Pab -- i ~ E (Po~ -- Pbb) ' 

P ba ~ -  ~)ab ' 

w h e r e  we u s e d  t h e  r e l a t i o n  W ~ - - W b = h m  and i n t r o d u c e d  t h e  n o t a t i o n  Yab = (Ya + Yb ) / 2 "  Not  
withstanding such a definition of the parameter Yab, it is an independent parameter, not con- 
nected solely with Ya and Yb. It will be shown below that Y ab determines the width of the 
gain band of the active medium. Experiments show that the parameter Yab exceeds as a rule 
the quantity (Ya + Yb)/2: 

~ > (~ + ~)/2 

The point is that, besides radiative decay which, as a matter of fact is taken into account 
by Eqs. (3.13), there exist various nonradiative relaxation mechanism. It is their presence 
which leads indeed to the increase of the parameter Yab. 

Equations (3.13) were written for one atom. Using (3.4), we can obtain the following 
system of equations: 

O~iI OH 2 P~ 
Ot ~" J72T.ab _..~__}_ (,,(a b ~_~2) H = - - 2 ~ T E  (p~, - -  Pbb), 

) at -~-7~gaa=(h@-zE .-~-yablI , ( 3 . 1 4 )  

apbb }-%Pbb --(h~~ -~ an  
ot ---- E ( -g/-+ ' r~bl l )  �9 

2. Approximation of Homogeneous Broadening of Spectral Line. We confine ourselves here- 
after to the case of identical atoms, i.e., to the so-called homogeneous broadening of the 
spectral line. We assume in addition that Ya = Tb = Y. This assumption does not affect the 
matter in question, but makes it possible to arrive in final analysis at perspicuous analytic 
results. The assumption that the gain line is homogeneous is the most significant restric- 
tion. The point is that the amplifying media such as Nd 3+ glass, high pressure CO2, or dyes 
have inhomogeneously broadened gain lines. Nonetheless, a consideration of the case of homo- 
geneous broadening is useful, since it can reveal the basic regularities that take place when 
signals are amplified by laser amplifiers. The more general case of inhomogeneous broadening 
is considered in detail in [3, 4]. 

In the homogeneous-broadening approximation we have 

P (r, t) ----: N p  (Pab @ Ob~) = NH, 

where N is the number of active atoms per unit volume of the working medium. 
that 

(3.15) 

R6cognizing 

? ~ N = N ~ ,  9bbN=Nb,  (3.16) 

where N a and N b are the populations of levels a and b, we obtain from (3.14) and (3.15) 

o2p oP --2~ @ E (N a -- N J ,  Ot 2 -]-27~b -s @ (7~b @ ~2) p _ 
( 3 . 1 7 )  

' -- o~ -1  O P  ) 
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Equations (3.9) and (3.17) form a closed system of equations: 

OE , - 2  02E 0 zP 
r~  rot E -~- ~toz-Ti--l-c Ot ~ -- % Ot ~ , 

O~p 
Ot* ~-2T"b-~t "J-(T~b -[- ~ p = - -2m v-f-~ E (N~ - -  Nb), 

O (N~--  Nb) OP 
Ot [- ~" (N" - -  N~) = 2 (/~)-1 "E (--$U-{- T~'bP)" 

( 3 . 18 )  

We consider next a plane wave propagating along the z axis: 

E ( ~ ,  t ) = A ( z ,  t) c o s ( [ t - - k z ) = E ( z ,  t), (3.19) 

where k = f/c is the wave number and f the frequency of the amplified signal. The amplitude 
A(z, t) in this expression describes the pulse envelope of the wave. The function A(z, t) 
depends in fact on one parameter T = t -- z/c: 

A ( z ,  t ) = A ( z ) .  (3 .20 )  

S u b s t i t u t i o n  o f  (3 .19 )  i n  t he  f i r s t  e q u a t i o n  o f  t h e  s y s t e m  ( 3 . 1 8 )  y i e l d s  

02E OE �9 _202E O~P (3.21) 
Oz ~ ~ - ~ j ? q - c  Ot~ - - - - ~ o  Ot ~ .  

It is next natural to assume that the polarization of the active atoms varies in accord 
with the same harmonic law as the field (3.19). In the general case we can write 

P (z, t) = C (z, t) cos (It - -  kz)  -[- S (z, t) sin (ft - -  kz) ,  (3 .22)  

where  C and S a r e  s l o w l y  v a r y i n g  f u n c t i o n s .  We s u b s t i t u t e  t h i s  e x p r e s s i o n  i n  t h e  second  equa -  
t i o n  o f  ( 3 . 1 8 ) .  E q u a t i n g  t he  c o e f f i c i e n t s  o f  cos  ( f t  -- kz)  and s i n  ( f t  -- k z ) ,  and r e c o g n i z -  
i ng  also that m a >> y2ab , we get 

0C 
0t =--TobC § (~ -- f) S, 

(3.23) 
OS p2 

-0 - i - :  --TabS - -  (~ - -  ]) C - - - ~ "  A (N .  - -  Nb). 

In the derivation of expressions (3.23) we have neglected the derivatives, which vary 
slowly compared with the optical frequencies m and f: 

OC 
o-7" ~ toC, 

0,9 ~ o~S, 
Ot 

and u s e d ,  i n  a d d i t i o n ,  t he  a p p r o x i m a t e  e q u a l i t y  

OC -~-~ lc, 
OS 
-~- ~ fs ,  

(3.24) 

m =- l= ~ (m -- [) 2f. (3.25) 

Indeed, the width of the gain band is of the order of u It is natural to consider only 
a case when the external-field frequency lands in the gain band, i.e., 

io~_fl<T=~. (3.26) 

Since to >> Yab, we have 

m-~-/N~ 2f, (3.27) 

the approximate formula (3.25) is therefore correct. 

We substitute (3.22) and (3.19) in (3.21). Retaining only the principal-order terms, 

we ob tain 

ON OA k 
Oz ~-c-l-57-=--13A--~-j~o S, ( 3 . 28 )  
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where 8 = ~/2~oc plays the role of the absorption coefficient of the medium. Finally, we sub- 
stitute (3.22) and (3.19) in the third equation of the system (3.18). Retaining in the right- 
hand side of this equation only the terms that vary slowly compared with ~ and f, we get 

a (N~ --  Nb) 
at ---- --T (N, -- IVa) ~- h-iAS. (3.29) 

Equations (3.28), (3.23), and (3.29) comprise a closed system. 

3A _l_c_ t 3A k 
oz - -  -7[------ --~A---2-~a S, 

~c _ ( S  - I -  (~o - -  l )  s ,  
~t 

(3.30) 
dS p~ 

-~ --%bS - -  ((o - - / )  C---- f7  A AN, 

,~AN 
Ot ------T A N  ~ - h - ~ A S '  

where we have introduced the following notation for the population difference between levels 
a and b : 

A N ~ N ~ - - N  b. 

Interest attaches usually to the temporal evolution of the amplified pulse. 
here to transform to the "running" coordinate �9 via the change of variables 

It is convenient 

~ t  - -  Z/C~ 

The system (3.30) then takes the form 

Z ~ Z .  

~-~-- = - -~A - -  k--~S,  
2~o 

3C 
_ yo~c + (~-- I )  s, 

p2 
.~S - -  (~ - -  1) C ---fC~ A AN,  

dAN ~),: ------^( AN -j- h-IAS. 

(3.31) 

3. Long-Pulse Approximation. We now note the following. When laser amplifiers are used 
in practice in actual devices, the duration of the amplified pulse exceeds greatly the quan- 
tity y-lab. The point is that when shorter pulses are amplified the output pulse is 
"stretched." We have here a rather good analog with radio engineering, where it is known that 
transmission of a short pulse through a narrow-band filter broadens the pulse and causes loss 
of part of its energy. In our case, the role of the narrow-band filter is played by the 
active medium, whose gain band width is proportional to Yab- When designing laser amplifiers 
the tendency, therefore, is to have the duration T of the amplified pulse satisfy the relation 

T >~ ~(~. (3.32) 

The v a l u e  o f  Y - l a b  i s  d i f f e r e n t  f o r  d i f f e r e n t  a m p l i f y i n g  m e d i a .  F o r  e x a m p l e ,  f o r  an  Nd 3+ 
l a s e r  a m p l i f i e r  t h e  v a l u e  o f  t h e  p a r a m e t e r  Y - * a b  i s  0 . 2 - 0 . 5  p s e c ,  w h i l e  f o r  a l o w - p r e s s u r e  
COa a m p l i f i e r  t h e  v a l u e  i s  a b o u t  20 p s e c .  I t  f o l l o w s ,  t h e r e f o r e ,  t h a t  f o r  e a c h  s p e c i f i c  
a m p l i f y i n g  med ium t h e  v a l i d i t y  o f  c o n d i t i o n  ( 3 . 3 2 )  m u s t  b e  s e p a r a t e l y  v e r i f i e d .  When t h i s  
condition is satisfied we can neglect the left-hand sides of the second and third equations 
in (3.31). We then obtain 

where 

p2 
S - -  A L ( ~ - - I ) A N ,  (3.33) 

hTab 

L (~ - -  l ) <  ( ~ _ l ) , + ~ b  

is a function that describes the Lorentz shape of the spectral line. 

(3.34) 
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Substituting the expression for S in the first and last equations of the system (3.31), 
we obtain a closed system of equations: 

OA ~A • kp2 c)z - -  . ~ A L  (~ --/) AN,  

c)AN p2 
d~ =- --'~ A N - - ~  A2L (o~ - - / )  AN. 

(3.35) 

We note that the first equation of this system can be represented in the form 

@ = (~ - -  ~) A, 

where  

(3.36) 

At constants a and B the solution of 

a:= kP~ L (~ - - / )  AN. (3.37) 
2aohTab 

(3.36) is 

A (z, t) = A 0 (t) exp [(a -- ~) z]. ( 3 . 3 8 )  

Thus ,  t h e  p a r a m e t e r  a ,  i n t r o d u c e d  i n  Eq. ( 3 . 3 7 ) ,  p l a y s  t he  r o l e  o f  t h e  g a i n  o f  t h e  a c t i v e  
medium, t h e  p a r a m e t e r  8 p l a y s  t h e  r o l e  o f  t h e  a t t e n u a t i o n  f a c t o r ,  w h i l e  e x p [ ( ~  -- B)z] i s  t h e  
o v e r a l l  g a i n  o f  t h e  a m p l i f i e r .  

I t  i s  o f  i n t e r e s t  t o  a n a l y z e  e x p r e s s i o n  ( 3 . 3 7 )  f o r  t h e  g a i n .  F i r s t  o f  a l l ,  t h e  g a i n  d e -  
pends  on t h e  f r e q u e n c y  m i s m a t c h  b e t w e e n  t h e  r e s o n a n t  f r e q u e n c y  ~ o f  t h e  a c t i v e  a toms  and t h e  
frequency f of the amplified signal. With increasing frequency difference ~ -- f the gain of 
the active medium decreases in accord with Eq. (3.34). The role of the gain bandwidth is 
played by 2Tab. It is now clear that condition (3.32) means that the duration of the ampli- 
fied pulse must be longer than the reciprocal gain bandwidth. In other words, the width of 
the input-signal spectrum should be less than the gain bandwidth. 

The ratio of the gain a to the inverted population AN per unit volume is called the 
interaction cross section. This parameter has the dimension of area and is equal to 

a kP2 L ( ~ - - / ) .  (3.39) 

The second equation of the system (3.35) describes the decrease of the inverted popula- 
tion when the amplified field interacts with the active medium. A feature of the considered 
approximation is that the inverted population AN can only decrease. In fact, in the signal- 
amplification regime the right-hand side of the considered equation cannot be larger than 
zero, since the gain a must be positive. Consequently, the derivative of the inverted 
population is negative. It must be noted that this behavior of the inverted population is a 
consequence of the approximation (3.32). When short pulses are amplified and the reverse of 
(3.32) holds, the population can be increased by the passage of a light pulse [3]. 

The system (3.35) can be written also for the field intensity I = A2: 

OI o - - = - 2 ~ I +  ~P~ IL(o~--O~N, 
Oz %eTa b 

OhN p~ 
o~ ~-~ -~ AN--%f~=b I L (+ --/) AN. 

(3.40) 

Assume that the following inequality It is of interest to consider one particular case. 

holds (y = Ya = Yb): 

~ ~ T ~ T -I. (3.41) 

Such an inequality is usually satisfied in a neodymiurw-glass laser amplifier. In this case 

typical values of the parameters are 

T ~ O . 5 p s e c ,  T ~ 5 0  mec, 7 -1~O,Smsec .  

If condition (3.41) holds, we can neglect the quantity yAN in the second equation of (3.40) 
and put y = 0. Then a joint solution of Eqs. (3.40) yields the following integrodifferential 

equation: 
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OI (~, ~)=_ 2% exp - -  • z) d~' --2~ I (~, z), 
OZ t- --co 

(3.42) 

where do is the gain of the active medium prior to the arrival of the amplified pulse, and is 
equal to 

kP= L (~ - -  /) AN (0). (3.43) 
~o ~ 2~OhTa b 

Equation (3.42) shows that the gain saturates when the input pulse is amplified, and this 
saturation is defined by the parameter 

=exp ---~-x . (3.44) 
--CO 

A characteristic feature is that the saturation parameter ~ in a given cross section of the 
amplifier z and at a given instant T depends on the total energy of the signal 

W ~  f I (~', z) d~', 
- - C O  

that has passed through this cross section by the instant ~. 

When laser amplifiers are used in laser-radar receivers, one deals as a rule with very 
weak light fluxes. In practice, therefore, gain saturation does not play a noticeable role. 
In this simplest case the field propagates through the amplifier in exactly the same way as 
in a passive medium. The only difference is that the amplitude of each plane wave is ampli- 
fied in accord with the law (3.38), where z is the distance traversed in the amplifier by the 
given plane wave. 

In amplification of a multimode field, which is a super~sition of many plane waves, 
each plane wave is amplified independently of the others. In first-order approximation the 
phase of each plane wave is also conserved. As a result, the field spatial distribution 
formed at the output of the amplifier will be the same as in the case of a passive medium, 
but amplified by many times. Thus, it becomes possible to amplify the field that carries in- 
formation on the image of the object. 

Figure 3.2 shows two possible constructions of laser image amplifiers, with the ampli- 
fication in parallel (a) and converging (b) beams, respectively. When the amplification is 
in a parallel beam, the active medium is used uniformly and is less subject to saturation 
than in the case of amplification in convergent beams. Amplification with convergent beams, 
however, is convenient, in that inhomogeneities of the refractive index of the medium have 
less effect on the quality of the obtained image. This result can be obtained on the basis 
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of the theory of linear optical systems [5]. In the parallel-beam amplification system the 
object and image planes coincide with the focal planes of the corresponding lenses. 

The field at the amplifier output is the enhanced and somewhat distorted Fourier trans- 
form of the undistorted image field. The distortions introduced can be described by the 
amplitude-phase factor 

a (~) exp [i~ (r)], 

where a(r) are the amplitude distortions and ~ (r) the phase distortions due to the inhomo- 
geneity of the active-medium refractive index. If there are no distortions, we have a(r) = 
const, ~ (r)=0 within the limits of the exit aperture of the amplifier. The resolving power 
of the entire system is determined by the system scattering function 

G (x) = I a (r) exl)[i~ (r) -~ ixr] d2r, 

where the integral is calculated over the surface of the output energy of the amplifier. The 
phase and amplitude distortions lead in this case to a broadening of the principal maximum of 
G(x) and hence to a deterioration of the resolving power. 

In the amplification system with converging beams it can be assumed that the field at 
the amplifier output is the undistorted image field multiplied by the earlier amplitude-phase 
factor. Since only the intensity of the image is of importance when the latter is recorded, 
the phase distortions play no role in this case. The amplitude distortions cause neighboring 
sections of the image to differ in brightness, but the resolving power does not become worse 
in first-order approximation. 

We note also that more detailed investigations reveal certain differences between laser 
amplifiers and passive image-transmission systems. It turns out that laser amplifiers intro- 
duce in the produced image certain distortions that are peculiar only to them [6]. These 
questions, however, will not be considered here. 

4. Spontaneous Emission in Laser Amplifiers. A very important feature of laser ampli- 
fiers is the spontaneous-emission noise. The presence of spontaneous emission is essentially 
a quantum effect and cannot be explained by classical theory. In quantum field theory one 
introduces the photon creation and annihilation operators C § and C, which act in one linear 
space containing N photons [7]. The linear photon space is, in the language of optics, one 
emission mode. It can be shown that 
only for transitions that take place 
by unity. The probability of such a 
ent in the mode prior to the instant 
i.e., the probability of absorbing a 
ber of photons is zero. 

the matrix elements of the operator C differ from zero 
with the total number of photons in the mode increased 
transition is proportional to the number of photons pres- 
of the transition. The probability of such a transition, 
photon, is consequently equal to zero if the initial num- 

It can be shown that the matrix elements of the operator C + differ from zero only for 
transitions in which the total number of photons in the mode is increased by unity. The 
probability of such a transition is found to be proportional to N + i, where N is the number 
of photons present in the mode prior to the transitions. Thus, even if the initial number of 
photons is zero, the probability of emitting a photon is not zero. This probability is due 
to spontaneous emission. An important consequence is that the probability of spontaneous 
emission into one mode of the field is equal to the probability of emission of one photon into 
the same mode under the action of one external photon. 

The higher the gain of the active medium, the higher (other conditions being equal) the 
spontaneous-emission power. The spontaneous emission determines in fact the sensitivity of 
a receiver with a laser amplifier. We thus have two contradictory requirements in the design 
of laser amplifiers: it is necessary to increase the gain and to decrease the spontaneous- 
emission power at the amplifier output. Taking into account the direct connection between 
the probabilities of the induced and spontaneous emission, an unambiguous relation can be 
established between the amplifier gain and the power of the spontaneous noise at its output. 

Consider a volume element AV of the active medium. The spontaneous-emission power from 
this volume into a solid angle d~ in the frequency interval (f, f + df) is 

d~ dP ~ ~tt~N~L (/) ~ d[ dr,  (3 .45)  
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where N a is the number of active atoms excited to the upper energy level a per unit volume 
of the medium; L(f) is the spectral-line shape function normalized in such a way that 

+m 

f L ( f ) d f = l ,  (3.46) 

and ts is the average lifetime of the excited state relative to spontaneous transitions. 

The spontaneous emission is amplified by the active medium just as the useful radiation 
of the signal. If the spontaneous emission arose in a volume element dV located at a dis- 
tance z from the output, its power will be amplified at the output by a factor exp [2a(f)z] 
where the gain ~(f) is determined by Eq. (3.37). Transforming from the function L(~ -- f) in 
(3.37) to the function L(f) defined in (3.46), we get 

,,, ~ kp ~ 
(f)--~ 7?o -%-- L (/)AN. (3.47) 

As a result, the spontaneous-emission power at the amplifier output in a solid angle d~ and 
in the frequency interval (f, f + df) is equal to 

Z 

P = Sh/t;ZN~L (f) ~ d / f  exp [2~ (]) z] dz, 
0 

where  S i s  t h e  c r o s s - s e c t i o n a l  a r e a  and Z i s  t h e  l e n g t h  o f  t h e  a c t i v e  medium. 
t h e  i n t e g r a l  i n  t h i s  f o r m u l a  and i n t r o d u c i n g  t h e  a m p l i f i e r  g a i n  G ( f ) ,  d e f i n e d  by 

we obtain 

Using expression (3.47) 
a result we have 

G (/) ----- exp [2a (/) l], 

(3.48) 

Calculating 

(3.49) 

S d~ P-.~-h/ NaL(f) [ G ( / ) -  l]--7"~d 1. ( 3 . 5 0 )  
2~ (f) t s 

It is known from quantum theory of radiation that the lifetime of an excited state of 
the atom, due to spontaneous emission, is determined by the relation (see, e.g., [7, 8]), 

~j = 4 kap z ~- a (3.51) 

for the gain of the medium, we can express ts in terms of ~(f). As 

3 ~2L (f) ~N 
ts~--- 32 a (f)~0~ (3.52) 

Substituting this expression in (3.50), we obtain 

. Sd~ 
N= [G (/)- 1]--fr- d/. (3.53) P==~hf Na--Nb 

The total spontaneous-emission power is obtained by integrating this expression over the 
solid angle d~ and over the frequency: 

4 A N a S ~  
/[G(~)--i] Na_N b {-i~ }. (3.54) P = y h ~  

We h a v e  i n t r o d u c e d  h e r e  t h e  a m p l i f i e r  g a i n  G(~) a t  t h e  c e n t e r  o f  t h e  s p e c t r a l  l i n e ,  t h e  g a i n  
b a n d w i d t h  Af ,  and t h e  t o t a l  s o l i d  a n g l e  fi i n  wh ich  t h e  e m i s s i o n  f rom t h e  a m p l i f i e r  o u t p u t  i s  
received. 

We note that the expression in the curly brackets of (3.54) is the number of emission- 
field modes at the output of the laser amplifier. The spontaneous-emission power in one mode 
is, therefore, 

4 Na PLY--- T ~ A  I[G(~)- i] Na--N b " (3.55) 

In most amplifying media with large gain one can neglect the lower-working-level popula- 
tion N b compared with the population N a of the upper one, and the gain G(~) is much larger 
than unity. Under these conditions, expression (3.55) simplifies to 
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Thus, the spontaneous-emission power is directly proportional to the power gain of the 
amplifier. One might draw from this the incorrect conclusion that increasing the gain of a 
laser amplifier does not increase the sensitivity. A more attentive examination shows, how- 
ever, that this is not so, and an increase of the gain leads to noticeable increase of the 
sensitivity. This question is considered in the next subsection. 

5. Sensitivity of Receivers with Laser Amplifiers. One of the basic factors that de- 
termine the effectiveness of the use of laser amplifiers in receiving devices is the sensi- 
tivity. For a radar receiver, the sensitivity problem is solved by plotting the detection 
characteristics, i.e., by plotting the dependence of the probability of missing an input sig- 
nal given the probability of a false alarm. 

Consider the hypothetical receiver with laser amplifier, shown in Fig. 3.3. Let the in- 
vestigated-signal field, containing n photons, be incident on the amplifier input. Since 
the input field in laser radar is always random, the number of incoming photons is also ran- 
dom. We denote by Pn the probability that n photons have entered the amplifier. 

In accord with the fundamental physical premises, the amplification in the active medium 
is also random. Each photon entering the active medium can either be absorbed or create an- 
other photon. In quantum-mechanics language it can be said that the created photon belongs 
to the same linear space as the exciting photon, i.e., it has the same momentum as the excit- 
ing photon. The created photon has consequently the same frequency, and "moves" in the same 
direction as the exciting photon. We denote the probability of photon absorption per unit 
time by b, and the probability of photon creation per unit time by a. In addition, account 
must be taken of the spontaneous emission of a photon, with a probability denoted by c. Us- 
ing the introduced parameters a, b, and c, we can calculate the probability of the appear- 
ance, within the recording time, of m photons at the laser amplifier output for an input of 
n photons. We designate this probability by Pnm. 

Finally, each of the m photons that land on the photodetector have a certain probability 
of knocking a photoelectron out of the photocathode. The probability that one photon will 
lead to the appearance of one photoelectron is equal to the quantum efficiency q of the photo- 
cathode. The total probability that the photocathode will emit 1 photoelectrons if m photons 
landed on it is determined by the known formula [9] 

m! q).~-~. 
P~z-- /!(m---Z)! q ~ ( t - -  (3.57) 

A distribution of this type is called binomial. 

Equation (3.57) was written under the assumption that the photodetector has no intrinsic 
noise sources. That this assumption is justified is subject to no doubt when the amplifier 
gain is high enough for the detector intrinsic noise to play no role. We shall thus consider 
hereafter only one cause of noise, namely the spontaneous emission of the laser amplifier. 

As for the probability distribution Pn for the photons entering the amplifier, we as- 
sume that it is of the Poisson type with a mean number ~ of entering photons: 

~n 
P z e x p ( - - ~ ) ~ - . .  (3 .58 )  

An explicit expression for the probability Pnm, which determines the photon multiplica- 
tion in the amplifier, can be obtained by using the parameters a, b, and c introduced above 
for the photon creation, annihilation, and spontaneous emission, respectively. In this pro- 
cedure, the parameter that determines the gain is the time interval t during which the photon 
is located in the active medium. In this case, the gain G is obviously equal to 
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G = e x p  [(a -- b)t]. (3.59)' 

The p r o b l e m  of  f i n d i n g  t h e  e x p l i c i t  f o rm o f  t h e  d i s t r i b u t i o n  Pnm was s o l v e d  i n  t h i s  
f o r m u l a t i o n  in  [ 1 0 ] .  We s h a l l  n o t  r e p e a t  h e r e  t h e  l e n g t h y  i n t e r m e d i a t e  c a l c u l a t i o n s  t h a t  
l e d  t o  t h e  f i n a l  r e s u l t .  ( D e t a i l s  c a n  be found  i n  [ 1 0 ] . )  We w r i t e  t h e  f i n a l  r e s u l t :  

p __ (a--b)Lamb"(G--l) m+€ ~ n i P ( r e + L )  [ (a-b)zG ]d. (3.60) 
. m  - -  (aG -- b) m+n+L i ! (n -- ~ ! (m -- 1) ! r (1 + L) ' ab (G - -  i) ~I 

j=O 

In this expression we have introduced the parameter L = c/a, and for the gamma function of 
integer argument the following relation holds: 

r (N) = (N - -  t) !. ( 3 . 6 1 )  

Tak ing  i n t o  a c c o u n t  t h e  s t a t e m e n t s  made a b o v e  c o n c e r n i n g  t h e  p r o b a b i l i t i e s  o f  t h e  s p o n t a n e -  
ous  and s t i m u l a t e d _ e m i s s i o n ,  we a r r i v e  a t  t h e  c o n c l u s i o n  t h a t  t h e  p a r a m e t e r  L i s  e q u a l  t o  
t h e  r a t i o  o f  t h e  number  o f  modes i n  wh ich  d e t e c t i o n  o f  t h e  s p o n t a n e o u s  e m i s s i o n  t a k e s  p l a c e  
to  t h e  number  o f  s i g n a l - r a d i a t i o n  modes .  

The f i n a l  p r o b a b i l i t y  P~ f o r  t h e  a p p e a r a n c e  o f  ~ p h o t o e l e c t r o n s  a t  t h e  p h o t o d e t e c t o r  
o u t p u t  i s  e q u a l  t o  [11] 

m ~ O  n = O  

I n  t h e  a b s e n c e  o f  a s i g n a l  a t  t h e  e n t r y  to  t h e  a m p l i f i e r ,  
f r om ( 3 . 6 2 )  w i t h  a l l o w a n c e  f o r  ( 3 . 5 7 ) ,  ( 3 . 5 8 ) ,  and 
of I noise electrons at the photodetector output: 

(3.62) 

i.e., at ~ = 0, we obtain 
(3.60), the probability of the appearance 

( q "~t[l--d~L ~ [ ( G - - t ) ( t - - q ) ] m  ( m - I - L - - l ) !  
Pno (/)~- l ! ( L L t ) !  \ l - - q /  kG--d/ G--d N---f)T ' (3.63) 

where we have introduced the notation d -- b/a and, in addition, assumed that the parameter L 
is an integer. The last assumption does not really restrict the analysis that follows for, 
in practice, one deals always with integer values of the parameter L. 

At ~ # 0 we obtain the probability of the photodetector emitting I photoelectrons if a 
signal and noise are simultaneously present : 

p ( l ~ - _ e x p _ ( _ - - b t ) . / ~ q  ' ~ t / t - - d ~  ~ ~ r M ( m - t - L - - t ) ! [ ( G - - t ) ( l - - q ) . ] m  X 
"s+ 'no~'  - -  l! \ l - - q /  \ G - - d /  (m- - l ) !  G - - d  

.~=l (3.64) 

n=0 j=O 

I n  s i n g l e - t h r e s h o l d  r e c o r d i n g  o f  t h e  s i g n a l  f rom t h e  p h o t o d e t e c t o r  o u t p u t ,  
ity F of a false alarm is 

the probabil- 

lo 

F = t - -  ~ P no (l),  

where  ~o i s  t he  p r e a s s i g n e d  t h r e s h o l d  number of  p h o t o e l e c t r o n s .  
a s i g n a l  i s  e q u a l  t o  

(3.65) 

The probability ~ of missing 

10 

~==2= ~ ~+ no(l). (3.66) 

The detection characteristics of a radar receiver comprise the dependences of the missed- 
signal probability B on the average value of the input signal ~ at a given false-alarm proba- 
bility F. To construct the detection characteristics it is necessary to solve, given the 
false-alarm probability, Eq. (3.65) with respect to lo for each average value of the number 
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of entering photons. The result is the dependence Io = f(~). This dependence is substituted 
in (3.66) and the missed-signal probability ~ is determined. To be able to perform these 
calculations it is necessary to simplify the explicit form of the expressions (3.63) and 
( 3 . 6 4 ) .  

We begin with expression 
We introduce the notation 

Equation (3 .63 )  

(3.63) for the probability of appearance of noise electrons. 

-- I ) ( I  --q) (3.67) A--(G G-- d 

then takes the form 

q t 1 ( l - - d ~ L  ~ A . , ( m + L - -  !) [ 
Ps~'no(/)=(~) / ' ( L - - t ) ,  k G - - d /  (m-- l ) ,  

(3 .68 )  

Making the following change of the summation index 

k ~ - - m - - l .  (3.69) 

we obtain 

QO 

q t t i - -  d L ,~ (k+ I q-l--i)! 
Pno(/)=(-i-- i~)  / , ( L - - i ) ,  (G-'-~-d) A ~ A  k k! (3 .70 )  

k = 0  

The infinite sum in the right-hand side of (3.70) can be calculated in explicit form. 
In fact, let us consider an infinite sum of the form 

~ A  k (n+k)!  
k! 

k=O 

(3.71) 

By direct calculation we can verify that the following equality holds: 

Ak (n + k).T 0" Ak" 
k [ - -  OA n 

k ~ 0  k = 0  

(3.72) 

If A < i, both series in this equation converge. The series in the right-hand side is a geo- 
metric progression and its sum is 

Ak--~ t __ X" 
k:O 

(3.73) 

Differentiating the right-hand side of (3.73) n times, we obtain 

~ A  k (n+k) I__ nl 
k ! - - ( l - -  A) "+1 " 

k : O  

(3.74) 

Using this equality, we can reduce (3.70) ultimately to the form: 

( x )t t (L~-/--I)[ 
Pno(/)~- ~ (iWx)L l l ( L - - t )  l ' 

where  we have  i n t r o d u c e d  the  a d d i t i o n a l  n o t a t i o n  

(3.75) 

~___q(G-- 1) (3.76) 
I- d 

We can carry out analogously the summation in (3.64). These lengthy but straightforward 
calculations are relegated to Appendix III. We write directly the final result: 
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TABLE 2. Threshold Numbers lo of Photoelectrons 
for Different Values of the Parameters K and L 

5 iO t f(}~ I iOa fO( 

2 . t 0  -a 3 
2 . t 0  -~ 5 
2 . t 0  -1 t2 
2.  lO ~ 60 
2 . t01  539 
2 . t 0  ~ 546t 

3 
6 

t5 
80 

749 
7916 

6 
13 
49 

343 
3288 

33730 

13 
46 

280 
2406 

23660 
238612 

45 
273 

2241 
21240 

211148 
2it7291 

TABLE 3. Dependence of Missed-Signal Probability B on the Average Number ~ of 
Incoming Photons 

2 -  10 -a 2 .  10 - z  2 .  tO -~ 2 .  t0 ~ 2 .  10 ~ 2 -  102 

t0 ~ 0,992 340 
0,295 2385 
0,138 3067 
0,0587 3749 
0,00872 5112 

0,995 55 
0,204 ~86 
0,0662 496 
0,0180 606 
0,00898 66t 

I 

0,998 t3 
0,3t6 80 
0,0716 t07 
0,0100 134 
0,00326 t48 

0,999 6 
0,786 24 
0, t43 42 
0,0t72 54 
0,00499 60 

0,999 5 
0,569 27 
0,140 38 
0,0t47 49 
0,00363 54 

0,999 5 
0,544 29 
0,1i3 4t 
0,0357 47 
0,00905 53 

10 ~ 

IO s 

0,996 545 
0,503 2727 
0 , t20 4363 
0,0354 5454 
0,00895 6544 

0,997 1108 
0,565 5542 
0,170 7759 
0,02883 9976 
0,00999 11085 

0,997 1t2 
0,544 563 
0, t59 789 
0,0264 10t4 
0,00907 1t27 

0,999 261 
0,532 1307 
0,0907 t830 
0,0237 209t 
0,00475 2352 

0,999 28 
0,489 t44 
0,235 173 
0,0849 202 
0,005t7 260 

0,999 t 79 
0,497 399 
0,t99 479 
0,0498 559 
0,00770 639 

0,999 t4 
0,507 7t 
0,0707 t00 
0,0t53 i t 4  
0,00240 t28 

0,999 40 
0,507 202 
0,t91 243 
0,04t0 283 
0,00493 324 

0,999 12 
0,527 64 
0,0649 90 
0,0123 103 
0,00161 1t5 

0,999' 36 
0,513 t82 
0,t78 219 
0,0325 255 
0,00304 292 

0,999 13 
0,531 68 
0,216 82 
0,054 96 
0,0873 t09 

0,999 38 
0,507 193 
0,158 231 
0,0235 270 
0,00162 308 

Note. In each column, the number on the left is ~ and on the right ~. 

l 
?Gq ~t ~Gq ~J t 

j=o 

Using this expression, and also Eq. (3.75) for the probability of appearance of noise 
electrons, we calculate the threshold number of photoelectrons lo and the detection charac- 
teristics for a given false-alarm probability. To this end it is necessary to specify the 
actual values of the parameters d and q. The parameter d = b/a is actually the ratio of the 
populations of the lower and upper levels of the working transition in the active medium. 
For example, for an active medium in the form of Nd 3+ glass, a typical value of this parameter 
is d = 0.i. We assume a photocathode quantum efficiency q = 2,10 -5 , which corresponds ap- 
proximately to the quantum efficiency of oxygen--cesium photocathodes at the wavelength % = 
1.06 Dm. In Table 2 are listed the threshold numbers lo of the photoelectrons calculated for 
the indicated values of the parameters d and q at a specified false-alarm probability F = 
10 -6 . Here we used, for the parameters K and L, the values of greatest interest from the 
practical point of view. In Figs. 3.4-3.7 and in Table 3 are given, for the same values of 
the parameters d, q, and < and for the same false-alarm probability, the computer-calculated 
detection characteristics, i.e., the dependence of the missed-signal probability B on the 
average number ~ of incoming photons. 

Analysis of the results shows that an increase of the parameter K leads to an improve- 
ment of the detection characteristics. Turning to Eq. (3.76) for the explicit form of this 
parameter, we conclude that it can be increased either by increasing the quantum efficiency 
q of the photodetector or by increasing the amplifier gain G. Thus, the use of a laser ampli- 
fier is in fact equivalent to increasing the quantum efficiency of the photodetector. 

483 



1,6 

O,G 

0,2 

0 
/0 ~ 

~ 7 0  v 
Ilk\ k 

10 7 Ig z 11) J 10 ",11 

Fig. 3.4 

0,6 

O,Z 

o 
10; 

- - - - i  = l a T " ~ ~ ~ t  l..oe 

10 a 10 a ;*,?~. /e 

Fig. 3.6 

1,0 

o, G 

0,2 

0 
10 7 10 e 

G=IO' 

/. =la 2 

10 "~ 10 ~ 

Fig. 3.5 

o li,:,o  \\.... 
I0 z i0 3 10 ~ IOSF 

Fig. 3.7 

# 

/gJ 

10 2 

I I I I I 

10 2 10 ~ I0 8 G 

Fig. 3.8 

The results listed in Table 3 indicate that to ensure maximum sensitivity it is necessary 
to satisfy the condition 

It follows, therefore, that at low quantum efficiency of the photodetector, and at sufficient- 
ly high population inversion in the active medium (i.e., at d << i), the gain of the laser 
amplifier should be chosen to satisfy the condition 

G ~  q-1. 

Figure 3.8 shows the dependence of the average number p of the incoming photons needed 
to reach values F = i0 -~, B = i0 -z on the amplifier gain G. Just as in the preceding calcula- 
tions, d = 0.i, q = 2.10 -5 . It can be seen that it is meaningless to increase the gain above 
10 5 . Thus, for practical purposes the following expression is recommended for the optimum 
gain: 

G -- 2/q. 

It is interesting that the relation obtained for the gain is independent of L and can thus be 
used for laser amplifiers of arbitrary design. 
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TABLE 4. 
Glasses 

F i g .  3 . 9  

Principal Characteristics of Neodymium 

Characteristic 

Refractive index 
Neodymium ion demity, 
I~O cm -~ 

Density, g/cm a 
Duration of excited state, 

m ~ e e  

KGSS,-3 

t ,  5z~O0 

1,0 
2,92 

0,60 

Glass brand 

KGSS-II GL8 -2 

J, 5~85 1,5280 

6,0 1.9 
2,97 2,70 

0,45 0,55 

LGS-36 

l, 5780 

2,0 
2,78 

0,45 

6. Concrete Types of Laser Amplifiers. We consider now actual amplifying media and 
actual types of laser amplifiers. We shall consider only media designed for amplification of 
optical signals at infrared wavelengths, since the use of such amplifiers is not advantageous 
for visible light by virtue of the sufficient quantum efficiency of the available photode- 
tectors. 

One of the active media with the largest gains is the He--Xe gas mixture. The resonant 
wavelength of this mixture is k = 3.508 ~m. A traveling-wave He--Xe laser amplifier 0.5 m 
long has an amplification coefficient 103 m -I at the center of the gain band. This corres- 
ponds to a gain ~ = 0.138 cm -I. However, despite this high gain, He--Xe amplifiers are not 
widely used in laser radars for two reasons. 

First, they have too narrow a gain band (about i00 MHz). This raises difficulties when 
amplifying broadband signals and signals that are Doppler-shifted in Frequency. 

Second, the existing lasers, which operate at 3.508 ~m, are of low power and do not en- 
sure a sufficiently large range. 

Highly promising is COa mixed with N2, He, or H2 as a buffer gas. The luminescence 
spectrum of such a mixture consists of several gain bands, each =50 MHz wide at a pressure 
less than 1 torr. These bands are equidistant in the wavelength range 10.51-10.67 ~m. With 
increasing pressure in the mixture, the gain band broadens. The ratio of the increment of 
the gain bandwidth to the pressure increment is 5 MHz/torr. Thus, to obtain a gain band with 
a width of about i0 ~ Hz (AX = 0.3 nm at ~ = 10.6 ~m) the pressure mixture must be about 200 
torr. At such pressures it is impossible to produce an autonomous discharge in large volumes, 
and a nonautonomous discharge must be resorted to [12] The ensuing technical difficulties 
limit the use of CO2 amplifiers in receiving devices. The gain of a C02 amplifier varies 
with the regime and ranges from 5.10 -3 cm -: for an autonomous discharge to 5-10 -2 cm -~ for a 
nonautonomous discharge pumped by an electron beam. 

Among the solid media, the most important material for laser amplifiers is glass activ- 
ated with Nd 3~ ions (neodymium glass). The principal characteristics of the glasses employed 
are listed in Table 4. The gain bandwidth in neodymium-glass is of the order of i0 z~ Hz 
(A% = 0.37 nm at a wavelength % = 1.06 ~m), which is sufficient for the reception of radar 
signals. 
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TABLE 5. 

Material  

Principal Parameters of Existing Active Fiber-O 

Length, ;Core 
mm diam- 

eter, 
2 m  

t500 4 , t  

t500 4,7 

1500 6,4 

1500 8,3 

1500 5,5 

1500 22 

Cutoff  
param- 
eter  

1,52 

3,52 

5,76 

9,15 

3,46 

79 

core sheath 
part 

tqGSS-3 H-15 

GLS -2 KGSS - t t  

LGS -36 KGSS-7 

LGS-36 K-15 

G LS - 2 H -8 

Garnet  Quartz 
glass 

Number Level angle Pump 
of of  one fiber energy,  

modes end face, J / m o d e  
de 8 

)tics Waveguides 

Pump 
energy, 
Gain, I 

Gain 

max-  m i n -  
imum lmum 

l 

4 

72 

26 

4 

t4t0 

12 

t2 

t6 

t6 

t2 

20 

2 0 0 0 *  2000* 
1000 1000 

280 t120 
i80 720 

70 840 
60 720 

49 i280 
22 600 

180 720 
t25 500 

2 2800 
i , 7  2400 

8000 

800 

7000 

500 

300 

t400 

350 

65 

900 

t50 

50 

300 

*The upper and lower numbers are the maximum and average gains, respectively. 

Fig. 3.10 Fig. 3.11 

One of the most promising laser amplifiers, from the point of view of use in receivers, 
is a fiber-optics amplifier. Such a laser amplifier constitutes an optic fiber waveguide 
(Fig. 3.9) in which the core is glass activated with Nd S+. Optical pumping produces inverted 
population in the core of this waveguide. The light wave propagates mainly in the core of 
the waveguide and is therefore effectively amplified there. 

Fiber-optics laser amplifiers offer a number of advantages. First, they yield a large 
stable gain along with a large bandwidth. Second, fiber-optics amplifiers have relatively 
large input angular apertures at small dimensions. Third, the large ratio of the surface 
area to the volume improves the cooling when operating at high pulse repetition frequency. 

The most advantageous is an operating regime in which only one transverse mode can prop- 
agate along the waveguide. This is called the single-mode regime [13]. For the single-mode 
regime to take place, the following condition must be satisfied (see Fig. 3.9): 

R : ~dc (n~ - -  n~),12 X -1 . ~  2 ,405.  (3.78) 

The parameter R is called the cutoff parameter. For example, if the core part of the fiber 
has a diameter dc = 5.5 ~m and is made of KGSS-3 glass with refractive index nl = 1.5400, 
while the sheath is made of K-15 glass and has a refractive index n= = 1.5335, then R = 2.304, 
i.e., condition (3.78) is satisfied. 
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To obtain the maximum gain it is necessary to eliminate the feedback produced by reflec- 
tion from the end faces of the fiber. A simple and effective method for eliminating feed- 
back is to polish one of the end surfaces at a definite angle e. The lower limit of this 
angle is determined by the condition that the limiting meridional ray not experience total 
internal reflection from this end face. These conditions take the form: 

arccos  ,~ < 0 ~ a ros in  ____i arc cos n..~_2. 
~I nl nl 

As a rule, the angle e is 10-20 ~ 

The parameters of the existing active fiber waveguides are listed in Table 5. 

Finally, mention must also be made of the possibility of producing cables of active 
fibers. If the input and output of the cable are matched, it is possible to transmit over 
such a fiber cable an image and amplify simultaneously its brightness. Experiments show 
that a fiber-optics laser image amplifier can increase the signal/noise ratio in the recorded 
image [14]. 

Figure 3.10 shows a photograph of the output end face of a fiber image amplifier where 
the image of a target with alternating black and white stripes is amplified. The intensity 
gain is about l0 s . A certain irregularity of the image is due to the nonuniformity of the 
optical pumping of the fibers and to cross-coupling of the fibers. The dark dips in places 
where a white stripe should be are attributable to nonuniform pumping. White spots in dark 
intervals are the consequence of interfiber coupling. 

Much attention is paid of late to amplifiers in which the active medium is based on dye 
solutions. Such amplifiers have very high gains, on the order of several reciprocal centim- 
eters. This permits a reduction of the working length of the amplifier, which leads, in 
turn, to low losses and small distortions in image amplification. For example, an amplifier 
based on a solution of rhodamine 6Zh in ethanol has high gain in the yellow-green region of 
the spectrum. Figure 3.11 shows selected targets amplified in such an amplifier. The gain 
is 2.103 when pumped with a neodymium laser with frequency doubling and with a power density 
2 MW/cm 2. The maximum resolving power is 120 lines/mm. 

3.2. Parametric Converters of Radiation Frequency 

i. Principles of Parametric Conversion of Radiation Frequency. A promising method of 
increasing the efficiency of laser-signal reception is parametric conversion of the frequency 
in a nonlinear crystal. The gist of this method is that the field of the reflected radar 
signal interacts in a nonlinear crystal with the pump field, as a result of which the energy 
of the signal field is transformed into the energy of another field whose frequency is equal 
to the sum of the frequencies of the original and of the pump fields. This permits the 
energy of an infrared field to be converted into energy of a visible-light field and be re- 
corded with high-sensitivity receivers such as photomultipliers. 

The first parametric conversion in a quartz crystal was implemented by Franken and co- 
workers [15] in 1961. They generated in their experiments the second harmonic of laser radia- 
tion. Parametric conversion can be particularly helpful when it comes to recording the image 
of an object in the infrared band. By parametric frequency conversion it is possible to 
transform an image with sufficiently high resolution. The first to transfer an image from 
the infrared to the visible region of the spectrum was Midwinter [16]. 

Let us consider the basic principles of field interaction in a nonlinear medium. Max- 
well's equations are of the form 

where 

ro t  H : d r - ~  OD OB Ot ' ro t  ./~ ~ -- ~-7-, 

d i v  D - ~  O, d i v  B ~ O, 

(3.79) 

The polarization P(r, t) of the medium can be divied into two parts: the polarization 
pL(r, t) linear in the field and the polarization pNL(r, t) nonlinear (quadratic) in the 
field. In the most general form, these components can be written in the following form (for 
each i-th component): 

487 



piL(r, t )=% i dt ~ f d~r~• r~)Ey(t-- tp r - -r~) ,  
O 

(3.80) 

? 
p~L(r, t)=% ~dtldt 2I ~qd2r2X,jk(tl, t2, rl, r2) E](t--t~, r - -r~)E~(t - - t~-- t~ ,  r - - r~ - - r~ ) ,  (3 .81)  

O 

where  < i j  and X i j k  a r e  the  t e n s o r s  o f  t h e  l i n e a r  and n o n l i n e a r  ( q u a d r a t i c )  d i e l e c t r i c  s u s c e p -  
t i b i l i t y .  

Transforming to the frequency representation, we can express the linear component of 
the polarization in the form 

P ~ ( r , t ) = %  I d~I• k) E~(~, k) exp[i(~t--kr)]d~k, (3 .82)  

where 

E~ (o), k) -= (2~) -3 I E~ 0', t) exp [--i (o)t -- kr)] dt dar, 

• ((% k) -~ (2~) -3 f x~y (t, r )  exp [--i (oJt -- kr)] dt d~r. 

(3.83) 

(3.84) 

In most cases, the spatial dispersion can be neglected; then 

P~ (r,  t ) =  % f x,] (~) Ej  (~, r )  exp (i~t) d~. (3 .85)  

The relaxation time o~ the linear dielectric susceptibility is short (on the order of I0 -Is 
sec). Considering quasimonochromatic signals, one can therefore neglect in (3.85) the tem- 
poral dispersion of the dielectric susceptibility and write 

P~(r, t) =%• (~) Ej (~, t) exp [i (~t - -  k~)], (3 .86)  

where  E j ( r ,  t )  i s  a f u n c t i o n  of  t he  t ime and of  t he  c o o r d i n a t e s  and v a r i e s  s l o w l y  compared 
w i t h  ~-* and k - I .  

In  p r a c t i c e ,  however ,  one e n c o u n t e r s  f r e q u e n t l y  c a s e s  when t h e  a p p r o x i m a t i o n  (3 .86)  can -  
no t  be used. This occurs when the field correlation time �9 ~ 10 -12 sec. For a wavelength 

= 1.06 ~m, this correlation time corresponds to a spectrum width A% = 3 nm. A comparable 
spectrum width is possessed by certain solid-state pulsed lasers. In laser radar, however, 
the radiation used is appreciably more monochromatic, and we shall therefore use hereafter 
the approximation (3.86), which yields simple analytic results. 

For the nonlinear component of the polarization we have,accordingly, 

+~ 

p~L(r, t ) =  i dmi tr~L~ (~' k)exp[i(mt--kr)]d2k' (3 .87)  

where 

-~-co 
(3.88) 

%~jk(~, k, ~1, k l ) =  f %~j k (tl, t 2, r 1, r2)exp[--~(o)t~-~-oht2--krl--klr2)]dt~dt2d2r~d2r2. (3.89) 

Relations (3.87) and (3.88) show that the nonlinearity described by the tensor Xijk leads to 
interaction of three fields with frequencies ml, ~2, and ~a, and the relations between the 
frequencies and the wave vectors of these fields can be written in the form 

~8 = ~i ~_ ~2, k~ = kl -~ k 2. (3.90) 

These interactions were named three-frequency interactions. We shall consider hereafter only 

such interactions. 
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The nonlinear part of the polarization is smaller by several orders of magnitude than 
the linear. Therefore, allowance for the spatial and temporal dispersions of the tensor 
Xijk would lead to terms of higher orders of smallness, which are inessential for our 
analysis. We can therefore neglect the spatial and temporal dispersions of the tensor Xijk 
and write the nonlinear component of the polarization in a quasimonochromatic approximation: 

p~L(~, t) = SoX,j~ (% = (01 + (02) Eli (r, t) E2k (r, t) exp [i (~ + (02) t -- i (k I + k2) r], (3.91) 

where Ex(r, t) and E=(r, t) are slowly varying amplitudes pertaining to fields with frequen- 
cies e~ and ~2, respectively; pNLs(r , t) is the nonlinear component of the polarization and 
its frequency is w3; the symbol Xijk(~s = ~, + ~) denotes the tensor of the nonlinear di- 
electric susceptibility that pertains to an interaction of form (3.90). 

For interaction of the type 

0)I ~ (03  - -  (02P (D 2 7---- O) 3 - -  (01 

the corresponding nonlinear polarization components are 

(3.92) 

/~4~L(r, t) -~  % Z ~  (% = %  - -  (02) E3] ( r ,  t) E ~  ( r ,  t) exp [i (% - -  0%) t - -  i (k  a - -  k2) ~.], (3.93) 

P~,  ( r ,  t) -~- %X~yk (m2 = % - -  (01) Ea~ ( r ,  t) E~k ( r ,  t) exp [i (% - -  (01) t - -  i (k  8 - -  kl)  r ] .  ( 3 . 9 4 )  

We now turn to Maxwell's equations (3.79). Taking the curl of both sides of the second 
equation of system (3.79) and substituting the expression for rot H from the first equation 
of the same system, we get 

V2~ OE , OZE . O~p L , O~p NL 

~ w - - ~ ~  0t 2 ' ( 3 . 9 5 )  

where we have used the relations rot rot E = 7 div E -- 72E, div E = 0. Substituting in the 
obtained equation expression (3.86) for linear polarization, we have 

~ E  02E . # ~ p N L  
V 2 . E = ~ o ~ - j F - ~ o %  (t--~ z) - j f i - - t -  ?o ~ , ( 3 . 9 6 )  

where z is the tensor of the linear dielectric susceptibility. 

We now make the following remark. In practical realization of parametric frequency con- 
version one usually chooses the polarizations of the signal field and of the pump field in 
such a way that they correspond to to waves of the ordinary (o) type (see [17] for more de- 
tails). Yet the transformed wave turns out to be extraordinary (e). Such an interaction 
ensures satisfaction of the condition of spatial locking [18] and is designated as an oo--e 
interaction. 

Equation (3.96) is valid for each of the interacting waves. In the general case the ob- 
tained system of equations turns out to consist of equations of type (3.96), which are re- 
lated not only through the nonlinear polarization pNL, but also through the tensor of the 
linear dielectric susceptibility K. Waves of type o and e are two types of waves that can 
propagate in a crystal independently of each other. Therefore, if o (or e) waves are taken 
to be the interacting ones, then the coupling of the equations via K is eliminated and the 
entire system as a whole is simplified. In this case, each o (or e) wave satisfies the 
similar equation 

OE__ O~E , OzP NL 
V2-E~@~-~-~o%s~o ~ , (3.97) 

where e = 1 + K is the dielectric constant of the crystal for a wave of type o (or e). 

We express the field E in the form 

_ E ~ e A  (r, ~ e x p ( i ( 0 t - -  i k r ) ,  (3.98) 

where e is the field-polarization vector. Waves with frequencies ~, ~, and ~3 will be 
labeled with the appropriate subscripts i, 2, and 3. Substituting (3.98) in (3.97) and con- 
fining ourselves to the first-order approximation, we obtain 
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e~2ik~ VA~ = --p.oZ~Ohe~A1 + ~oSoZeae~AaA~ exp (--iA,r), 

e22ik2 VA2 ----- --~oZ2(02e~A2 ~-- " �9 2 ( - - i h r ) ,  7.oSoZe,~elA3A~o h exp (3 .9  9) 

e32ik a VA 3 = --Fo%%eaA3 -[- poSoZe~e~AiA2~ exp (iAr), 

where X is the tensor of the nonlinear dielectric susceptibility, and for the detuning vector 
we introduce the notation 

A = k s - - k 2 - - k l .  (3.100) 

Neglecting the anisotropic shift of the e wave, and also assuming that all the waves prop- 
agate approximately along the z axis, we obtain 

k V A ~ k  aA a z  �9 (3.101) 

With this remark taken into account, system (3.99) is ultimately reduced to the form 

#A~ =- -a~A  1 _ _  i~A3A. 2 exp ( - - iAr) ,  
Oz 

OA3 . . . . .  %A 8 - -  i~3A~A 2 exp ( ihr) ,  
c)z 

(3.102) 

where (j = i, 2, 3) 

_ i = ( ~o y/2 
%'--~- J\;77~'~j/ ' 

I / ~ o %  \ t 1 2  
1 = T  ~lel)~e2e3 ~-~-1) ' 

1 / PoSo \~12 
~3-- T %eaxele~ ~--~--3 ) " 

(3 . i03)  

We continue the analysis under the assumption that the pump field A2 changes insignifi- 
cantly during the interaction. This assumption is justified in the case when the input field 
of the signal Ax is much weaker than the pump field A=. In this case, the field generated at 
the summary frequency A3 is also considerably weaker than the pump field. Furthermore, to 
simplify the subsequent calculation, we set the parameters ax, a2, and as, which describe the 
absorption of the radiation inside the crystal, equal to zero. Under the assumptions made 
we get 

OA1 i~IA3A~ exp ( - - JAr ) ,  
Oz 

OA~ = _i~sAaA2 exp (iAr). (3 .104)  
~z 

Finally, we make the last assumption: 

~"F = Af,, 

i.e., we assume that the detuning vector A is directed along the z axis. 
ing the first equation of system (3.104) with respect to z and substituting the value of 
BA3/@z from the second equation, we obtain a differential equation for A3: 

0A3 a2Aa - -  iA--E--z + ' [A8 = 0, T = [31,3a I A2 ] 2. (3 .106)  
c)z ~ 

Under the initial conditions 

(3. 105) 

Then, differentiat- 

A t (z)z=o = At(0), A 3 (z)~~ = 0 (3 .107 )  

t h e  s o l u t i o n  of  (3 .106 )  t a k e s  t h e  fo rm 

�9 . I A 2 - 1 / 2  
A 3 ( z ) =  --t~3Al(0)A~exp ( t T  5z) ( -T- t -  Y) am ( ] / f ~ - z ) .  ( 3 .108 )  

We shall be interested further in the power Ps(z) = ]A3(z)]  a of the converted radiation. 
From (3.108) we obtain 
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~2 - I  

As a rule, the conversion coefficient, defined by the dimensionless parameter n = yz 2, is 
much smaller than unity. Taking this into account, we can rewrite (3.109) in a more lucid 
form: 

P3 (z)= ~-~ I A I (0)[ 2 ?z2[ si,j (Az/2)-I~ hz/2 j . (3.110) 

The function in the square brackets in the right-hand side of this expression is well known 
(Fig. 3.12). It reaches a maximum value, unity, at 

A = O. (3. iii) 

This condition is called the spatial-locking condition. 

If the spatial-locking condition is satisfied, the power of the converted radiation at 
the combined frequency is 

P~ (z) - ~ - ' )T  P1 (0) TzL (3.112) 

w h e r e  P I ( O )  i s  t h e  power  o f  t h e  s i g n a l  r a d i a t i o n  a t  t h e  f r e q u e n c y  ~ : .  I n  t h i s  c a s e ,  t h e  c o n -  
version coefficient 

P~(z) % ~='Pi(0)--  ~1Tz2 (3.113) 

is proportional to the square of the nonlinear-interaction region. It follows from (3.110), 
however, that with increasing z the conditions on the permissible detuning A become more 
stringent. 

Spatial synchronization is an important factor in practical realization of the method of 
parametric frequency conversion. We shall not discuss this question, however, since it per- 
tains mainly to crystal optics [19]. 

Concluding the analysis of the general principles of parametric frequency conversion, 
notice must be taken of the following. Equation (3.113) is an expression for the power con- 
version coefficient. In some cases it is convenient to introduce the photon-number conver- 
sion coefficient: 

, Ns (3.114) =-R?, 

where Ns is the number of photons produced per unit time at the frequency m3, and Nt is the 
number of photons of frequency m~ entering the converter per unit time. In accord with 
(3.113) we obtain 

~,_ ~xe,~ ( ~__,/"~ (3. n s )  
elxezea k % / 

T h i s  e x p r e s s i o n  d o e s  n o t  d e p e n d  e x p l i c i t l y  on  t h e  f r e q u e n c i e s  ~1 and  ~ a .  I n  c o n v e r s i o n  to  
h i g h e r  f r e q u e n c y ,  t h e  p h o t o n - n u m b e r  c o n v e r s i o n  c o e f f i c i e n t  i s  a l w a y s  s m a l l e r  t h a n  t h e  power  
c o n v e r s i o n  c o e f f i c i e n t .  

1,0 

-~ -5 -4 - J  - f  -z g 

\ 

2 J 4 5 6x 

Fig. 3.12 
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TABLE 6. Experimental Values of the Power 
Conversion Coefficients for Certain Non- 
linear Crystals 

Crystal Conversion Pump power Reduced con- 
version coeff., 

coeff, density, MW/cm s i0_9cm2/W 

BDP 
HDA 
DKDP 
LilO3 

0,089 
0,066 
0,082 
0,079 

27,5 
16,4 
20 
7,0 

3,2 
4,0 
4,1 

t2 

Table 6 lists the experimental power conversion coefficients obtained for several non- 
linear crystals in wave conversion from 11 = 1.15 ~m to 13 = 0.43 ~m at a pump wavelength 
12 = 0.69 ~m [20]. Also given are the values of the reduced power conversion coefficient 
and of the pump-power density. 

2. Image Conversion in Nonlinear Crystals. The parametric frequency conversion method 
makes possible conversion of not only single-mode radiation, but also conversion of images 
from the infrared into the visible region of the spectrum. Let us examine the theory of 
such a conversion on the basis of the results of [21]. 

Figure 3.13 shows a schematic model of parametric image conversion. The transformed 
image at the frequency ml is shaped by some optical system in the zl plane. A plane wave 
of frequency ~2 propagates along the z axis in a nonlinear crystal. Interaction of the sig- 
nal wave at frequency ~1 with the pump wave of frequency m2 generates a converted wave of 
frequency us. It will be shown below that this wave shapes a converted image in some plane 
Zs, 

We assume, for the sake of argument, that the nonlinear anisotropic crystal of length 
zo and width d is uniaxial, while the pump wave and the converted-signal waves are ordinary 
(o) and the converted wave is extraordinary (e). The arrangement of the axes of the co- 
ordinate system is shown in Fig. 3.13. We assume that the principal optical axis of the 
crystal lies in the xz plane (Fig. 3.14). 

We agree to assign to the field of frequency ~j the subscript j. Then the spatial 
spectrum E,(kl, zz) of the field of the signal image El(r, zl) in the zl plane can be rep- 
resented in the form 

I El(kl~' klY' Zl) - ~  I El(X' g' zl)exp(iklxx~ikly g)dxdg' (3 .116)  

where  the  i n t e g r a t i o n  i s  o v e r  the  e n t i r e  z l  p l a n e .  

We introduce formally the transfer function K(kx, ky) of the nonlinear crystal, defined 

as follows: 

E~ (k~, k~y, zs) ----- K (klz, kl~ ) E1 (~x, k~, zl), (3.  117) 

where  Ea (k3x ,  k3y ,  zs)  i s  t he  s p a t i a l  s p e c t r u m  of  t h e  c o n v e r t e d  f i e l d  a t  t he  f r e q u e n c y  ms i n  
the  z2 p l a n e .  

The wave v e c t o r s  k l  and ks and t he  pump wave v e c t o r  k= s h o u l d  s a t i s f y  the  s p a t i a l  s y n -  
c h r o n i s m  c o n d i t i o n  

h=k3__k __k1=0. (3.118~ 

Exact satisfaction of this condition is possible only for definite values of the components 
k,x, kzy, k3x, and ksy. Therefore, at exact synchronism only one plane wave can be con- 
verted, i.e., only one resolution element. The conversion of other plane waves making up the 
image takes place at a different value of the detuning A and, consequently, the efficiency of 

conversion of these components is lower. 

Thus, the nonlinear crystal acts as a filter for the spatial frequencies. The larger 
the passband of this filter, i.e., the less critical the condition (3.118) to changes of the 
components klx and kzy, the more resolution elements can be converted by the crystal. Low 
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criticality of the synchronism condition is reached when the signal-radiation wave vector 
makes a small angle with the direction of the pump wave vector upon satisfaction of the 
exact synchronism condition. Under these conditions we can write in first-order approxima- 
tion (j = i, 2, 3) 

h = k ~ . - - k 2 . - - k l .  , k ] .= f ] ( k ]~ ,  kjv), (3 .119)  

k3~=kl~--~-k~z, k3v--~klv-~k~ v. (3 .120)  

The f u n c t i o n  f j  i n  (3.119) i s  o b t a i n e d  by expand ing  t he  de pe nde nc e s  o f  k j z  on k j x  and 
kjy in terms of small parameters, namely the ratios kjx/kj, kjy/ky. Allowance for the detun- 
ing with respect to the x and y components of the wave vectors would lead to terms of next 
order of smallness in the parameters kjx/kj and kjy/kj. Exact synchronism with respect to 
the x and y components of the wave vectors was therefore assumed in Eqs. (3.120). 

To find the spatial distribution of the field Es(x, y, z2) in the z2 plane we must take 
the inverse Fourier transform of (3.117): 

Ea(x, y, z ~ ) = ~ e x p i  (_ik2~ x - -  ik2vy) i E~(k~, kl v, z~)K(kl~, k~)exp(-- ikl~X - -  ik~y)dk~dklr. (3.121) 

In  t he  d e r i v a t i o n  of  t h i s  e x p r e s s i o n  we have  used  the  e q u a t i o n s  i n  ( 3 . 1 2 0 ) .  Nex t ,  u s i n g  the  
c o n v o l u t i o n  theorem and ( 3 . 1 1 6 ) ,  we o b t a i n  

E3(x, Y, z2)=exp(- - ikzzx- - ik2vY)  I Ex(Xl, Yx, z l ) P ( x - - x  1, Y- -Y1 ,  zl, z2)dxldy~, (3 .122)  

where 

t 
F(x, g, zl, z2)=  (-~)~ I K(kl .  , kly)exp(--ikl~x--ik~yg)dkl~dklv . (3 .123)  

The function r(x, y, z~, z2) is thus the scattering function that determines the resolv- 
ing power of the parametric conversion of the image. The function F(x, y, zl, z2) provides 
a complete description of parametric frequency conversion in the image conversion regime. 

To find the explicit form of the scattering function (3.123) we must solve the trunc- 
ated equations (3.104) written out for each plane wave component of the image. The trunc- 
ated equations (3.104) were written for the amplitudes of the plane waves Ax(kxx,k:y, z), 
A3(k3x, k3y, z), defined by the relations 

Ex ( ~ ,  ~v' z) = A~ (klx, kly'  Z) exp  (--i~lzx - -  i~vy - -  ik~z), 

E a (k~x, k 3v, z) ---- A z (k3~, ksy , z) exp (--ik3~x - -  ik3yy - -  ika~z ). 

It is neceqsary here to satisfy each of the equalities 

(3.124) 

k 2 4- ~2 2 __ 2 lx | . , l f r  --~ klz - -  kl ,  k2x-J~-k3y-~k2~ = k 2  , (3 .125)  

where kx and k3 are the moduli of the wave vectors inside the crystal. In accord with the 
previously obtained solution (3.108), we have 

T azo) ~T--~ ~] sm (~/-~--q-T zo). (3 .126)  A~ (k~, k3~ , Zo) = --i~3aAl (klx, kly, O) A2 (k~, k~u) 
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Let a plane wave of energy E2 propagate along the z axis. Then k2x = kay = 0 and 
A2(k2x, k2y) = A=. It is now necessary to express the amplitudes A3(k3x, kay, Zo) and Az" 
(klx, kly, 0) in terms of the corresponding values of the field Ea and El and recalculate 
the obtained expressions in the planes z2 and z~, respectively. These operations are per- 
formed with the aid of relations (3.124) and (3.125). It must only be borne in mind here 
that when the fields are recalculated to the planes z2 and z~ it is necessary to substitute 
the values of the wave vectors outside the crystal, k3o and k~o, respectively, while the 
values of the components kjx and kjy do not change on going through the crystal--air inter- 
face. As a result, we obtain 

.~ �9 / A  z , \ - n ~  . ~ - -  

( 3 . 1 2 7 )  

�9 i (k ~ U-k~[ z~ X exp ~ A - - k a z ) Z  0 exp --~x ~ 1~]k~10 ~ E~(k~, k~, z~). 

I n  t h e  d e r i v a t i o n  o f  t h i s  e x p r e s s i o n  we u s e d  t h e  s m a l l n e s s  o f  t h e  p a r a m e t e r s  k j x / k j  a n d  k j y /  
k~ ( j  = 1 ,  3 ) .  An i n e s s e n t i a l  p h a s e  f a c t o r  i n d e p e n d e n t  o f  k ~ x  and  k ~ y  was  o m i t t e d .  The  
p ~ a s e  f a c t o r  exp  ( - i k ~ z z o )  d e s c r i b e s  t h e  p r o p a g a t i o n  o f  t h e  c o n v e r t e d  wave  i n s i d e  t h e  c r y s -  
t a l .  

In accordance with the definition of the transfer function K(kx, ky), we obtain from 
(3.117) and (3.127) 

K (k~, ky) = - - , ~ a A e ( - ~ - j - T )  s m [ V  --$q-Tzo)exp[i(~ a - -k sOzo- - i  ~ k~o 

The d e t u n i n g  h t h a t  e n t e r s  i n  t h i s  e x p r e s s i o n  d e p e n d s  on k x  and  k y .  To f i n d  t h i s  d e p e n d -  
e n c e ,  k z m u s t  b e  e x p r e s s e d  i n  t e r m s  o f  k x and  k y .  As shown i n  A p p e n d i x  IV ,  a l l  t h e  i n t e r -  
a c t i n g  w a v e s  s a t i s f y  t h e  i n e q u a l i t y  

k = k - - t g ~ k ~  ~ + a k  "~ l + ~  k~ ( 3 . 1 2 9 )  
2k = 2k ~' 

w h e r e  a i s  t h e  a n i s o t r o p y  a n g l e  o f  t h e  c r y s t a l  f o r  a g i v e n  d i r e c t i o n ,  k i s  t h e  m o d u l u s  o f  
t h e  wave  v e c t o r  i n  t h e  c r y s t a l  i n  t h e  d i r e c t i o n  o f  t h e  z a x i s ,  and  t h e  p a r a m e t e r s  Z and  v a r e  
d e f i n e d  by  t h e  r e l a t i o n s  

t f-F'-- i + ~ c ~  l §  
~+~sin~O 4 t g  ~ ,  t n k ~ = -  td_~sin~O , 

cos 0 sin ~ (3.130) 
] ~- s n,~ tg  ~ - -  I q- e sin z O 

In these formulas n o and ne are the refractive indices of the ordinary and extraordinary 
waves, respectively, while 8 is the angle between the z axis and the crystal optical axis. 

Substituting (3.129) in (3.119), we obtain 

'~' i+~i i +aa i+,~ I +,3 (3.131) 
2ki 2ka ' 2kl 2ka ' 

t 
• =-f~p (tg % - -  tg  %). 

I n  t h e  c a s e  o f  a n  i n t e r a c t i o n  o f  t h e  oo--e t y p e ,  t h e  wave  w i t h  f r e q u e n c y  ~1 i s  o r d i n a r y  and 
we m u s t  p u t  ~ = 0 .  C o n s e q u e n t l y ,  ~x = ~1 = t a n  u~ = 0 .  We s h a l l  a s s u m e  h e r e a f t e r  t h a t  t h e  
s y n c h r o n i s m  c o n d i t i o n  i s  s a t i s f i e d  a t  k x  = k y  = 0 .  Then  k~ + k2 --  ks  = 0 ,  and  t h e  e x p r e s s i o n  
for the detuning A assumes a shorter form 

A ~ ~k~ -~ 2p• x -~ ~k~. (3.132) 

We substitute this expression in (3.128). If the crystal anisotropy is small (i.e., at 
p << i, V << I), we obtain 

�9 ~ (~ r ~-~--, _~_+T z0) X (3.133) K 

X exp i -} 2k~ k~o k~o t-7~o) ~ -j- i y z o (tg % - -  tg %) k~ . 
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It is known from the theory of optical systems that the best focusing of the obtained 
image corresponds to a position of the recording plane (the z2 plane in this case), such that 
the term containing k2x and k2y in the argument of the exponential is zero. From this we get 
the position of the image plane z2: 

~3o {k~o+ k~o~ (3 .134)  z2=z l -~ lo ' J -Z~176  2kay" 

In this plane the transfer function K(kx, ky) is equal to 

.~ . i A  ~ _  \-112 [_ r ~  \ K (k., k,)=--tp,s2[-$-d-y} sin[~ --4-+TZo) eXp[!}Zo(tg%--tg%)k.]. (3.135) 

To find the scattering function of the analyzed system it is necessary to take the 
Fourier transform of (3.135). To obtain an analytic result in this case we assume smallness 
of the parameter y that determines the conversion coefficient. Taking the Fourier transform, 
we obtain the following equation for the scattering function of the system: 

+~ 

II 

where 

k3k  1 i k,----- k3--h ' x~ z~ (3.137) 

In the derivation of (3.136) we took into account the condition that the anisotropy of the 
crystal be small, and left out the terms z0ks(tan al -- tan a3) 2 << i. 

Without dwelling on the intermediate calculations, which are relegated to Appendix V, 
we write directly the final result of the integration of (3.136): 

i P (x, g ) = - - ~ k , ~ A 2 e x p [ i ( X - - X o ) •  ~I ~+ k~g2]}, 

z 

sin t dt Si (x 2) = I ~ 
0 

A p l o t  of  ~ /2- -Si (x  2) i s  shown i n  F i g .  3 .15 .  

Accord ing  to t he  R a y l e i g h  c r i t e r i o n ,  two p o i n t l i k e  p b j e c t s  a r e  r e g a r d e d  as  r e s o l v a b l e  
if the intensity at the central minimum of their combined image does not exceed 0.7 of the 
intensity at the maximum of the picture. Starting from this we can obtain the following 
estimate for the resolving power of a parametric image converter: 

(3 .138)  

hx z hg ~-~ 2.1 (zo/k~)~m. (3.139) 

From (3.138) it follows also that the converted image is shifted by an amount xo along the x 
coordinate. This "drift" of the image is due to the anisotropy of the crystal. 
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From the practical point of view, the most favorable is a conversion regime in which the 
converted image is focused directly inside the nonlinear crystal. In the notation of Fig. 
3.13 this means that the zl plane is located inside the crystal. In this case the inhomo- 
geneities of the refractive index of the crystal and the divergence of the pump radiation 
are less effective. The number of resolution elements in such a scheme is obviously (d/Ax) 2, 
where d is the transverse dimension of the crystal. The plane z= of the converted image is 
located inside the crystal. For example, conversion of an image of wavelength XI = 1.06 ~m 
at a pump~ wavelength %2 = 0.69 ~m results in an image at a wavelength %3 = 0.42 ~m. At a 
crystal length zo = 1 cm, we obtain 

A z = 2 4  ~ m .  

At a crystal transverse dimension d = 5 mm, the theoretical number of the converter resolu- 
tion elements is 

N = ( ~ a z ) ~ :  4 , 2 -  tOL 

This number is indicative of the resolving power of the converter. No account is taken here 
of the restrictions imposed by the shaping optical system. 

The first experiments on image conversion in a nonlinear crystal were performed by Mid- 
winter [16]. He realized a scheme with an infinitely remote source. In [22] was proposed a 
more convenient scheme with the source at a shorter distance. Among the other experimental 
studies of parametric image conversion, notice should be taken of a study where maximum re- 
solving power was obtained in a system with a closely located source, at a wavelength 1.06 
~m [23], and an investigation of the "graininess" of the image with a diffuse radiation sig- 
nal at a wavelength 10.6 ~m [24]. 

3. Sensitivity of Receivers with Parametric Frequency Conversion. The sensitivity of a 
receiver with signal-frequency conversion is in the general case a complicated characteristic 
that depends on the noises in the frequency converter and the photodetector, on the transfer 
functions of these elements, as well as on the statistical properties of the received field. 
A sufficiently complete analysis of these questions is presented in [25, 26]. We present a 
simplified analysis that yields approximate results. 

The most complete characteristic that permits calculation of the receiver sensitivity is 
the distribution of the number of photoelectrons emerging from the photodetector and recorded 
during the observation interval. We assume that the signal photons entering the converter 
and the noise photons generated by the converter have Poisson distributions. Then the sig- 
nal photons at the output of the converter have a Bernoulli distribution P1(n) averaged over 
a Poisson distribution: 

(3.140) 

where ~con is the photon-number conversion coefficient of the converter and ns is the aver- 
age number of signal photons entering the converter. The parameter ~con is physically equiv- 
alent to the probability of conversion of one photon entering the converter into one output- 
radiation photon. Simple algebraic transformations yield 

( ~1..con n ~s )" 
P1 (n) = exp ( - - n s )  n , ~  (~ c~ "[(t - -  l! "q conlt~=sl~ eel) ( - - ~  con tzs) ' n ] - ~ 

l = 0  

(3.141) 

With this expression taken into account, the overall distribution of the number of the photons 
in the converted signal and noise generated by the converter is a combination of Poisson dis- 

tributions with mean values nconns and nno: 

n ~iZiio_l 
( ~  exp ( - - n  no ) ( ~ Z ~ )  ! = exp [ - - ( ~ c o n  ns @ n n o  )J (~' c~ q- nno)'~ (3  1 4 2 )  P2(n)~ e x p ( - - ~  con ns) ---l  ! ,~! -o �9 

I = 0  
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The summary distribution of the photons at the converter output is also of the Poisson type, 
with the mean number of photons at the output 

~n> ~ ~con ns @ nno. (3.143) 

I n  t h e  a p p r o x i m a t i o n  c o n s i d e r e d ,  t h e  c o n v e r t e r  can  be  t r e a t e d  a s  a m u l t i p l e  c o n v e r t e r  o f  t s  
number  o f  s i g n a l  p h o t o n s  to  wh ich  a c e r t a i n  number  o f  n o i s e  p h o t o n s  i s  a d d e d .  T h i s  a p p r o x i -  
m a t i o n  i s  v a l i d  when t h e  s i g n a l  power  i s  much l e s s  t h a n  t h e  pump power .  

Each p h o t o n  l e a v i n g  t h e  c o n v e r t e r  l a n d s  on t h e  s e n s i t i v e  s u r f a c e  o f  t h e  p h o t o d e t e c t o r ,  
where  i t  g e n e r a t e s ,  w i t h  p r o b a b i l i t y  nq e q u a l  t o  t h e  quantum e f f i c i e n c y  o f  t h e  p h o t o c a t h o d e ,  
one p h o t o e l e c t r o n .  The d i s t r i b u t i o n  o f  t h e  number  o f  p h o t o e l e c t r o n s  g e n e r a t e d  by t h e  c o n -  
v e r t e r  p h o t o n s  i s  d e t e r m i n e d  i n  a n a l o g y  w i t h  ( 3 . 1 4 0 ) :  

P .  (n) = (m n ,  - G (3.144) 

Carrying out the same transformations as in the derivation of (3.141), we obtain 

P;~ (n) ~-~ exp [--(~ con ns @ nno ) ~ [~,q(~con ns + n no)] '~ 7T (3.145) 

We recognize now that, in the absence of photons, the photodetector generates a certain 
sequence of noise electrons, which are due to thermal and field-emission processes in the 
photocathode. These are called darkness photoelectrons. The darkness photoelectrons have a 
Poisson distribution with a mean value nd: 

Pd (n) = exp (--nd) ~ . .  (3.146) 

The total distribution of the number of photoelectrons, with account taken of the signal and 
noise photons and of the darkness photoelectrons of the detector, is obtained by combining the 
two Poisson distributions (3.145) and (3.146). We have already seen [Eq. (3.142)] that the 
summary distribution is also of the Poisson type with mean value 

%~ ~nons@ nno )@~ (3.147) 

From (3.147) follow two important conclusions. First, the conversion coefficient of the 
converter + photodetector system is determined by the product of the converter coefficient by 
the photodetector quantum efficiency. Second, the average number of noise photons, referred 
to the converter input, is 

<nno >--~(Nq nno @ md)/~qNcon" (3.148) 

We consider in the same approximation the characteristics of signal detection. In the 
photoelectron-counting regime, the missed-signal probability is 

~0 

= ~ x p  (-~,) ~ ,  (3.149) 

where y is determined by Eq. (3.147) and no is the threshold number of photoelectrons. The 
false-alarm probability is 

a~ t 

/~ '~  1 -- exp(--@ ~[ , 
~ 0  

(3.150) 

where 

~----~q eno @nd 

is the average number of noise electrons. We put ~q = 0.i, ~con = 0.06, a = 2. At these 
values of the parameters the detection characteristics, as functions of ns, take the form 
shown in Fig. 3.16. The average number of noise electrons, referred to the input, is equal, 
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according to (3.148), to 333. In this case, as follows from Fig. 3.16, to ensure the char- 
acteristics F = 0.143 and B = 0.i, it is necessary to have at the input an average of lO s 
photons, i.e., the signal/noise ratio must be not less than 3. 

The foregoing results are sufficient only for a qualitative estimate of the influence of 
the converter noise on the receiver sensitivity. In a receiver with parametric frequency 
conversion there are usually present: 

a) spontaneous noise due to multiphoton processes; 

b) thermal noise due to fluctuations of the electromagnetic fields in the nonlinear 
medium; 

c) an external background; 

d) fluctuations of the pump power; 

e) technical noise due to imperfection of the receiver; 

f) the photodetector noise. 

From among the spontaneous multiphoton processes that contribute to the noise in the 
summary frequency, notice should be taken of the following: 

i) Spontaneous decay of pump photons of frequency ~2 into a photon at the signal fre- 
quency ml and a photon of some supplementary frequency ~, followed by conversion of ml into 
the output-radiation frequency ms: 

2. Generation of the second harmonic of the pump, followed by decay of the harmonic 
photons into photons of the sum frequency and of a certain difference frequency: 

~o 2 ~ o> 2 -  2co2, 2~o 2 = % ~ -  ~. 

3. Four-photon decay of two pump photons into photons of sum and difference frequencies. 

~ + ~= = ~ 4 ~ 

The first two processes yield the summary frequency as a result of successive three- 
photon processes due to the quadratic dielectric susceptibility of the nonlinear crystal. 
The third is a four-photon process and is due to the cubic dielectric susceptibility. At low 
pump divergence, the processes of the first and second type predominate, since the cubic di- 
electric susceptibility is smaller by two or three orders than the quadratic susceptibility. 

The most intense among the technical noises are those due to insufficient selection of 
the pump signal. The pump-suppression requirements, characterized by the suppression coeffi- 
cient ~ at the output of the nonlinear crystal, are exceedingly stringent: 

~ : P x / P 2 ~ t O  -~6. 

T h r e e  m e t h o d s  a r e  u s e d  t o  s u p p r e s s  t h e  p u m p :  

a )  s p e c t r a l  f i l t e r i n g ;  

b) spatial filtering; 

C) combined method. 
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In the case of conversion from the near infrared, when the frequencies of the pump and 
of the converted radiation are greatly separated (%2 = 0.69-1.06 ~m, %3 = 0.42-0.53 ~m), 
spatial filtering is, as a rule, sufficient, and sometimes even without the use of interfer- 
ence filters. When converting from the far infrared band, the pump frequency and that of the 
converted signal are very close (%2 = 0.69-1.06 ~m, %3 = 0.65-0.96 ~m) and spectral filtering 
alone is not enough. 

Spatial filtering is used only in two-dimensional interaction, when the directions of 
the different beams at the output of the linear crystals are different, and there is no need 
for complicated spatial-filtering schemes. It usually suffices to use a corrected lens that 
focuses the pump signal and the output radiation on different points, and a diaphragm that 
separates only the output radiation. More complicated space-filtering schemes can also be 
used, in which account is taken of the fine structure of the converted signal. 

In principle, in the absence of additional effects such as scattering of the pump in 
the crystal and in the optical elements, and reflection of the pump from various surfaces, 
any one method would be sufficient. The presence of these effects, however, calls for the 
combined methods, with use of both spatial and spectral filtering with the aid of narrow-band 
interference filter. In this case, the most desirable interactions would be those in which 
the output direction differences are largest. 
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CHAPTER 4 

HETERODYNE METHOD OF PROCESSING OPTICAL FIELDS 

Among the known types of photoreceivers intended for the reception of coherent laser 
signals, the highest sensitivity in the infrared region is possessed by heterodyne receivers. 
The gist of the heterodyne method is that the received laser signal is mixed (interferes) on 
the sensitive area of the photodetector with the coherent (reference) field of the heterodyne. 
The photocurrent component due to the interference of the signal and reference fields is in 
this case a signal of intermediate frequency equal to the difference between the signal-field 
and reference-field frequencies. The amplitude of this signal is proportional to the product 
of the amplitudes of the signal and reference fields. Thus, an effect similar to amplifica- 
tion of the received field takes place. This amplification permits the photocurrent due to 
a weaksignal robe increased to a level at which the influence of the intrinsic noise of the 
photodetector becomes negligibly small. 

Compared with other photodetection methods, the heterodyne method is the most rational 
when it comes to recording laser signals in the middle infrared region of the spectrum, for 
which there are at present no photodetectors with internal amplification. In addition, the 
heterodyne method permits measurement of the frequency of the recorded field and a detailed 
spectral analysis of the radar signal. 

4.1. Spatial Matching of the Fields in Heterodyne Receivers 

I. Optical Mixing on the Photodetector Surface. We consider a signal field Es(r , t) 
and a reference heterodyne field Er(r , t) incident on the sensitive area of the photodetector. 
When describing these fields, we shall hereafter separate the field amplitude A(r, t) that 
varies slowly in time 

E s (~, t) = A s ( r ,  t) exp (i%t), 
(4. l) 

Er ( r ,  t) • A r ( r ,  t) exp (i~rt). 

I n  t h e s e  e x p r e s s i o n s  ms and  mr a r e  t h e  f r e q u e n c i e s  o f  t h e  s i g n a l  and r e f e r e n c e  l i g h t  f i e l d s ,  
r e s p e c t i v e l y .  The  p h o t o c u r r e n t  a t  t h e  p h o t o d e t e c t o r  o u t p u t  i s  p r o p o r t i o n a l  t o  t h e  t o t a l  
f i e l d  p o w e r  i n c i d e n t  on t h e  s e n s i t i v e  a r e a :  

�9 ~ e  

lPh ~ ~ i I (r, t) d~r, (4.2) 

w h e r e  e i s  t h e  e l e c t r o n  c h a r g e ,  n i s  t h e  q u a n t u m  e f f i c i e n c y  o f  t h e  p h o t o d e t e c t o r ,  h i s  
P l a n c k ' s  c o n s t a n t ,  v i s  t h e  a v e r a g e  f i e l d  f r e q u e n c y ,  and  I ( r ,  t )  i s  t h e  f i e l d  i n t e n s i t y .  
The  i n t e g r a t i o n  i s  o v e r  t h e  p h o t o d e t e c t o r  a r e a .  S i n c e  t h e  o p t i c a l  f r e q u e n c i e s  9s  = ~ s / 2 ~  
and  9 r  = ~ r / 2 ~  a r e  h i g h  ( o f  t h e  o r d e r  o f  10 *a H z ) ,  and  t h e  d i f f e r e n c e v s - - V  rdoes n o t  e x c e e d  
a s  a r u l e  s e v e r a l  t e n s  o f  MHz, t h e r e  i s  no n e e d  t o  d i f f e r e n t i a t e  b e t w e e n  v s and  9 r  i n  t h e  
c a l c u l a t i o n  o f  t h e  p h o t o n  e n e r g y .  

The f i e l d  i n t e n s i t y  I ( r ,  t )  i s  e q u a l  t o  

I ( r ,  t ) - - ~ l E s ( r ,  t)~-Er(r, t)]h ( 4 . 3 )  

Substituting Eqs. (4.1) in this expression, we get 

I ( r ,  t) --~ I s ( r ,  t) -~ I r ( r ,  t) -[- ( 4 . 4 )  

-~- As (r, t) A~(r, t) exp [i (~s - -  mr) t] -~- As* ( r ,  t) Ar ( r ,  t) exp [ - - i  ( u s - -  %) t], 

where Is(r , t) and Ir(r , t) are the intensities of the signal and reference fields. Using 
(4.4), we obtain the explicit form of the expression for the photocurrent: 

�9 ~ e  ~ e  
~ h = - - ~  I [ l s ( r ,  t)~-~ (r, t)Jd2r-~-ff~-exp [i ( ~ s - - w r ) t ]  I As(r , t)A~(r, t)der-~ 

* s (4.5) 

~e r ; 
§ exp L--~ (~ -- %) t] I As* (r, t) A~ (r, l) d~. 

S 
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The first term of this expression describes the slow fluctuations of the photocurrent, while 
the two others describe the alternating photocurrent components with frequency ~ = ms -- ~r 
The spectral composition of the photocurrent is shown schematically in Fig. 4.1. 

If the intermediate frequency ~ is high enough to keep the spectral components from over- 
lapping, the last two terms in (4.5) can be separated by radiotechnical means using a narrow- 
band filter, as shown in Fig. 4.1. This separation is practically always possible, since the 
spectral width of the first term of (4.5) is usually several tens of kilohertz, the spectral 
width of the two other terms does not exceed several megahertz, and the intermediate frequen- 
cy ~/2~ is chosen equal to tens of megahertz. We shall be interested hereafter only in the 
last two terms of (4.5). We therefore leave out the first term without further remarks. In 
this section we consider only the spatial dependence of the field amplitude. We assume there- 
fore that the field is monochromatic and disregard the time dependence of the field amplitude. 
Taking the foregoing remarks into account, we rewrite (4.5) in the form 

~h~--- ~ exp [i (% - -  %) t] I As (r) A~ (r) a~r -[-'~-v exp [--~ (% - -  %) t] I As (r) A r (r) d2r. 
8 S 

(4.6) 

2. Directivity Pattern of Heterodyne Receiver. We consider the dependence of the inter- 
mediate-frequency signal amplitude on the spatial distribution of the reference and signal 
fields. It follows from (4.6) that the complex amplitude of the photocurrent is 

~e a ~ 2-~ I As (r) A~ (r) d2r. (4 .7)  
B 

The factor 2~e/h~, in this formula will be designated by B. This parameter will not play a 
significant role in the analysis that follows. 

We consider first a particular case when a signal plane wave and a reference plane wave 
of the heterodyne are incident on a planar surface of the photodetector at different angles 
(Fig. 4.2). In the photodetector plane, the spatial distributions of the signal and hetero- 
dyne fields are given by 

As Or) ----- asexp (i~ %nsr)'  (4 .8)  
Ar (r) --~ a r exp (i~%nrr),  

where k s and k r are the wave numbers of the signal and reference fields. Expressions (4.8) 
are valid for small inclination angles a s and m r. The amplitudes a s and a r of the signal 
and heterodyne plane waves are real. 

Substituing expressions (4.8) in (4.7) we obtain 

a ~ Basa r f exp [it ( ~ n  s --  krur~)] d 2r. (4 .9)  
S 

The i n t e g r a t i o n  i s  over  t h e  e n t i r e  p h o t o d e t e c t o r  s u r f a c e .  As a r e s u l t  o f  t he  f r e q u e n c y  d i f -  
f e r e n c e  be tween  t h e  r e f e r e n c e  and s i g n a l  r a d i a t i o n ,  t h e  wave number k s d i f f e r s  f rom t h e  wave 
number k r  

k s ~  kr- ~ Ak, hk~2~h~/c, (4::10) 

where  hv i s  t he  d i f f e r e n c e  be tween  t h e  f r e q u e n c i e s  o f  t h e  s i g n a l  and r e f e r e n c e  f i e l d s .  The 
q u a n t i t y  Ak can be n e g l e c t e d  i f  t he  f o l l o w i n g  i n e q u a l i t y  h o l d s :  
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Ak R < =/2, (4. ii) 

where R is the characteristic dimension of the photodetector, and a is the larger of the two 
inclination angles a s and ar. The inequality (4.11) follows directly from (4.9). In prac- 
tice, the typical parameter values are 

from which we get 

Thus, inequality (4.11) 

We then obtain 

~r <~ !0  -~ rad, by < I0 s Hz, B <~ :I0 -z m, 

A k R < 2 . i 0 - 4 ~ / 2 .  

is satisfied with large margin, so that we can put in (4.9) 

~ - k r : k .  (4.12) 

a -~  Bas,ar I exp [ ikr  (%n s - -  %nr)] a~r. 
8 

(4.13) 

The integration is easily carried out in the particular case of a circular aperture. 
Denoting by ~ the angle between the vectors r and ~sns--~rn r we write expression (4.13) 
the form 

i n  

2z R 

a ~-- Basa s I I exp (ikr[ asns - -  (zrn ~ [ cos ~)r  dr d% 
0 0 

(4.14) 

where R is the photodetector radius. We obtain ultimately 

a -.~ BasarS .2  11 (kB I ~~"s -- afoul)  
kR l :~n  s - % . r  I ' 

(4.15) 

where S = ~R 2 is the photodetector area and J1 is a Bessel function of first order. If the 
propagation vectors of the reference and signal waves lie in the same plane, the unit vectors 
ns and nr coincide and we get 

a ~ B a s a r S .  2 I~ IkR ( ~ - -  ar)l 
kR (a s -  :r ) (4.16) 

The amplitude of the photocurrent at the intermediate frequency depends thus on the 
mismatch angle a s-~rbetween the propagation directions of the signal and reference waves. 
The function 2J:(x)/x is well known. In order for the amplitude of the photocurrent to be 
not less than half the maximum value, the following condition must be satisfied 

or in another form 

k/~ ~1r _ ~r l <  Z2,  (4.17) 

[a s -- ~r [ < 0 . 7 X / D ,  (4.18) 

where D = 2R is the photodetector diameter. 

Equation (4.18) determines in fact the width of the directivity pattern of the hetero- 
dyne receiver, while Eq. (4.16) determines the form of the directivity pattern. The maximum 
of the directivity pattern corresponds to a signal-wave arrival direction such the angles as 
and a r are equal. In this case, as follows from (4.16), the amplitude of the photocurrent 
at the intermediate frequency is independent of the absolute values of the angles a s and ar. 

We consider now the matching system frequently used in practice and illustrated in 
Fig. 4.3, where the photodetector is in the focal plane of the lens. This scheme is conve- 
nient because it makes it possible to focus on a small photodetector the energy gathered on 
a large surface of the focusing lens. Let us find the directivity pattern of the heterodyne 
receiver in this case. In the arguments that follow, we shall assume that the photodetector 
dimensions are large enough compared with the focused light spot. 
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It is known that in the paraxial approximation the field in the focal plane of a lens 
is the Fourier transform of the field at the entrance aperture of the lens [i] : 

'~ exp( -~k r~) d'P. (4.19) 

Here c is a constant coefficient that will be determined later, f is the focal length of the 
lens, and the integration is over the plane p. 

We express the complex amplitude of the photocurrent at the intermediate frequency [Eq. 
(4.7) ] in terms of the field at the entrance aperture of the focusing lens. To this end we 
substitute (4.19) in (4.7): 

= B I c i s f As (~,) A: (7,) exp [ - ~  ~' ~ - I_ -7- r (~1 - -  f~2) 1 d2rd2pld2P2. ( 4 . 2 0 )  

The integration with respect to d2r yields a delta-functlon, as a result of which we arrive 
at the expression 

Integrating further with respect to d20,, we obtain 

a = B tc  j2 k2]2 f A s(O) Ar (~)d2P �9 ( 4 . 2 2 )  

We d e t e r m i n e  now t h e  c o e f f i c i e n t  c .  To t h i s  end  we w r i t e  down an  e x p r e s s i o n  f o r  t h e  
t o t a l  p o w e r  W, o f  an  a r b i t r a r y  f i e l d  A ( r )  i n c i d e n t  on t h e  p h o t o d e t e c t o r  t h r o u g h  t h e  f o c u s i n g  
lens : 

W1---- I ]A (r)12d2, ". 
(4.23) 

The integration is carried out here over the entire r plane. The total power of the field 
passing through the aperture of the lens is equal to 

W2 ---- f I A (~)]~ d2P" (4.24) 

In analogy with the derivation of (4.22), we obtain 

I I A (r)l~ ~r = I~ J*XV = I I A (~)I' d2P �9 (4.25) 

By virtue of the energy conservation law, we have 

W i = W~, 

w he nce  we g e t ,  a p a r t  f r o m  an  i n e s s e n t i a l  p h a s e  f a c t o r ,  

c = t / i f .  (4.26) 

Substituting this expression in (4.22) we get 

a = B  I As (O)Ar (l~)d2P . ( 4 . 2 7 )  

The integration in this formula is over the surface of the focusing lens. Comparison of 
(4.27) with (4.7) shows that from the mathematical viewpoint the complex amplitude of the 
photocurrent at the intermediate frequency can be calculated by integrating a product of 
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complex-conjugate fields over the entrance aperture of the focusing lens. In certain cases 
this turns out to be more convenient than calculation of the integral directly over the photo- 
detector surface. 

We assume now that the photodetector was moved away from the focal plane into some inter- 
m~diate plane (Fig. 4.4). We shall show that after this displacement the complex amplitude 
of the photocurrent does not change and is determined by Eq. (4.27). This result is valid~ 
of course, only when the dimensions of the photodetector are so large that it spans over the 
entire light beam. 

To prove the foregoing statement we consider the transformation that relates the field 
in the plane p of the focusing length and in an arbitrary plane r behind it. It is known 
from the theory of optical systems that the most general form of this transformation [1] is 

A (r) = c exp (iar 2) I A (p) exp (i~p 2 @ iT#r ) d2p, ( 4 . 2 8 )  

where c is a constant coefficient; ~, 8, Y are parameters that depend on the radiation wave- 
length k and on the distance z and f. The integration in this formula is carried out in the 

plane p. 

We consider now an integral over the plane r 

I=IAs(r)A;(r)d2r.  

Using the transformation (4.28) we can recalculate this integral to the 0 plane: 

(4.29) 

I : I c 12 f As (P1) A~ (P2) exp [i~ (p~ - -  ~)  ~- i T (p~ - -  P2) r ]  ~pl~p2~r .  ( 4 . 3 0 )  

When the complex amplitudes of the fields are multiplied, the phase factor exp(i~r:) becomes 
equal to unity. Integration with respect to the coordinate r leads to the appearance of the 
delta-function 6(p,-- Pz) under the integral sign in (4.30): 

I - -  q I As (Pl) A~ (P2) exp [if (p~ - -  ~)]  ~ (Pl - -  ~2)~P~P2, ( 4 . 3 1 )  

where c, is a new constant. Integrating with respect to the coordinate 02 we obtainultimately 

I = c 1 f As (p) A~ (p) d2p. 

From t h e  same e n e r g y  c o n s i d e r a t i o n s  a s  b e f o r e ,  t h e  c o n s t a n t  c ,  i s  e q u a l  t o  u n i t y .  

We thus have 

(4.32) 

I As (r) A; (r) d2r = I As (#) A~ (p) ~p. (4.33) 

Taking (4.27) into account, we arrive at the conclusion that the complex amplitude of the 
photocurrent at the intermediate frequency does not depend on the plane in which the photo- 
detector is located. This conclusion is valid, of course, only when the photodetector area 
is large enough to span completely the entire light beam. 

3. Spatial Matching at Incomplete Spatial Coherence of the Field. We consider now the 
peculiarities of the spatial matching of the field for incomplete (partial) spatial coherence 
of received radiation. We shall not consider here the time dependence of the receiver out- 
put signal, and will average the various quantities over an ensemble of random realizations 
of the spatial distribution of the field on the input aperture. As shown in the preceding 
subsection, an analysis of the spatial matching of the fields on the photodetector surface 
is equivalent to analysis of the spatial matching on the input aperture. 
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We note first the following. Since the phase of the reflected field in each realization 
has the same probability of being equal to any value in the interval (0,2~), the complex am- 
plitude of the photocurrent (4.27) averaged over the realization is zero. Therefore in the 
analysis of the influence of the degree of spatial coherence of the field on the output sig- 
nal of the heterodyne receiver we shall consider the mean squared modulus of the complex am- 
plitude of the photocurrent. This approach is convenient also because the mean squared mod- 
ulus of the complex photocurrent amplitude is uniquely connected with the power W of the 
photocurrent at the intermediate frequency: 

�89 <I a ~--~W. 

Therefore, investigating the mean squared modulus of the complex photocurrent amplitude, we 
shall actually investigate the average power of the photocurrent at the intermediate frequen- 
cy. In accord with (4.27) we obtain 

<]a12>= B2<i As (~1)A; (~l)A;(r2)A~(o'2)~rld2r2>, (4.34) 

with the integration carried out over the entrance aperture. 

In practice the reference-radiation field can usually be regarded as regular. The aver- 
aging extends then only over the signal field As(r). As a result we obtain 

<[ a 12> - B 2 I <As (rl) A; (r2) > A; (r~) Ar (r2) d2r~d=r~. ( 4 . 3 5 )  

The mean value that enters in the integrand of this expression is the spatial correlation 
function R(r~, r2) of the signal field 

<As (rl)  A~(r2)> = R (r  1, r2). 

With allowance for this, (4.35) takes the form 

(4.36) 

<[ a I~ --= B2 f R ( r  1, r2) A~ (rl) A r(r2) ~rlaZr~. ( 4 . 37 )  

Let us analyze several particular cases on the basis of this formula. We consider first 
the case of deterioration of the spatial coherence owing to the turbulence of the atmosphere. 
Assume that in absence of turbulence the signal field is a plane wave incident on the input 
aperture at an angle ~ to the normal. In the presence of turbulence this field can then be 
represented as follows (Fig. 4.5): 

A s (r) = ~ exp (ik~rn) exp [i~ (r)], ( 4 . 38 )  

where ~ (r) is a random function that describes in first-order approximation the turbulence of 
the atmosphere (see Chap. i). As for the reference field of the heterodyne, we assume that 
it comprises a plane wave that is normally incident on the surface of the input aperture. In 

this case we can write 

A r ( r ) = a r .  
Substituting (4.38) in (4.35) we obtain 

41al2>---- B~lar [2fa s]~ I exp[ik~(r~--r2) n] • P (l r l - -  r~l)c~rlc~r2, 

(4.39) 

(4.40) 
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where F is the known correlation function given by Eq. (1.180): 

f ( p ) = e x p  [ - - ( I  P I/P 0)~/3] �9 ( 4 . 4 1 )  

In the absence of turbulence Po = ~ and F(p) = i. The mean-squared modulus of the photocur- 
rent amplitude is then 

<l a 12> = B ' I ~  I~ r a,l = 8 ' [2 11 
&-T~J, (4.42) 

where R is the aperture radius. The case considered corresponds to a spatially coherent 
field. Therefore, the directivity of the heterodyne receiver, which is determined by the 
dependence on the angle a, corresponds to Eq. (4.16), as it should. 

In the presence of turbulence, F(p) # i. In this case it is impossible to integrate in 
(4.40) in analytic form. We consider, therefore, certain results of numerical integration 
of (4.40) under the condition that the function F(p) is given by (4.41). 

Calculations show that a decrease of the field coherence radius, which is characterized 
by the parameter po, leads to a decrease of the output-signal amplitude (at a = 0). This 
dependence is shown in Fig. 4.6. The turbulence of the atmosphere does not exert a noticeable 
influence on the heterodyne receiver in the case when 

P0 ~ R. (4.43) 

The condition (4.43) makes it undesirable to choose receiving-aperture dimensions larger than 
po, since from that instant on the increase of the gathered light power is offset by a deteri- 
oration of the spatial matching. On the other hand, a decrease of Po causes the directivity 
of the heterodyne receiver to decrease. 

The directivity pattern of a heterodyne receiver is determined by the dependence of the 
amplitude of the output signal on the plane-wave arrival angle ~. It follows from (4.40) 
that the dependence of the amplitude of the output signal on the angle a is somewhat similar 
to the Fourier transform of the correlation function F(O). Therefore the narrower the func- 
tion F(O) the wider the directivity pattern of the heterodyne receiver. This is illustrated 
by the calculated data shown in Fig. 4.7 for an aperture i m in diameter. In this case when 
the field coherence radius is much smaller than the aperture size, the angle of the field of 
view of the heterodyne receiver is given by 

A~ ~ kip o. (4.44) 

It must be emphasized that this formula determines the average width of the directivity pat- 
tern. The instantaneous directivity pattern (i.e., in one realization) can have a width 
either smaller or larger than given by Eq. (4.44). 

When laser radiation is reflected from an extended object, a deterioration of the spatial 
coherence of the received field takes place also in the absence of atmospheric turbulence. 
The correlation function of the field at the aperture in the case of a diffusely reflecting 
object is given by Eq. (1.89), and in the case of a specularly reflecting object by (1.125). 
We consider by way of example diffuse reflection of an object. The correlation function of 
the field at the aperture is then 
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~Z~exp ~(r~--r~)] I I(~) -L-(r, 
where I(~) is the distribution of the intensity on the surface of the object, and the inte- 
gration is over the surface of the object. 

We shall find it convenient to transform from the vector ~ to the vector ~' which is the 
projection of the vector ~ on the plane of the receiving aperture (Fig. 4.8). In this case 
one can change from integration over the surface of the object tO integration over the plane 
of the receiving aperture. As shown in Chap. i, for a diffusely reflecting object such a 
transition is carried out without taking into account the Jacobian of the coordinate trans- 
formation: 

k ~A(ra) A*(r2)>~2- ~ exp[i ~----~(r~--r~)]I I(~')exp[--i-E(r~--~2)~']d2~', ( 4 . 4 6 )  

and t h e  i n t e g r a l  i s  c a l c u l a t e d  o v e r  t h e  p l a n e  o f  t h e  r e c e i v i n g  a p e r t u r e .  We s u b s t i t u t e  t h i s  
e x p r e s s i o n  i n  ( 4 . 3 5 ) :  

(taI2>=B2~-~jlexp[i~(r~--r~)]A:(r')A~ (4.47) 

The f a c t o r  exp i - ~ z - ( r ~ - - r ~ ) , i n  t h i s  e x p r e s s i o n  d e s c r i b e s  t h e  s p h e r i c i t y  o f  t h e  wave a r r i v i n g  

from the object. 

To obtain maximum matching the reference wave must also be spherical, with a wavefront 
~adius equal to that of the arriving signal wave: 

Ar(~)=ar exp(i ~---Er2 + iknrr), (4.48) 

where  n r  i s  a u n i t  v e c t o r  i n  t h e  d i r e c t i o n  o f  a r r i v a l  o f  t h e  r e f e r e n c e  wave .  When r e c o r d i n g  
r a d i a t i o n  r e f l e c t e d  f rom r e m o t e  o b j e c t s ,  t h e  s p h e r i c i t y  o f  t h e  a r r i v i n g  wave can  as  a r u l e  be  
n e g l e c t e d .  F o r  e x a m p l e ,  a t  a r e c e i v i n g  a p e r t u r e  d i a m e t e r  D = 10 cm ( t y p i c a l  v a l u e  f o r  a 
h e t e r o d y n e  r e c e i v e r ) ,  a t  a d i s t a n c e  L = 10 km, and a w a v e l e n g t h  ~ = 10 .6  ~m t h e  maximum v a l u e  
o f  t h e  a r g u m e n t  i n  t h e  e x p o n e n t i a l  o f  ( 4 . 4 8 )  i s  0 . 0 9 4 .  We s h a l l ,  n e v e r t h e l e s s ,  t a k e  i n t o  a c -  
c o u n t  t h e  s p h e r i c i t y  o f  t h e  a r r i v i n g  wave ,  f o r  t h i s  does  n o t  i n t r o d u c e  a d d i t i o n a l  c o m p l i c a -  
t i o n s  i n  t h e  c a l c u l a t i o n s  t h a t  f o l l o w .  

We substitute (4.48) in (4.47): 

<[a[2)=B2[ar[2kl_~L~ Iexp[__ik~(r _r~)n] I (~')exp[--,-~(r,--r~)~']~$'d2r,~re �9 (4.49) 

The meanings of n and ~ are clear from Fig. 4.8. Grouping the integrals with respect to the 
argument r we obtain 

The i n n e r  i n t e g r a l  i s  e v a l u a t e d  o v e r  t h e  s u r f a c e  o f  t h e  r e c e i v i n g  a p e r t u r e .  Assume t h a t  t h e  
a p e r t u r e  i s  l a r g e  enough so  t h a t  t h e  i n n e r  i n t e g r a l  i n  ( 4 . 5 0 )  can  be  a p p r o x i m a t e d  by  a d e l t a  
function: 
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For an approximation to be valid, it is necessary to have 

or 

R D / k L > ~ I  (4.52) 

. I L / D ~ R ,  (4.53) 

where R is the characteristic dimension of the change of the function I(~') and D is the di- 
ameter of the receiving aperture. Equation (4.51) is approximate, and is better the more 
accurate inequality (4.53). Actually, the left-hand side of (4.51), which is a function of 
the argument ~' has always a finite width of the order of XL/D 

The physical meaning of condition (4.53) is that the resolving power of the receiving 
aperture is sufficient to distinguish a single element of the target image. Taking into ac- 
count the assumption made, expression (4.50) takes the form 

an ~' = B 2 [ a r l 2 S f  l (~,)~(La,nnt_~,)~$,, <]a 12> = B21 ar] 2 ~ f I (~')~ (-f.-[--f-E) d25 ' (4.54) 

where S is the area of the receiving aperture. We ultimately get 

<1 a 12> = B 2 ] a,  [2 S I  ( - -L=n) .  ( 4 . 5  5 ) 

The result admits of a simple physical interpretation. A heterodyne receiver with suf- 
ficiently large receiving aperture gathers energy, in the absence of atmospheric turbulence, 
from only a small region of the target surface, and the direction to this region coincides 
with the direction of arrival of the reference wave (Fig. 4.9). The size of this region is 
of the order of IL/D. Thus, the angle of the field of view of the heterodyne receiver is 
equal to the diffraction angle I/D independently of the length of the target, and consequently 
independent of the coherence radius of the field at the receiving aperture. 

This conclusion can be drawn from general consideration. In fact, the field at the ap- 
erture is a superposition of plane waves (we neglect the sphericity) from different points of 
the target surface. The heterodyne receiver is linear in the received field, and the signals 
from the individual plane waves coming from the target are added up in it independently. The 
directivity pattern of the heterodyne receiver therefore remains unchanged in this case. 

If the spatial coherence of the field becomes worse because of atmospheric turbulence, 
the situation is different. In this case the coherent properties of the field deteriorate 
not as a result of addition of random waves, but as a result of multiplication of the arriving 
plane wave by a random phase factor. The directivity pattern of the heterodyne receiver 
turns out therefore to depend on the coherence radius of the field. 

4.2. Signal/Noise Ratio in the Heterodyne Receiver 

The question of the sensitivity of a heterodyne receiver is quite complicated. To an ~ 
swer it we must know many technical small details concerning the stability of the heterodyne, 
the processing of the signal from the output of the photodetector, the connection diagram of 
the photodetector itself, its type, etc. All these questions, however, are obviously tech- 
nical and are outside the scope of the present book. We confine ourselves therefore in this 
section to consideration of the influence of the fluctuations of the received field on the 
signal/noise ratio in the heterodyne receiver and derive an expression for its maximum sen- 
sitivity. 

i. Effect of Atmospheric Turbulence on the Signal/Noise Ratio. Let us examine how ra- 
dar-field fluctuations due to atmospheric turbulence influence the signal/noise ratio in a 
heterodyne receiver. By signal/noise ratio q at the output of a heterodyne receiver we mean 
the reciprocal of the relative fluctuations of the power W of the signal at intermediate fre- 
quency: 

<Wy 
q = <W~> _ <W>~ �9 (4.56) 

The intrinsic noise of the photodetector, the photocurrent shot noise, and other noise types 
not connected directly with the fluctuations of the received field will not be taken into 
account here. 
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The question of the influence of the atmosphere on the fluctuations of the photocurrent 
in a heterodyne receiver were considered in great detail in a number of papers. As princi- 
pal among them we can single out [2-4]. A theoretical analysis shows that the following re- 
lation is valid for q [3]: 

q ---- {exp [4~C~ (0)] @ (D/ro) -- t} -~, (4.57) 

where a, C~(0), ro are parameters; D is the diameter of the receiving aperture. The param- 
eter ro in (4.57) characterizes the spatial coherence of the field passing through a layer of 
turbulent atmosphere and determines the phase-fluctuation structure function, equal to 

6.88 (I r I/ro?~ ~. ( 4 . 5 8 )  

The parameter a in the exponential of (4.57) can be assumed equal to unity for most cases 
of practical importance. The asymptotic expression for this parameter is the following: 

/ - t,  D ~ V X L ,  
~-- 0, D>~kT, (4.59) 

where L is the length of the turbulent route. 

The parameter Cl(0) introduced in [3] describes the fluctuations of the complex ampli- 
tude of the field passing through a layer of turbulent atmosphere. 

The function ~D/ro) was calculated theoretically. A plot of this function is shown in 
Fig. 4.10. The characteristic region of variation of the function r corresponds to an 
argument D/ro i. The region of argument values D/ro < 1 corresponds to a situation when 
the field is spatially coherent within the limits of the receiving aperture. The region 
D/ro > 1 corresponds to the case when many regions of spatial coherence of the field are 
spanned by the receiving aperture. In this region the noise due to the turbulence of the at- 
mosphere increases rapidly with increasing ratio D/ro. This growth is due to the increase of 
the number independent noise components, whose role is assumed by individual elements of the 
spatial coherence on the receiving aperture. Thus, an increase of the diameter of the re- 
ceiving aperture above a certain definite value leads to a strong increase of the noise. The 
start of such a increase of the noise corresponds to a receiving-aperture diameter equal in 
order of magnitude to the size of the region of the spatial coherence of the field. 

2. Influence of Reflection from the Target on the Signal/Noise Ratio. Let us assess 
now the value of the signal/noise ratio at the output of a heterodyne receiver in the case 
when the input is a random field reflected from the target. We confine ourselves right away 
to a point target, i.e., a target of such a size and located at such a distance that the re- 
ceiving aperture does not resolve this target. It follows from the statements made in Sec. 
4.1 that such a target can be situated completely in the field of view of the heterodyne re- 
ceiver. On the other hand, as follows from the van Zittert--Zernike theorem, a field reflected 
from such a target is spatially coherent within the limits of the receiving aperture. We can 
therefore continue the analysis without considering the dependence on the spatial coordinate 
in the received field. Finally, we assume that the heterodyne radiation field does not fluc- 
tuate and is regular. Under these assumptions we obtain the signal/noise ratio q. The com- 
plex amplitude of the photocurrent at the intermediate frequency is 

a = B 4 ~*, ( 4 . 6 0 )  

where A s is the random complex amplitude of the signal field, A r is the complex amplitude of 
the heterodyne field and is a regular quantity, and B is a coefficient constant for the given 
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photoreceiver. The power of the output signal is equal to 

W ----- ~B21 As I~[Ar 12. (4.61) 

Averaging (4.61) over the ensemble of realization we have 

<W>=iB21Ar 12<lAsl~ �9 (4 .62)  

The quantity <Wa> in (4.56) is expressed in the form 

~W2> ----4i--B;] Ar 14 <[As 14>. (4.63) 

S u b s t i t u t i n g  (4 .62)  and (4 .63)  i n  (4 .56)  we g e t  

<1 ~ 12> ' (4.64) 
q---- <l As I~ -- <I As l'> = " 

We assume next that the received field A s is Gaussian. This assumption calls for some 
supplementary clarification. In the case of a diffusely reflecting target the Gaussian char- 
acter of the reflected field is obvious, since, by virtue of the central limit theorem, the 
presence of a large number of independent emitters leads to normalization of the distribution 
law of the reflected field. However, by far not all types of targets can be regarded as dif- 
fusely reflecting, all the more at the wavelength 10.6 ~m, at which the heterodyne detection 
is used most. Frequently the reflection is from only several specular points on the target 
surface. In this case the statistical distribution of the reflected field differs generally 
speaking from Gaussian. This question was discussed in Subsec. 1 of Sec. 1.2, where it was 
shown that the assumption that the field is Gaussian is not excessively restrictive. 

Taking the foregoing into account, we can express the quantity <IAsI~> in terms of 
<IAs[a>. To this end we must use relation (2.17), which is valid for a Gaussian random quan- 
tity: 

<As4"A A~> = 2 <[ A s l~> ~ 

We then obtain ultimately from (4.64) 

(4.65) 

q = t .  (4 .66)  

In practice, of course, an intermediate-frequency signal undergoes supplementary processing, 
as a reult of which the signal/noise ratio increases by many hundreds of times. Equation 
(4.66) shows in fact how large the fluctuations are in the received field in its entire fre- 
quency band. 

3. Sensitivity Limit of Heterodyne Receiver. We consider now the noise produced in 
photoheterodyning as well as the maximum attainable sensitivity. The mean-squared shot-noise 
current in the intermediate-frequency passband filter at the output of the receiver is equal 
to 

<i~h> = 2e~ [~ (Ph ~- Ps-~ Pb)~- ]]" (4.67) 

where Ps and Phare the powers of the signal and of the heterodyne at the input to the photo- 
detector, e is the electron charge, Pb is the background-radiation power in the band of the 
input optical filter, I is the darkness current, and B is the transmission bandwidth of the 
intermediate-frequency filter. 

The mean-squared thermal noise current in the band of intermediate-frequency filter at 
the output of the photodetector is equal to 

<i~ } = 4 ---~R k (The- ~) ,  (4 .68)  

where Tsh is the temperature of the detector, Tif is the equivalent noise temperature at the 
input of the intermediate-frequency filter, k is Boltzmann's constant, and R is the load re- 
sistence. Since the noises are not correlated, their total power is 

p = (<~2sh> + <i~ >) R (4.69) 
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We assume now that the input and heterodyne signals do not fluctuate and the wavefronts 
are ideally matched. Then, taking (4.7) and (4.67)-(4.69) into account we obtain the fol- 
lowing expression for the signal/noise ratio: 

~e 2 r e  - I  

q------ 2(--~) ~Ph {2eO [-~-$-(~ -~-Pb -~-Ph)-~ I]-~-  ~--~R k (Th-~- TO} " (4 .70 )  

With increasing heterodyne power this ratio approaches asymptotically the value 

qm~x~ ~h~-" (4.71) 

Thus, the equivalent noise power, i.e., the minimum power of the input signal that ensures 
q = 1 in a band B = 1 Hz, is equal to 

~ p :  (~)m~ ---- h_~ W/Hz. 

Th i s  v a l u e  c h a r a c t e r i z e s  t he  s e n s i t i v i t y  l i m i t  o f  a h e t e r o d y n e  r e c e i v e r ,  and i t s  n u m e r i c a l  
v a l u e  f o r  10 .6  ~m w a v e l e n g t h  i s  

e~__ t'9"t0-~~ W/Hz. 

I t  must be t a k e n  i n t o  a c c o u n t  t h a t  e x p r e s s i o n  (4 .7 0 )  was o b t a i n e d  f o r  t h e  c a s e  when t he  
n o i s e  i n t r o d u c e d  by t he  h e t e r o d y n e  i s  p u r e l y  s h o t  n o i s e .  In  p r a c t i c e  t h e r e  can a r i s e  s i t u -  
a t i o n s  when t he  h e t e r o d y n e  r a d i a t i o n  i s  m o d u l a t e d  by a n o i s e  component  ( f l u c t u a t i o n s  o f  t he  
r a d i a t i o n  power)  a t  f r e q u e n c i e s  t h a t  l i e  i n  the  band o f  t h e  i n t e r m e d i a t e - f r e q u e n c y  f i l t e r .  
A d d i t i o n a l  n o i s e  a p p e a r s  t h e n  as  a r e s u l t  o f  d i r e c t  d e t e c t i o n  o f  t h e  h e t e r o d y n e  r a d i a t i o n .  
Taking  i n t o  a c c o u n t  t h i s  n o i s e  component ,  t h e  n o i s e  power a t  t h e  o u t p u t  o f  t h e  p h o t o d e t e c t o r  
i n c r e a s e s  more r a p i d l y  w i t h  i n c r e a s i n g  h e t e r o d y n e  power t h a n  t h e  u s e f u l e - s i g n a l  power .  T h e r e -  
f o r e ,  t he  s i g n a l / n o i s e  r a t i o  has  a maximum a t  a s t r i c t l y  d e f i n e d  h e t e r o d y n e  r a d i a t i o n  power ,  
and t h i s  maximum i s ,  n a t u r a l l y ,  lower  t han  i n  t h e  l i m i t i n g  c a s e .  The s p e c t r a l  d e n s i t y  o f  t h e  
h e t e r o d y n e - p o w e r  f l u c t u a t i o n s  d e c r e a s e s  as a r u l e  w i t h  i n c r e a s i n g  f r e q u e n c y .  T h e r e f o r e ,  by 
choosing a sufficiently high intermediate frequency it is possible to weaken significantly 
the influence of the heterodyne power fluctuations on the sensitivity of a heterodyne photo- 
receiver. 

4. Concrete Types of Heterodyne Receivers. The photodetectors most widely used for 
heter0dyne receivers are the ternary compounds HgCdTe and PbSnTe, which are solid solutions 
of two compatible compounds (e.g., CdTe and HgTe). Both materials have the qualities needed 
for high-speed and high-sensitivity infrafred detectors with sensitivity in the wavelength 
range 8-13 ~m. The photodetectors are cooled with liquid nitrogen. The quantum efficiency 
of PbSnTe photodetectors is close to unity, while that of HgCdTe photodetectors does, as a 
rule, not exceed 0.5. However, HgCdTe photodetectors are more widely used at present because 
of a well-worked-out technology for their manufactore and their good high-frequency charac- 
teristics. Comparative characteristics of HgCdTe and PbSnTe photodetectors working at a 
wavelength 10.6 ~m are given in Table 7 [5]. Quadrant HgCdTe photodetectors produced for 
search and tracking of targets by laser radars have an equiavlent noise power i0 -~9 W/Hz and 

a passband up to 1.5 GHz [6]. 

An essential part of a heterodyne receiver is the laser heterodyne. It must satisfy 
definite stability, bandwidth, and frequency-tuning-rate requirements. The better of the la- 
ser heterodynes for 10.6 ~m have a tuning range up to 1.5 GHz at a tuning rate 85 MHz/sec and 
a frequency stability up to 109 [7, 8]. 

TABLE 7. Characteristics of Hetero- 
dyne HgCdTe and PbSnTe Photodetectors 

Ma~eriaI Area, Intermediat~ Equivalent 
noise power. 

turn2 frequency, 10 -19 W/Hz 
MHz 

HgCdTe 
PbSnTe 

0,05 O,l t ,0 
0~2 t ~0 0,5 
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A simplified diagram of a heterodyne receiver is shown in Fig. 4.11. To maintain the 
intermediate frequency within the passband of the filter, a special frequency tuning circuit 
is usually introduced. The electric signal at the output of this circuit is proportional to 
the deviation of the intermediate frequency from the central frequency of the filter. This 
signal is fed to the control input of the laser heterodyne and shifts its emission frequency 
by an amount needed to maintain the intermediate frequency within specified limits. 

As indicated in Subsec. 2 of the present section, when radiation reflected from a dif- 
fusely scattering object is recorded, the relative photocurrent fluctuations at the output 
of a heterodyne receiver is equal to unity. This fact is well illustrated by the oscillo- 
gram, shown in Fig. 4.12, of a signal at intermediate frequency 0~465 MHz, obtained at the 
output of the heterodyne receiver recording radiation diffusely reflected from an object at 
a wavelength 10.6 ~m (each major division on the oscillogram is equal to 0.I sec). In [9] 
are reported detailed experimental investigations of signal fluctuations in a heterodyne re- 
ceiver. Effects were investigated connected both with the random character of the reflection 
from the object and with the turbulence of the atmosphere. It was observed that in practi- 
cally all the cases the signal amplitude had a deep modulation whose character is illustrated 
in Fig. 4.12. 

4.3. Effect of Primary Optical-System Aberrations on the Quality of Heterodyne Reception 

i. Derivation of Expression for the Interference Integral. In real heterodyne receivers 
the optical beams are formed with the aid of a large number of optical components, each having 
aberrations. The aberrations of optical systems affect adversely the heterodyne matching. 
It is therefore necessary to know the maximum aberration coefficients that are acceptable in 
the optical systems of a heterodyne receiver. 

We shall consider heterodyne matching in the focal plane. It can be shown that the re- 
sults remain in force also for other types of matching. 

In the case considered (Fig. 4.13) the heterodyne matching is effected on the axis of 
optical system 1 in a plane that coincides with the focal plane of an ideal aberration-free 
optical systems (both systems are assumed identical in the absence of aberrations). This can 
always be done by a suitable displacement of the light beam along the system axis. At the 
same time, the distance between the axes of two systems may turn out to be an unavoidable de- 
fect of the specific mechanical construction. 
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The field in the matching plane is equal to 

E,,, (x, y)---= 2~z,~exp 

Here Am is the field amplitude; km is the wave number, Fm(um , Vm) is the complex amplitude 
of the perturbation at the exit pupil of the optical system; the subscript m = 1 or 2 labels 
the optical system to which the variable pertains. The remaining notation is clear from Fig. 
4.13. 

When two concrete fields are combined, the interference (heterodyne) integral takes the 
form 

f El(x' y) E*(x, g) dzdy -~-f E~'(r, !/) E,(x, .q)~/x dr1. (4.73) G :  

Substituting in this expression the integral (4.72), we get 

A1A~kakz [i y2)( kl 
(4.74) 

kl X F~ (a2, v,)exp [ - - i  (xu, 2 c yv,) ~ ~t-i (xus 2 c yv~) -~2] du'dv'du2dv2dx dy ~-c.c.  

The d i f f e r e n c e  k2 - -k=  o f  t h e  wave n u m b e r s  d o e s  n o t  e x c e e d ,  a s  a r u l e ,  10 -7  o f  t h e i r  mean v a l u e ,  
so  t h a t  we c a n  p u t  k l  = k2 i n  ( 4 . 7 4 ) .  I n  a d d i t i o n ,  f o r  t h e  b e s t  m a t c h i n g  i t  i s  n e c e s s a r y  t o  
s a t i s f y  t h e  c o n d i t i o n  R~ = R2, z ,  = z2 .  T h i s  c o n d i t i o n  e n s u r e s  a maximum s i g n a l / n o i s e  r a t i o  
a t  t h e  o u t p u t  o f  t h e  p h o t o r e c e i v e r  t h a t  r e c o r d s  t h e  s i g n a l .  Under  t h e s e  c o n d i t i o n s  t h e  i n t e -  
g r a l  i n  ( 4 . 7 4 )  i s  f i n a l l y  r e d u c e d  t o  t h e  f o r m  

A'Azk2 f f1(u' u)F~(u, v)du dv + c.c. ( 4 . 7 5 )  G : (2~) ~ z~ 

E x p r e s s i o n s  ( 4 . 7 5 )  r e l a t e  t h e  a b e r r a t i o n s  o f  t h e  s y s t e m  1 and 2 w i t h  t h e  q u a l i t y  o f  t h e  h e t -  
e r o d y n e  m a t c h i n g ,  w h i c h  i s  d e t e r m i n e d  by  t h e  i n t e r f e r e n c e  i n t e g r a l  G a t  c o n s t a n t  A , ,  A2, k ,  
Z .  

We r e p r e s e n t  t h e  f u n c t i o n  F ( u ,  v )  i n  t h e  f o r m  

F (u, v) ---- exp [ikA (u, v)], 

w h e r e  h ( u ,  v)  i s  t h e  s o - c a l l e d  a b e r r a t i o n  f u n c t i o n ,  e q u a l  t o  t h e  d e v i a t i o n  o f  t h e  wave f r o n t  
f r o m  i d e a l  [ 7 ] .  E q u a t i o n  ( 4 . 7 5 )  t a k e s  t h e n  t h e  f o r m  

A1Azk ~ 
G-~- ~ 2 f cos [kA~ (u, u) --- kA 2 (u, v)] du d~'. (4.76) 

Two obvious conclusions follow directly from (4.76). First, G reaches a maximum when there 
are no aberrations: 

A l A c k  z 
G .... = 2  ~ '  = 2 B S ,  (4.77) 

where B = AIA=k=/(2~)2z 2, and S is the area of the exit pupil. Second, G reaches a maximum 
also when the aberrations of the systems i and 2 are equal. 
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Since the matching is effected on the axis of system i, the only system-i third-order 
aberration that contributes to (4.76) is spherical aberration. The reason is that out of all 
types of primary aberrations only spherical aberration can exist on the system axis. The 
matching for system 2 is realized at a distance h from its axis, so that all five third-order 
aberrations will contribute to (4.76), namely spherical aberration, astigmatism, field cur- 
vature, distortion, and coma. 

It is customary in diffraction theory of aberrations to expand the aberration function 
A(u, v) in a series [i0]. Following [i0], we introduce the polar coordinates 

(4.78) u----pcos% u---~psin 
and expand the function A(u, v): 

A~ (a, v) ---- AI(9)--~ Cnp 4, (4.79) 

A2(a, v):A2(p, ~, h)=C2~p4-~-C22~p2cos2~~-C2ah2~2+C2~h3pc~176 �9 

We have confined ourselves in expansion (4.79) to the terms that contribute to (4.76). These 
terms describe, respectively, spherical aberration, astigmatism, field curvature, distortion, 
and coma, while the corresponding coefficients Cij are called the aberration coefficients. 

2. Dependence of Interference Integral on the Aberration Coefficients. We proceed now 
to a separate analysis of the effect of each aberration on the quality of the heterodyne 
matching and determine the requirements that must be imposed on the coefficients of the cor- 
responding aberrations. 

Let system 1 have spherical aberration with a coefficient CI,, and system 2 spherical 
aberration with a coefficient C2:. Then 

ik (At -- A2) ---- ik (CI~ -- Cm)o 4. (4.80) 

Substituting (4.80) in the expression for G and transforming to polar coordinates under the 
integral sign, we obtain 

R 

~- 4=B I cos [k (C n -- Cm) p4] p dp. (4. 81) G 
0 

Using the representation for the Fresnel cosine integral [Ii] 

we can reduce (4.81} to the form 

(x)--~ , 2  ~cost 2dt, 
v2~ J 

0 

1 / v  v (r 
G--~2BS  V 7 ~ ' (4.82) 

where X = k[C,: -- C2~IR a. This relation is plotted in Fig. 4.14. 

We agree to regard an aberration as admissible if, at a given value of the aberration 
coefficient, the interference integral G is decreased to not less than one-half. Equation 
(4.82) leads then to an expression for the admissible aberration coefficient in the case con- 
sidered: 

]Cn - -  C21 I <  2,6~ kR4- (4.83)  

Condition (4.83) shows that the important role in heterodyne matching is played in this case 
not by the values of each aberration separately, but by the difference between the aberrations 
of the two systems. From (4.83) follows also a condition for the admissible values of the 
coefficient of spherical aberration in the case when system 1 (or system 2) is ideal and ab- 
erration-free: 

I Cil]< 2,62/kR 4. (4.84) 

We consider now the case when system 1 has spherical aberration and system 2 has astig- 
matism and curvature of field. We then have 
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ik ( /~1 - -  ~ )  = ik (Cnp 4 - -  C2~h2p 2 cos 2 y - -  C2ah~p2). ( 4 . 8 5 )  

The interference integral turns out in this case to be 

R2 

= 0os - J o ( ~ c ~ , h  . ) e . ,  ( 4 . 8 6 )  
0 

where Jo is a Bessel function of order zero. In the particular case when system 2 has only 
curvature of field (C22 = 0), the integral (4.86) is expressed in terms of the Fresnel cosine 
and sine integrals: 

~2 

-~ ~ ( ~/2 2 ~-iTz) sin ( ~ )  ~- ~ ( ~ )  c~ (~-)  ~- (2 -~)  sin ( ~ ) ]  ' 

where we have introduced the dimensionless parameters ~ = kCI~R a, $ = kC2sh2R 2. The region 
of admissible aberration coefficients for this case was determined with a computer and is 
shown in Fig. 4.15. In the limiting case C~: = 0, when there is no spherical aberration in 
system i, an analytic result can be obtained by using the asymptotic expression for the Fres- 
nel integral [i]: 

+ (4.88) 

Substituting this expansion in (4.87) we get 

G = 2 B S  sin(kC2uh2R2)/kC~3h2R 2. (4.89) 

This dependence is well known. Decreasing the value of G by one-half corresponds to a value 
1.89 for the argument. The expression for the admissible values of the aberration coefficient 
is in this case 

IC~31<t.89/kh2~ 2. (4.90) 

In the other particular case, when the system 2 has only astigmatism (C23 = 0), Eq. 
(4.86) takes the form 

0 

w h e r e  ~ = k e ~ R  4, ~ = k C ~ h 2 R  2. Compu te r  c a l c u l a t i o n  by Eq. ( 4 . 9 1 )  y i e l d s  f o r  t h e  a d m i s s i b l e  
values of the aberration coefficients of the closed region shown in Fig. 4.16. If in this 
case C11 = 0, the following inequality should hold 

1 C221~ 3"6/kh2R2" 

Let now system i have spherical aberration and system 2 distortion. 

ik (5~ - -  A2) = ik (C~p a - -  C~ah3o cos ~). 

The expression for the interference integral will be 

G =  2BS �9 2 i cos (~x 4) ]oOx)xdx,  
0 

Then 

(4.92) 

(4.93) 

(4.94) 
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where ~ = kCt,R ~, v ffi kC24hSR. The computer-calculated region of admissible values of the 
aberration cQefficients is shown in Fig. 4.17. In the particular case C~, = 0 we have from 
(4.94) 

G=2BS'2 f l (kC2J~B) /kC2a  h~B. (4.95) 

This relation is well known, and it follows directly from (4.95) that the distortion of the 
second system is admissible under the condition 

IC24 l <  2.21/kh3R. (4 ~96) 

We c o n s i d e r ,  f i n a l l y ,  the  l a s t  case ,  when sys tem 2 has coma and sys tem 1 has s p h e r i c a l  
aberration. Then 

fk(~1--~2)----ik(C1,p4--C~Jlp~cos~). (4.97) 

By introducing dimensionless parameters we can reduce the interference integral to the form 

I 

G ~ 2BS �9 2 1 cor (~z 4) fo (Ox3) x dx, 
0 

(4.98)  

where ~ = kC,~R", 8 = kC25hR 3. Numerical computer calculation yields the plot of Fig. 4.18. 
In the particular case C~ = 0 a simpler condition should be satisfied, namely 

I C~5 [ ~ 3"5/khR3" (4.99)  

It should be noted in conclusion that the results are valid only if the second system 
has one of the indicated aberrations. If this system has simultaneously several aberrations, 
the relations derived no longer hold. It is possible, however, to single out the predominant 
aberration and to carry out for it approximate calculations. We note finally that it is the- 
oretically possible to consider also the general case by constructing a tolerance hypersurface 
in the six-dimensional space of the various types of aberration. The cases considered above 
are then the intersections of this hypersurface with the corresponding planes. 

4.4. Measurement of Object Velocity 

i. Null Method of Velocity Measurement. The heterodyne detection method permits highly 
accurate measurement of the Doppler shift of the frequency of the radiation reflected from 
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the object, and thus measure the radial component of the velocity of a moving_ object [12]. 
The potentially high radial-velocity measurement accuracy inherent in the laser Doppler method 
is limited by the frequency fluctuations of the laser transmitter. To decrease the effect of 
these fluctuations, a null method is used. The gist of the method is the following (Fig. 
4.19). The heterodyne radiation is mixed on two photodetectors with the transmitter radiation 
and with the reflected radiation. This results in beats at the outputs of the photodetectors, 
with frequencies 

i i ~-- ./'h-- (ftr-I- b), i, = fh --/tr , (4. i00) 

where fh is the heterodyne radiation frequency, ftr is the transmitter radiation frequency, 
and fD is the Doppler frequency shift given by 

2 ~ ftr- (4. 101) tD-- 
In this expression, V is the radial component of the object velocity relative to that of 
light. 

All the quantities in (4.100) are, generally speaking, time-dependent. It is necessary 
then to take into account the time delay due to the transmitter-signal propagation to the ob- 
ject and back: 

i2 (t) -=  !hO:) - - / t r ( t ) ,  

where L is the distance to the object. 

The intermediate frequencies f~(t) and f2(t) are measured with digital frequency meters. 
The measured values of the corresponding frequencies at the outputs of the frequency meters 
are proportional to the integrals of these frequencies during the observation interval T: 

T 
: _ 1 1 
' i ra :----Y f l,<t)d4 I2m=T i/~(t)dt. (4.103) 

The integral law in this expression is a consequence of the fact that the frequency meters 
operate by counting the sinusoid half-cycles during a fixed observation interval. 

The measured values f~m and f2m are subtracted one from the other and yield an estimate 
of the Doppler frequency shift: 

fD--/2m-- flm. 
We s u b s t i t u t e  i n to  t h i s  express ion  Eqs. (4.102) and (4 .103):  

T 

0 

(4.104) 

(4.105) 
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We set the distance of the object equal to zero. The Doppler-shift estimate corresponding 
to this case is then 

T 

,)V 
fDo~-" T T  I ~(t)dt. (4.106) 

0 

The quantity fDo is obviously equal to the Doppler frequency shift averaged over the observa- 
tion time interval. 

We introduce the deviation of the transmitter frequency, defined as 

A/(t) ----- ~r(/) --/tro, (4.107) 

where ftro is the transmitter frequency averaged over the ensemble of realizations. We assume 
that the relative fluctuations of the transmitter frequencies are small: 

I ~/ (t)//~o l < 1. (4.108) 

In laser Doppler radars this condition is satisfied as a rule with a large margin. For exam- 
ple, for a transmitter at a wavelength I = 10.6 ~m the value of the ratio (4.108) is of the 
order i0-~-I0 -*~ We can therefore write with no less an accuracy 

v 
~o ~ 2 7 ~ ,  (4. I09) 

which coincides with the initial expression (4.101). Actually, the relative error in the 
measurement of the Doppler shift will be even less than that given by (4.108), inasmuch as in 
accord with (4.106) the frequency fluctuations become averaged out over the observation inter- 
val. This question will be considered in greater detail in the next subsection. 

At L # 0 the measurement error increases because expression (4.105) acquires a nonzero 
difference 

(4.11o) 

Since V/c << 1 at all times, the difference (4.ii0) can become comparable with the third term 
in (4.105) and lower substantially the measurement accuracy. Therefore, the time delay due 
to propagation of the laser signal to the object and back is a significant parameter in the 
evaluation of the accuracy of the null method. 

2. Influence of Fluctuations of the Sounding-Radiation Frequency on the Velocity-Mea- 
surement Accuracy. In the measurement an estimate of the Doppler frequency shift in accord 
with Eq. (4.104) is generated. We obtain now the mean value of this estimate and its variance. 
The mean value of the estimate is obtained from (4.105) by averaging the integrand. It fol- 
lows directly from the definition (4.107) that 

<A/(t)}~- 0, ii (t)i> .... /tr ~ , (4. 111) 

where the angle brackets denote averaging over the ensemble of the realizations. From this 
we get 

L <fDb__~ f [<~(t__ 2T))__</tr(t)}-~- 2-~<~r(t__ 2L)>]dt~_2__~ /tro. (4.112) 
0 

The mean value of the employed estimate of the Doppler frequency shift is thus equal to the 
true value determined by Eq. (4.101). In fact, by averaging (4.101) and taking (4.111) into 
account, we obtain an expression that coincides with (4.112). 

We consider now the measurement error, which is equal to the difference between the es- 
timated Doppler shift and its value averaged over the observation interval: 

T 

vl 
f 

0 
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The second term in the right-hand side of this expression differs from (4.106) only in the 
presence of a time delay. Substituting (4.105) in (4.113) we get 

§ I 
0 

Since <~f> = 0, it is expedient to investigate the quantity <6f2>. 
averaging yields 

T T 

i 
<~f2> __~ ~ -  I I [</tr (t~ - -  x) ftr(t2 - -  "c)> -~- <ftr(t,) ftr(t2)) - -  <ftr(t: - -  ":)ftr(t2)> - -  <ftr (tx) ftr (t2 - -  "~)>] dt, dt2, ( 4 .  1 1 5 )  

0 0 

where the delay time is designated for brevity as 

~ 2L/c. 

We define now the correlation function of the transmitter emission frequency as 

B (tl, t~) - -  (/tr (t~)/tt(t2)>. ( 4 .  116) 

Since the process considered is stationary, we have the obvious equality 

</tr (t~ + x) ftr(ts ~- x)> -~  R (t 1 - -  t2). ( 4 . 1 1 7 )  

Taking this into account, Eq. (4.115) assumes the simpler form 

T T 

<~?2> = FJ~-~ I I [2/7 (tj - -  t2) - - / 7  ('l: ~ - t l - - t 2 ) - - R ( x - ~ - t ~ - - t l ) ] d t l d ,  ~. ( 4 . 1 1 8 )  
0 0 

For the calculations that follow we must specify the explicit form of the transmitter- 
frequency correlation function. Using (4.107) and (4.111) we obtain 

/7 (~) = ([tr(t q- ~)/tr(t)) =/~o ~- in? (t q- ~) At (t)>. ( 4 .  119  ) 

For the second term in this formula, it is natural to introduce the notation 

where p (T) 
values 

(4.114) 

Direct multiplication and 

<A/2> p (~) ~- <Af (t -~ ~) AI (t)>, (4. 120) 

is the normalized correlation function of the frequency deviation and takes on the 

p ( x ) - -  1 at '=-~0, (4.121) 

p (n:) ~ 0 at ": --+ c~. (4.122) 

With this taken into account, we can rewrite (4.118) in the more convenient form 

T~ 

k--< ~/~> -- i.!- (~ 2r-t 1 t~) p (~- t - t2 - - t l ) ]d t f l t~ ,  (4.123) - S l - t 2 ) -  p - - 
O 0 

where the parameter k so introduced is the dimensionless relative frequency-measurement error. 

We assume for p(T) the Gaussian approximation: 

p (x) ~- exp (--0.6931x2/z~), (4. 124) 

520 



where rf is the correlation time of the frequency fluctuations. Such a normalization ensures 
a fall-off of the correlation function by a factor of two relative to the maximum value at 
T = Tf. Analytic calculations by Eq. (4.123) under the condition (4.124) do not yield a lucid 
final result, and we resort therefore to numerical methods. Figure 4.20 shows the dependence 
of the relative error k of the frequency measurement on the delay time T = 2L/c for a frequen- 
cy correlation time Tf = 0.i msec and a recording time T = i msec. As expected, the measure- 
ment error increases with increasing T. The growth of the error continues all the way to 
values of T equal to T and not to Tf as might seem. The point is that in a null method the 
frequency fluctuations are subtracted over the extent of the entire measurement interval T. 
Therefore, if a correlation exists between the frequencies f~ and f2 within this interval, 
the measurement error will be lower than its maximum value. This maximum value is 

T T 
2 ~y k ~ =  y{ f t P(tl--t2)dtldt2-----4"2-f (4.125) 

0 0 

at Tf << T. 

3. Connection between Frequency Fluctuations and the Field Coherence Time. The results 
obtained in subsections i and 2 of the present section pertain to the case when the correla- 
tion time of the transmitter-frequency fluctuations are assumed known. Then, knowing Tf, we 
can approximate the frequency-fluctuation correlation function by some known (say, Gaussian) 
function and find the relative frequency-measurement error k. Actually, however, when lasers 
are certified one measures not Tf but the coherence time of the laser emission frequency or 
the width of the laser-emission spectrum. In order that the foregoing analysis be of practi- 
cal interest, it is necessary to find the connection between the correlation time zf of the 
3aser-emission frequency fluctuations and the width of the laser-emission spectrum. The laser 
emission field can be represented in the form [Eq. (1.12) ] 

E (t) ----- E o cos [%t -~ ~ (t) ~- ~o]" 

The instantaneous cyclic frequency of the field is 

(4.126) 

(t) = %-~- ~ = 2=f (t), (4 .127)  

where f(t) is the frequency introduced above. The deviation of the cyclic frequency is 

2 (t) ~--- ~ = 2=Af (t). (4.  128) 

It is a stationary random process with zero mean value. The phase shift ~o in (4.126) is 
a random quantitiy that is constant in a given realization and is uniformly distributed over 
the interval (0,2~). 

We consider the random phase advance during the time interval between t and t + T: 

t+T 

x ( t ) - - ' ~ ( t - ~ x ) - - ~ ( t ) ~  I e(t)  dt. (4. 129) 
t 

The mean square of this quantity is 

~+~ t+~ 

F (z) = <[~ (t ~- =) - -  ~ (t)]2> --~ <e2> I I p (tl --  t~) dtldt 2, (4. 130) 
t t  

where <f12> = 4~2<Af2> is the variance of the cyclic-frequency fluctuations. 

Assume that ~(t), meaning also X(t), is a Gaussian random process. This assumption is 
well-founded. In fact, the transmitter frequency is altered by drifts of the effective 
cavity length and by mirror vibrations, due to action of a large number of various indepen- 
dent perturbations on the transmitter. Therefore, the processes ~(t) and x(t) can be re- 
garded as normal, the probability density for X(t) being 

P (Z) = [2=F (~)]-tI2 exp[-- ~ ] .  (4.131) 
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We seek now the correlation function of the field. We have 

I 2 C (~) = <E (t) E (t -~- ~)> = l Eo2<co s [%~_~_ ~ (t-~-z) - -  ~ (t)]> -~- 7 Eo <cos [co o (2t -~- z) -~- ~ (t -~- z) -~- ~ (t) -~- 2%]>. ( 4 , 1 3 2 )  

We note that by virtue of the uniform distribution ~o the second term in the rlght-hand side 
of this expression is zero. Consequently, 

| 2 " i o (coo'r <r X> - -  - f  Eo sm (%'r <sm Z>. ( 4 . 1 3 3 )  C (~) - -  ~- E6 cos 

Averaging over the sine function by the symmetric distribution (4.131) yields zero. Hence 

(~) = ~  Eo ~ ~os (%~) <cos z>. (4. C 134) 

Substituting (4.131) in this expression, we obtain [13] 

l ,~ F F (r 
C (=) = ~ Eo cos (%=) exp L -  --TJ" (4. 135) 

This expression, with account taken of (4.130), reduces to the form 

c = +o )oxp - I I (4.136) 
t 

We now make the change of variables 

tl-- t2~ z, t1=u. (4.137) 

The Jacobian of this transformation is equal to unity. Therefore, the double integral in 
(4.136) can be represented in terms of the new variable in the form 

p(z)dz du. (4.138) 

We introduce a new function 

and examine its basic properties. 
function at zero is zero. In fact, 

Next, the function ~(y) is even: 

Indeed, 

It must be noted first of all that the derivative of this 

y=0 

( 4 . 1 4 0 )  

(b (b') =@ (--b'). (4 .  141) 

_____-- p(z)dz ~=-- -- p(--z)dz dx= p(z) dz dx=~(y). (4.142) 
0 LO 0 

With the aid of the finction ~(--y) introduced in this manner we transform the double in- 

tegral (4. 138) : 

'+~[! L~_!_ p"-~ (z)dz] du=2~ (,). (4.143) 

As a result, the field correlation function (4.136) turns out to equal 

C (z) = y E 0 cos (m0~) exp [_ <Qz> ~ (~)]. (4. 144) 
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From this expression follow two important conclusions. First, a field with a Gaussian dis- 
tribution of the frequency fluctuations cannot have a Lorentz spectrum. In fact, a Lorentz 
spectrum corresponds to a coherence function with a slowly varying part of the form exp 
(-ITI). Ib follows from (4.144) that in this case 

r (=) = const  �9 I x 1" 

But this is impossible, since in accord with (4.140) @(T) must have a zero derivative at 
zero. 

Second, in the approximation considered the field cannot have a Gaussian spectrum. A 
Gaussian spectrum corresponds to a slowly varying part of the coherence function in the form 
exp (--re). Then 

�9 (~) - -  const �9 ~2 

As follows from (4.139), we should have here 

p (z) = const, 

which is impossible, since the correlation function of a random process with a zero mean value 
should tend to zero with increasing argument. 

We obtain now the explicit form of the spectrum G(m) of the field. By definition we have 

G(m)=--2~ I C(,)cos (m,) dx. (4.145) 
0 

Substituting (4.144) in this expression and neglecting the rapidly varying terms in the inte- 
grand, we obtain the following expression for the spectrum over the positive frequencies 

(m) _--2~E~ I exp [--<ez> + (~)1 cos [(~ -- %) ~l G d~, (4. 146) 
0 

We transform for convenience to a centered spectral density 

Then 

G (Am) -~- G (% ~- Aco), A~ ~ co -- co o. (4. 147) 

G (Aco) = ~ E~ I exp [_<~2> ~ (c)] cos (Aco ~) d~. (4.148) 
0 

U s i n g  t h i s  e x p r e s s i o n ,  we f i n d  t h e  c o n n e c t i o n  b e t w e e n  t h e  s p e c t r u m  w i d t h  ~m and t h e  
correlation time ~f of the frequency fluctuations. To this end, we approximate the correla- 
tion function p(T) by some known function with specified parameterTf, use(4.148) to obtain 
the form of the spectrum G(Am) and obtain from the latter the spectrum width ~m. By defini- 
tion, we have 

(4.149) 
i co 

~m--~ G -~ (0) G (Aco) d (Am), x/---- I P (~) d~. 
0 0 

For p ( z )  we introduce the approximating function 

(4.150) p (~) = exp (--I ~ I/~:) �9 

Then, after simple calculation, we obtain 

(4.151) (~) = ~=: - ~ (I - exp (-~/~:)) 

at T > 0. For the region T < 0 it is necessary to use Eq. (4.141). I 

We obtain now an expression for ~m. In accord with (4.149) we have 

(4.152) 

co 
1 

~ = ~ Eo~a -~(o) ~ p  ~ _ < ~ 2 >  ~ (~)] I oo~ (a~ ~) d (a~) d~ = ~- ~ - '  (0). 
0 0 
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It is now necessary to find G(0). To this end we substitute (4.151) in (4.148): 
co 

0 

(4.153) 

After rather obvious transformations, we obtain 

G(O)=~ 

where we have introduced the notation 

(4.154) 

p_--<~>~}, (4.155) 
1 

(P) "~-eP I xP-le-P~dx" (4. 156) 
0 

From (4.152) and (4.154) we obtain the final expression for the width of the field spec- 
trum 

and for the field coherence time 

~m -- = (4.157) 
2"=/r (p) 

T coh----- 4~/~ (p). (4.15 8) 

At low values of the parameter p it is convenient to use an asymptotic representation of 
the function e(p): 

~ pk (4.159) (p) _-- q- r (p) r (k + p + i)" 

The derivation of this expression is relegated to Appendix VI. At p << 1 we can put 

i (p)~-. 
p 

Equation (4.157) is then reduced to the more lucid form 

2 (4.160) 

It is of interest to note that this estimate of the field spectrum width coincides fully with 
the estimate obtained in [13] in a somewhat different manner. 

Thus, Eqs. (4.157) and (4.158) allow us to relate the results obtained in Subsec. 2 of 
the present section to the experimentally measured laser-emission spectral width. 
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CHAPTER 5 

METHODS OF SPECKLE INTERFEROMETRY AND ADAPTIVE OPTICS 

In the preceding chapters we considered methods of interpreting optical fields whose 
realization calls for the use of lasers and for which high coherence of the laser radiation 
is obligatory. The present chapter is devoted to speckle interferometry and to adaptive 
optics, which first came into use in astronomy as a method of improving the resolving power 
of large optical telescopes under conditions of atmospheric turbulence and dealing with radia- 
tion of natural origin. These methods can be successfully used in laser radars in those cases 
when no rapid measurements in real times are needed. 

5.1. Speckle Interferometry Method 

i. General Description of the Method. The speckle-interferometry method was proposed 
by Labeyrie in 1970 [i] and its high effectiveness was demonstrated experimentally later [2, 
3]. We consider first the gist of this method and then proceed to analyze it in detail. 

Light from a star or from another object, after passing through a layer of turbulent at- 
mosphere, is focused by the receiving telescope in the focal plane and produces a distorted 
image in the form of a smeared spot (Fig. 51). The angular dimension of this spot is ap- 
proximately ~/Po, where ~ is the average wavelength of the arriving radiation, and po is the 
coherence radius, introduced in Chap. i, of the wave front [4, 5]. If the width of the emis- 
sion spectrum is small enough (see Subsec. 2) and the exposure time necessary to record the 
image does not exceed the "freezing" time of the atmosphere, individual "grains," frequently 
called "speckles," will be distinctly recorded in the image. This speckled structure is at- 
tributed to interference of the waves coming from different sections of the receiving aper- 
ture. 

In this method, when observing an object having angular dimensions not larger than one 
second of angle, there is recorded in the focal plane of the telescope a series of short- 
exposure photographs. The time of each exposure should be shorter than the atmosphere "freez- 
ing" time, and the time interval between two neighboring exposures, on the contrary, should 
be much longer than this freezing time. The speckled structure of a series of photographs 
that follow one another varies, a fact attributed to the change of the state of the atmosphere 
ahead of the telescope aperture (Fig. 5.2). 

The spatial distribution of the intensity In(r) at each n-th photograph can be expressed 
in terms of the undistorted intensity distribution I(r) obtained by an ideal optical system 
with infinite resolving power, and through the scattering function H(x) of the atmosphere + 
telescope system (see Subsec. 3). The latter, naturally, depends on the number of the photo- 
graph. As a result, we obtain 

/~(r)---- I l (p) H (p -- r) d2p. (5.1) 

Fig. 5. I 
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The succeeding processing of the recorded set of images consists of taking the Fourier 
transform of each image In(r). This is done by optical means, as shown in Fig. 5.3a. As a 
result, the square of the modulus of the spatial spectrum of the image is recorded in the 
focal plane of the last lens, namely, 

I V~ (~)12 ~__ i V (~)i~l~n (~)12, ( 5 . 2 )  

where V(~), Vn(~) , and mn(~) are the spatial spectra of the distorted image and of the at- 
mosphere + telescope system. The function rn(~) is called the frequency-contrast character- 
istic of the system. 

By advancing in succession the roll film, all the spatial image spectra obtained in a 
run are summed on one photographic plate. As a result, the plate is thus a record of the mean- 
squared modulus of the spatial spectrum of the image 

<1 v, (~)Ib = I v (~)I ~/I ~, (D Ib.. (5 .3)  
The mean-squared modulus of the spatial spectrum of the scattering function of the at- 

mosphere + telescope system <Imn(~)12> can be obtained in a similar fashion when observing a 
star that is close to the object, has a comparable brightness, and has an angular dimension 
much smaller than that of the object. The results of these measurements are used to prepare 
a correcting mask whose transmission coefficient is equal to 

<1 ~, (~)I~-'. (5.4) 
The correcting mask is superimposed on the photographic plate with the spatial distribu- 

tion (5.3), and an inverse Fourier transform is produced (Fig. 5.3b). The result is the 
square of the modulus of the autocorrelation function of the undistorted image of the object 

I f 1 (x) I (x @ r) d2x 12. (5 .5 )  

T h i s  d i s t r i b u t i o n  can  be  u sed  t o  m e a s u r e  t h e  a n g u l a r  d i m e n s i o n s  o f  t h e  o b j e c t s  and to  e s t i m a t e  
t h e i r  s h a p e s .  ( S i m i l a r  q u e s t i o n s  were  c o n s i d e r e d  i n  Chap.  2 . )  

The r e s o l v i n g  power  o f  t he  s p e c k l e - i n t e r f e r o m e t r y  method i s  d e t e r m i n e d  by the  maximum 
s p a t i a l - f r e q u e n c y  modulus  I~ lmax ,  f o r  which  t h e  r i g h t - h a n d  s i d e  o f  ( 5 . 3 )  i s  s t i l l  d i f f e r e n t  
f rom z e r o .  I t  w i l l  be  shown b e l o w  ( i n  S u b s e c .  3) t h a t  f o r  an i d e a l  o p t i c a l  s y s t e m  i n  t h e  a b -  
s e n c e  o f  n o i s e  we h a v e  

2~D (5.6) 

where f is the equivalent focal length of the telescope, D is its diameter, and X is the radi- 
ation wavelength. The angular resolving power is therefore X/D, i.e., equal to the diffractive 
value. Under real conditions, the recording process is always accompanied by noise which, in 
fact, determines the minimum distinguishable (i.e., the "zeroth") level of the right-hand side 
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of (5.3). In this case, the resolving power will naturally be less than the diffractive 
value. 

For a more detailed analysis of the speckle-interferometry method it is necessary first 
to become acquainted with the phenomena that determine the graininess of the image in the 
focal plane of the telescope. 

2. Interference of Fields in the Focal Plane of a Telescope. We consider the field 
produced at the output of the telescope by a remote pointlike monochromatic source (Fig. 5.4). 
In the absence of atmospheric turbulence, the wave front of this field is spherical and con- 
verges in the image plane. The recorded pattern is in this case the known Airy pattern with 
a principal maximum of width %f/D, where % is the wavelength, f the focal length of the tele- 
scope, and D the diameter of the main mirror. In the presence of atmospheric turbulence the 
wave front becomes distorted. These distortions can be characterized by a field-coherence 
radius po. The physical meaning of this parameter, which was introduced in Chap. i, is that 
Po is the distance in the receiving aperture plane over which the fluctuations of the path 
difference amount on the average to one wavelength. 

Each "almost" flat section of the distorted wave front will propagate in a direction 
making an angle ~ with the direction in which this section would propagate in the absence of 
turbulence (Fig. 5.4). The average absolute value of this angle is, in accord with the de- 
finition, %/0o. As a result, the average dimension of the illuminated region in the image 
plane is %f/Po. Therefore, Po can also be interpreted as the diameter of an aberration-free 
lens whose diffractive resolving power is equal to that of a large telescope operating under 
the conditions of an atmosphere with a given turbulence [6]. 

The intensity distribution inside the illuminated spot is determined during the time 
that the atmosphere is "frozen" by the interference of the waves coming from different points 
of the receiving aperture of the telescope (Fig. 5.5). We consider two sections of the aper- 
ture, symmetrical about the axis, and of size po. The waves from these sections add up in 
the focal plane, and the path difference at an arbitrary point x is, in first-order approxima- 
tion, 

s ~ d z / /  ~ s o . (5.7) 

where so is the path difference at the point x = 0 and is determined by the wave-front dis- 
tortions due to the turbulence of the atmosphere. The distance between the interference 
fringes produced by the two considered sections is 

:z - fX/d (5.8) 

The distribution of the intensity in the spot is determined by the random locations of 
the set of interference patterns produced by different sections of the aperture. The result 
is the random grainy picture shown in Fig. 5.1. The minimum "grain" size is determined by 
the minimum possible distance between the interference maxima, and is equal, according to 
(5.8), to f%/D, where D is the telescope diameter. 

Assume now that the object is not a point, but is extended with an angular dimension 
(Fig. 6). In this case, the interference patterns produced by each of the emitting points 
on the object surface add up. If y is less than the angular dimension of the isoplanatism 
zone, usually about one second of angle, the atmosphere distorts equally the waves coming 
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from all the points of the object. The corresponding interference patterns in the focal 
plane of the telescopes are then identical but shifted relative to one another. The maximum 
shift is, obviously, yf. 

Assume that the radiation on the surface of the object is spatially incoherent, i.e., 
the phases of all the radiating points are mutually uncorrelated. This is the case in astron- 
omy, where the observed objects are stars. This assumption is sometimes valid also in laser 
radar. For example, if the spectrum width of the second harmonic of a I = 1.06-~m laser is 
1.0 nm, the coherence length is only 0.25 mm. In this case, the radiation reflected from the 
target can be regarded as spatially incoherent. 

As a result of the incoherent addition of all the interference patterns from the indi- 
vidual points on the objects, the grains of size smaller than yf will vanish. The dimen- 
sion of the entire illuminated region will not change (provided, of course, that y << I/po). 
Turning again to Eq. (5.8), we arrive at the conclusion that the minimum size yf of the re- 
maining "grains" corresponds to interference of sections on the receiving aperture that are 
spaced I/y apart. At the same time, as follows from the Van-Zittert--Zernike theorem (see 
Chap. i), the size of the coherence region of the field produced by an extended spatially in- 
coherent source on the surface of the receiving aperture is also I/y. It follows, therefore, 
that in the considered case the minimum "grain" size in the recorded image corresponds to dif- 
fraction not by the entire receiving aperture, but by the element of spatial coherence of the 
received field. 

We examine now the monochromaticity condition under which speckle interferometry can 
operate. This calls, first of all, for good visibility of the grainy structure of the image, 
both when the object image is recorded and when the image of the reference point source is 
recorded. When the radiation wavelength is changed by AI the interference pattern is shifted. 
The shift of "grains" of different size will be different, since they correspond to interfer- 
ence of receiving-aperture sections separated by different distances d. By varying the left- 
and right-hand sides of (5.8) we obtain the dependence of the displacement 8 on d: 

(~) = / ~. (5.9) 

When recording the image of an incoherent object with angular dimension y, the minimum 
"grain" size, as we have seen, is yf. When the wavelength is changed by AI, the shift of the 
interference pattern should be much smaller than the "grain" size, whence 

Ak 

or 

A~ ~_~ i .  (5.10) 

When recording the image of a reference source, the minimum "grain" size is If/D, whence 
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~ (O) -~- f -b < -- F 

(5. ii) 

Thus, in both cases, an identical condition, (5.10) or (5.11), which is necessary but 
not sufficient, must be satisfied. Another condition is that within the limits of the aper- 
ture the maximum path-difference fluctuations introduced by the atmosphere must not exceed 
the coherence length of the received radiation. From this we readily find [4] that 

k~ 
Al <TD' (5.12) 

At a = I second of angle, D = 5 m, and % = 500 nm we obtain AX < I0 nm. Condition (5.12) is, 
as a rule, decisive when the radiation bandwidth is chosen. 

For the analysis that follows we need some information from the theory of linear optic- 
al systems, which will be considered in the next subsection. 

3. Scattering Function and Frequency-Contrast Characteristic of a Linear Optical System. 
Let a remote object be located in the r plane and let its image be recorded in the focal 
plane x of an ideal aberration-free lens placed in the plane p. If the object is located in 
the Fraunhofer zone relative to the lens aperture (see Chap. i), then 

k 

w h e r e  E(p)  i s  t h e  f i e l d  i n  t h e  l e n s  p l a n e ,  E(T) i s  t h e  f i e l d  i n  t h e  o b j e c t  p l a n e ,  k = 2~/~ i s  
t h e  wave number ,  and c i s  a p r o p o r t i o n a l i t y  c o e f f i c i e n t ,  The f i e l d  i n  t h e  f o c a l  p l a n e  o f  t h e  
l e n s  i s  [ 7 ]  

w h e r e  f i s  t h e  f o c a l  l e n g t h  o f  t h e  l e n s  and cx i s  a c o e f f i c i e n t  o f  no f u r t h e r  i m p o r t a n c e .  
The i n t e g r a t i o n  i n  t h i s  e q u a t i o n  i s  i n  t he  p l a n e  o f  t h e  l e n s .  S u b s t i t u t i n g  (5 . 13 )  i n  ( 5 . 1 4 )  
we o b t a i n  

where 

and c= = ccl is a new constant coefficient. For a lens of radius R the integral (5.16) is 
easily calculated and leads to the known Airy function 

(5 .17) 

Changing the scale in (5.15) along the r coordinate: 

u=~f, (5.18) 

we can write this expression in a more convenient form: 

(m) = c~ I E (~e) h~ ( u -- m) E d2u, ( 5.  1 9 ) 

where cs : c2(E/L) -2. We shall omit hereafter this inessential constant coefficient. The 
function ho(x) is called the scattering function of an ideal coherent optical system. It 
comprises the field distribution produced in the focal plane of a lense by a remote point 
source. 

If the field E(u) is spatially coherent, the following intensity distribution will be 
recorded on a photographic film (or plate) 

I E (x)[ 2 = II E (u)  h 0 (u  - -  x)  d=a 12. ( 5 . 2 0 )  
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If, however, the field E(u) is spatially incoherent, the film record will comprise the in- 
tensity averaged over the recording time 

(x) = I <~ (u~) E*(u2)>ho (u~ - -  x) h~ (u~ --  x ) d ~ u ~ .  (5 .21)  I 

S ince  by d e f i n i t i o n  E(u) i s  s p a t i a l l y  i n c o h e r e n t ,  i . e . ,  

we have 

<E (ul) E* (u~)> = I (ul) ~ (u 1 - -  u2), (5.22) 

1 (x) --- I I (u) H (u - - x )  d=u, (5 .23)  

where l(u) is the average intensity distribution over the object, and H is the so-called scat- 
tering function of an incoherent optical system: 

H (x) = I ho (~) 1 ~. (5 .24)  

As already indicated, in astronomy the field in the object plane is always spatially in- 
coherent, but in laser radar this holds true only for a sufficiently broad sounding-radiation 
spectrum. We shall consider hereafter only this case. 

We introduce the image spatial spectrum given by 

(~) ----- I I (~) exp (ilx) ~x,  V (5. 25 ) 

where ~ is the spatial frequency. Taking the Fourier transforms of the left- and right-hand 
sides of (5.23), we obtain 

V (~) : V' (~) z (~), (5 .26)  

where V'(~) is the spatial spectrum of the image undistorted by the optical system and z(~) 
is the so-called frequency--contrast characteristic of the system: 

x (~) = f H (x) exp (i~x) d2x. (5.27) 

It is known that image details with different dimensions are unequally converted by the 
optical system. As a rule, the contrast of the large details in the produced image are re- 
produced without change, whereas the contrast of the small details in the transmitted image 
decreases. Details with characteristic dimension 5x correspond to a modulus of the spatial 
frequency 

2~ (5.28) 

and the contrast of these details in the initial image is determined by the modulus of the 
spatial spectrum V'(~) of the image. The frequency-contrast characteristic T(~) determines 
then the contrast of the corresponding details in the transformed image. This characteristic 
can be either positive or negative. Negative values correspond to the so-called reversal of 
the contrast [8]. 

We obtain now the frequency-contrast characteristic of an ideal optical system. We sub- 
stitute (5.24) in (5.27): 

% (~) ----- i h~ (x) h~ (x) exp (i~x) d2x. (5 .29)  

ho(x) satisfies the relation (5.16) in which the integration is over the aperture of the lens. 
It is possible to introduce formally in (5.16) the entrance-pupil function of an ideal optic- 
al system, using the formula 

i, I ~ 1 < ~ ,  (5 .30)  
n . ( p ) =  o, I P I > R ,  

and extending the integration limits to infinity. We then obtain 
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where the integration is over the entire p plane. Substituting this expression in (5.29) and 
integrating with respect to x and p, we get 

It is customary to use the normalized frequency-contrast characteristic 

-k- f  ~) d p (5.33) 
~(~) I n(P)n'(P I 

Zn( i )  = ~ (0) -- S I n (e)I' e~P " 

For an ideal optical system with an entrance-pupil radius R we have [8] 

s in/I  ~ I1~ 2 I ~ l f [ t  /I ~ I f~ t /2  (5.34) ~n0 (~) ---- t 2 arc \ 2 -~ /  7 2kR -- \2--k-g/J " 

A p l o t  o f  t h i s  f u n c t i o n  i s  shown i n  F i g ,  5 . 7 .  I t  can  be s e e n  t h a t  t h e  f r e q u e n c y - c o n t r a s t  
characteristic is equal to zero for all spatial frequencies higher than 2kR/f. This value, 
in accord with (5.28), determines the minimum size of the image details that can be resolved 
by an ideal optical system 

Axmm ~, 

which corresponds, as expected, to the diffractive resolving power. 

Assume now that a turbulent-atmosphere layer is located ahead of the entrance pupil of 
an ideal optical system. If the size of the investigated object is such that it is located 
entirely in the isoplanatism region, the influence of the atmosphere reduces to placing in 
front of the telescope an amplitude--phase transparency with a complex transmission coeffi- 
cient exp ~(p) (see Subsec. 2 of Sec. 2.1). The entrance-pupil function of the atmosphere + 
telescope system takes now a somewhat different form 

exp 6 (p), I~I~<R, (5.35) 

n(~)_~ 0, IpI>R 

We confine ourselves for simplicity in this subsection to consideration of only phase 
fluctuation of the atmosphere, when ~ (p)=~? (p), and investigate the behavior of the frequency- 
contrast characteristic in the region of low and high spatial frequencies. We point out first 
of all that at ]~]f/k < po the frequency--contrast characteristic is close to its ideal value 
in the absence of atmosphere. In fact, 

(5.36) 

w h i c h  c o i n c i d e s  w i t h  e x p r e s s i o n  ( 5 . 3 2 )  f o r  t h e  f r e q u e n c y - - c o n t r a s t  c h a r a c t e r i s t i c  o f  an  i d e a l  
optical system. 

At Po < l~If/k < 2R, the frequency-contrast characteristic differs strongly from ideal 
and can take on both positive and negative values. We obtain the mean value of T(~) in this 
region. We have 

531 



(5.37) 

by virtue of the uniform distribution of ~ over the interval (0, 27). This circumstance is 
illustrated in Fig. 5.8a, which shows two different realizations of normalized frequency-- 
contrast characteristics, ~nl, ~n=' and their mean value <~n >. For comparison, the dashed 
line shows rno for an ideal optical system. 

We return now to the averaging process described in Subsec. 1 and see what happens if 
the quantity averaged is not the square of the modulus of the spatial spectrum of the image 
(5.2), but the image (5.1) itself. It might seem that it is possible to reproduce in similar 
fashion the undistorted image of the object with diffractive resolving power. This is not 
so, however. In fact, the averaging (5.1) is equivalent to averaging of the spatial spectra 

<v. (~)> _-- v (~) <~ (D>. (5.3e) 
I t  f o l l o w s  from (5 .57 )  t h a t  <~n(~)> = 0 a t  ]~1 > k p o / f .  This  means t h a t  we can c o n s t r u c t  a 
c o r r e c t i n g  mask <Tn(~)> -~ and r e c o n s t r u c t  the  i n i t i a l  s p a t i a l  s p e c t r u m  o n l y  i n  the  i n t e r v a l  
0 ~ ]~] ! k o o / f .  I t  hence  f o l l o w s  t h a t  the  a n g u l a r  r e s o l v i n g  power i s ,  i n  t h i s  c a s e ,  %/po, 
i . e . ,  i t  i s  d e t e r m i n e d  as b e f o r e  by t he  a t m o s p h e r i c  t u r b u l e n c e .  The f a v o r a b l e  a s p e c t  o f  t h i s  
reconstruction is only the slight improvement in the contrast of those fine details whose 
angular dimension is not smaller than %/po. 

The situation is different when it comes to averaging the square of the modulus of the 
spatial spectrum. In this case, <ITn(~)[2> differs from zero all the way to the maximum spa- 
tial frequencies I~I = kD/f, where D is the diameter of the telescope, so that the diffractive 
resolving power can be reached. This is illustrated in Fig. 5.8b. 

4. Mean Value of the Modulus of the Frequency-Contrast Characteristic. In accordance 
with (5.35), we have 

(5.39) 
i \ 

We separate in the complex function ~(p) the real and imaginary parts which are responsible 
for the amplitude and phase fluctuations of the field: 

(~) = a (~) § ~ (~). (5.4o) 

'+~k I v i ++~'~ 1 l 

<g > ~j,r4a), 

, k . . . j  I 

Fig. 5.8 
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As noted in Chap. I, it can be assumed that a(p) and ?(p) are mutually independent Gaussian 
random functions. In this case, 

(5.41) 

It was shown in Chap. i that the following relation holds under the condition @(~)>=0 

�9 t 2 7 
<exp [~? (p)]) : exp [-- ~ <? (p)>]. (5.42) 

We can similarly obtain 

I <~xp (~ (p))> = ~p  ~<~ (~)>] ~xp [ y  <(~ (~) - <~ (~)>)~>]. (5. 43) 

We introduce for a ( p )  and ?(~) the correlation functions 

C ~ ( ~  - -  ~2) = <[a (~,) - -  <a>] [a (~2) - -  <a>]>, ( 5 . 4 4 )  
c (~ - -  ~ ) - -  <[~ (~i) ~ (h)]>. 

Applying (5.43) to the first factor in the right-hand side of (5.41), we obtain, after simple 
transformations, 

Similarly, using (5.42), we get 

We now introduce the correlation function for ~(p) 

C~ (~, - -  ~2) = <[~ (Pl) - -  < @ ]  [9" (~2) - -  @*>]> .  ( 5 . 4 7 )  

Expanding the brackets in the right-hand side, we arrive, after simple transformations, at 
the relation 

c ,  (o) - c ,  (P l - -  m~) = <I ~ 12> - -  <~ (h) ~ (h)>- ( 5 . 4 8 )  

In Chap. I, in the derivation of the expression for the correlation function of a field pass- 
ing through a layer of turbulent atmosphere, we obtained 

exp {--[<[ ~ 12> - -  <? (#,) ?* (#2)>]} : exp [--([ ~I - -  ~ IIPoF3], ( 5 . 4 9 )  

w h e r e  po i s  d e f i n e d  b y  ( 1 . 1 7 9 )  o r  ( 1 . 1 8 2 ) .  Fo r  t h e  c a s e  o f  c o s m i c  o b j e c t s  

P0 = (I.45C~k2L) -31~, (5.50) 

w h e r e  Can i s  t h e  s t r u c t u r e  c o n s t a n t  o f  t h e  f l u c t u a t i o n s  o f  t h e  a t m o s p h e r e ' s  r e f r a c t i v e  i n d e x ,  
k = 2~/X i s  t h e  wave  n u m b e r ,  and  L i s  t h e  l e n g t h  o f  t h e  s e c t i o n  o f  t h e  a t m o s p h e r e .  C o m p a r -  
i n g  ( 5 . 4 9 )  w i t h  ( 5 . 4 8 ) ,  we g e t  

c ,  (o)-- c ,  (h - -  ~2)= (I o ~ -  o2 l/poP t~. ( 5 . 5 1 )  

We e x p r e s s  c~ i n  t e r m s  o f  Ca and  C~ . To t h i s  end  we s u b s t i t u t e  ( 5 . 4 0 )  i n  ( 5 . 4 7 )  and  
expand the brackets. Since the mean value of ?(p) is zero by definition, we have 

C, (p~ - -  ~2) = C~ (#z - -  #.)) @ C (p, - -  pe). ( 5 . 5 2 )  
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We now introduce the structure function of the random quantity x(p): 

It is easy to verify that 

~ ,  ( a  - ~ ) - - - -  2 c r  (o) - 2c ,  ( a  - ~ ) ,  

~ o  ( a  - -  a )  = 2Ca (o) - -  2co ( a  - -  ~ ) ,  
~ (a  - -  ~,) = 2c~ (o) - 2c~ (a  - -  ~). 

Whence, taking (5.52) into account, we get 

~ ( a  - -  ~ )  = ~ o  ( a  - -  ~ )  § ~ (~  - -  ~)" 

In addition, in accord with (5.51), 

(5.53) 

(5.54) 

(5.55) 

~, (P1 - ~2) = 2 (] a - P= liP0) 5a (5.56) 

Before we proceed to a direct calculation of the mean-squared frequency--contrast char- 
acteristic of the system, we must make one more remark. We shall show that 

<a> ~ - -C  a (0). ( 5 . 5 7 )  

We start from the fact that relation (5.49) is valid. Then, obviously, 

<exp [# (~1) -~- #* (~2)7> ~ exp {--[C, (0) --  C, (~1 - -  ~2)])" (5.58)  
Substituting (5.40) in the left-hand side of this equality and averaging independently of the 
right-hand side, we obtain 

exp [2 <a> -~- C a (0) -- C~ (0) 4- C a (~i -- ~2) • C~ (~l -- ~2)]" (5.59) 

On the other hand, this expression should equal the right-hand side of (5.58). Hence, with 
allowance for (5.52), we should get (5.57). 

After all this lengthy but necessary reasoning, we proceed to calculate [r<(~)[2>. Mul- 
tiplying (5.45) by (5.46) and combining C a and C , we get 

, f <l=(~)]~>__--I IIo(pl) I]o(~l-~-T ~)II;(p2)I]o(pr-~-l:/~)Q(~l_~2, ~)exp[4Ca<O)]d2~id2p2  ' (5.60)  

(5 o61 ) 
t f l 

When observing cosmic objects at close to zenith angle, the effective length of the at- 
mospheric section is L < i0 km. In this case, for any point of the atmospheric section the 
Fresnel number of the receiving aperture is much larger than unity. Thus, at L = i0 km, D = 
1 m, and % = 0.5 ~m, we have D2/%L = 200. In this case, the following equation, which we 
present without proof [9], is valid: 

~ (~l -- ~)~ ~(~ -- ~)" (5.62) 

Taking this into account, we have 

We shall analyze subsequently the normalized frequency--contrast char- with Q(pl - p2, O) = i. 
acteristic, equal to 

< i ~,(o)12> = t. 

(5.64) 

534 



is 
In accordance with (5.63), (5.54), and (5.51), 

2{flil~/~ 2{I~,-P~l)~3 i_. ( 

the explicit expression for Q(~: -0=, ~) 

,00 -~- ~o , (5.65) 

with po defined by Eq. (5.50). Numerical integration using Eqs. (5.64) and (5.65) was carried 
out in [9], using the parameters of the Mount Palomar Observatory, namely ro -- 2.1po = 0.13 m 
at a wavelength X = 0.5 Bm, and receiving-telescope diameters 0.15, 1.5, and 5.0 m. To 
analyze the results it is convenient to introduce two dimensionless parameters: 

/ l~l  o 
a-------. (5.66) q=: kD ' Po 

The v a l u e s  o f  t h e  p a r a m e t e r  a f o r  t h e  t h r e e  i n d i c a t e d  t e l e s c o p e  d i a m e t e r s  a t  po = 0 . 0 6 2  m a r e ,  
r e s p e c t i v e l y ,  2 . 4 5 7 ,  2 4 . 5 7 ,  and 7 3 . 0 8 .  F i g u r e  5 . 9  shows t h e  d e p e n d e n c e  o f  < [Zn[2>  on q a t  
d i f f e r e n t  v a l u e s  o f  a .  F o r  c o m p a r i s o n ,  t h e  same f i g u r e  shows t h e  q d e p e n d e n c e  o f  t h e  mean 
squared short-exposure frequency-contrast characteristic [9] 

( 4 #  5 = exp [--2q~/~a 5I~ (1 - -  qlI3)l =~(q), ( 5 . 6  7) 

where the normalized frequency--contrast characteristic Tno(q) of an ideal optical system is 
given by (5.34). The function <Tn> determines the average quality of the images obtained by 
ordinary methods within an exposure time shorter than the atmosphere freezing time. The prin- 
cipal result of the analysis is that, for high spatial frequencies at q >> ~-~, the function 
<]~nI2> exceeds by several orders the value <~n >= which tends rapidly to zero in the indicated 
region. This means that the speckle-interferometry method provides a much higher resolution 
than ordinary observation methods. 

5. Asymptotic Expression for <I~nI2>. The condition q >> ~-~ corresponds to the pre- 
viously discussed (in Subsec. 3) condition I~[ >> kpo/f. In this range of ~ one can obtain 
a relatively simple asymptotic expression for <[Zn[2>, which will in fact determine the resolu- 
tion. 

We turn to Eq. (5.64). We note first that 

[I i ~2D'16 . (5.68) 

We introduce next a new coordinate frame r, p, q defined as 

D r  = pl - -  ~2, Dp = p127 p2, D q  = ~ ~ ( 5 . 6 9 )  

and a new function 

In this notation, Eq. (5.64) reduces to the form 

<l':n(q) 12>=__~_ f S ( q ,  r ) exp[ - -2 (q~ l~ /3 - -2 ( ru )  ~f3 + ( I r - - q [ @ l ~ + ( [ r 2 7 q l a ) 5 1 3 ] d 2 r ,  (5.71) 

where account is taken of the fact that the Jacobian of the transformation (5.69) is equal to 
D 4. We transform in (5.71) to polar coordinates in the integrand, and reckon the angle e, 
which defines the direction of the vector r, from the arbitrarily chosen direction of the 
vector q (Fig. 5.10). The intermediate calculations are relegated to Appendix VII, and here 
we give the final result: 

- - ~ 2 \  64 

0 0 

X exp [ - - 2  (q~);13 __ 2 (r~) ~13 2 7 (~/r 2 27 q2--2rq cos 0 ~)5t3 27 (~/r 2 27 q2 27 2rq cos 0 a)~I3] rdr, 

(5.72) 

where 
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(q, O) = --q cos 0 -~- ~I -- q2 sin 20. (5.73) 

An a n a l y s i s  o f  the argument o f  the e x p o n e n t i a l  i n  (5 .72)  shows t h a t  under  the c o n d i t i o n  
qa >> 1 the integrand is close to its maximum value at r << q; on the contrary, at r ~ q, the 
integrand is small and can be disregarded in the integration. Taking this circumstance into 
account, we expand the exponential in powers of the small parameter r/q. When the square 
root is expanded, the terms linear in r/q cancel one another. Therefore, the expansion of 
the square root must be carried out up to the terms with the second derivative inclusive. 
We then get 

~:/2 ~(q, O) 
- 2  6~ .5/3~- r ~la 5 5 2 ,~] ' :n(q) l~:--~I  dO I S (q , r ,O)  exp{--2(ra) L1--(-$ -) ( y - - - ~ c o s O ) ] } r d r .  

0 0 

(5.74) 

Since we are considering the region q < i, it follows from the condition qa >> 1 that 
a >> i. For the integrand in (5.74) to be close to its maximum we must therefore have r << i. 
We can thus put in the integrand 

S(q, r, O)~S(q ,  O, O)=S(q, O, 0). (5.75) 

However, by virtue of the definition (5.70), the function S(q, 0, 0) is equal to the frequency-- 
contrast characteristic of an ideal system: S(q, 0, 0) = To(q). Introducing the normalized 
frequency--contrast characteristic of an ideal system rno(q), we have 

S(q, O, O):-~zm(q), =no(O)~---i. (5.76) 

We note that, as expected, s(q, 8) = 0 at q = I and <lTn(1) la> = 0. If, however, we 
consider the region a -I << q < i, we have as(q, 9) >> 1 and in this approximation we get 
from (5.74) the final equation: "~ 

1.916 
~1 ~n(q)I=~ ~ ~ m ( q ) "  (5.77) 

A more exact expression with terms of next order in (aq) -~ is given in [9]. 

From (5.77) follow directly several important conclusions. First, the mean-squared 
modulus of the frequency--contrast characteristic of the system, which plays the principal 
role in the speckle-interferometry method, is proportional to the first power of the fre- 
quency-contrast characteristic of an ideal optical system and differs thus from zero up to 
the limiting values of the spatial frequencies. This means that the speckle interferometry 
system can yield a near-diffractive resolution. 

Second, for each value of the spatial frequency ~ there exists an optimal value of the 
telescope diameter D, independent of Po at which <ITn(q) I2> is a maximum. In fact, multiply- 
ing the numerator and denominator of (5.77) by q= and noting that aq does not depend on D, 
we conclude that the desired optimum is determined by the maximum of the function q2Tno(q). 
It is reached at q = 0.58, while at q equal to 0.9 of its maximum we get q~ = 0.46 and qa = 

(l'r. I1 [z) 

10~ ' ' 7 ~  10 "1 

i0-2 ~ = 

lO-J 

10 -~ 

10 -a 
10 J ~a- ;' 

Fig. 5.9 Fig. 5.10 

~gn ~ M 

ii)7 . . . . . .  

la .2 10 ~ Y, see. angle 

Fig. 5.11 
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0.70. The latter require, other conditions being equal, a minimum diameter Dmi n of the 
telescope. If the purpose is to find a minimum telescope diameter Dmi n that would ensure 
for elements with angle dimension y a contrast not less than 0.9 of the maximum, then 

D~=I.43XT-~. (5.78) 

This relation is plotted in Fig. 5.11 for X = 0.5 ~m. 

6. Experimental Results. By now a rather large amount of experimental material has been 
accumulated on the use of speckle interferometry for the measurement of starts and of the distances 
between binary stars with angle dimensions 0.02-0.05 second of angle [2, 3, I0]. To record 
a set of images one chooses, as a rule, the exposure range 0.125-0.001 sec. Either a tele- 
vision image receiver is chosen with the signal recorded subsequently on video tape, or else 
a motion-picture camera joined to an image converter. The observation is through a light 
filter with a wide passband on the order of 30 nm, which ensures for most objectives satis- 
faction of not only the condition (5.11) but also of (5.12). 

Several tens and sometimes even several hundreds (up to 250) [2] of images are recorded. 
Half of them are images of the observed objects and the other are images of a reference star. 
The angle distance between the object and the reference star should not exceed 1 sec of angle. 

This is followed by preparation of image Fourier-transform negatives, as described in 
Subsec. I. The obtained Fourier transforms are averaged by multiple exposure of one photo- 
graphic plate. This operation is highly critical and photoplates with a special light-sensi- 
tive emulsion having a large dynamic range are chosen for them. Analysis of Eq. (5.77) shows 
that to obtain an approximate resolving power O.03X/po relative intensities in the range from 
1 to 6.10 -5 must be recorded. Photographic materials and standard development have a dynamic 
range not larger than 103 . In addition, the inevitable light scattering in the photosensi- 
tive emulsion must be eliminated. This is done by using a special opaque screen. To be able 
to use a screen that is not too large, high-quality optics with low aberration is used. None- 
theless, the central and outer parts of the picture, "spoiled" respectively by the central 
maximum and by the noise, are not used. 

In the first studies [2, 3] the angular dimensions of the objects were determined not 
from the autocorrelation function (5.5) but from the mean-squared modulus of the spatial 
spectrum, corrected relative to the reference star. This was done by "fitting" the central 
part of the profile of the picture to the theoretical profile of a uniform disk. If a pic- 
ture width at the level 0.5 -- w is used for this"fitting," the diameter ~ of the correspond- 
ing uniformly illuminated disk is [3] 

---- 1 ,02k o f'/w], ( 5 . 7 9 )  

where Xo is the wavelength of the laser used for the Fourier transformation, while f and f' 
are, respectively, the focal distances of the telescope and of the Fourier-transforming 
optics. 

Binary objects are easily identified by the presence of characteristic bands in the spa- 
tial spectrum, and the angle distance between binary objects are determined from the period 
of the bands. 

5.2. Adaptive Optics 

I. Principles of Adaptive Wavefront Correction. To compensate for the effect of the 
atmosphere on the resolving power of large telescopes for observation of cosmic objects, 
Babcock proposed in 1953 the use of a flexible mirror with feedback [ii, 12]. The gist of 
assumption is the following. It is known (see Sec. 5.1) that for rays entering the receiving 
aperture within the isoplanatism angle, the turbulence of the atmosphere can be described by 
the amplitude--phase transparency approximation exp [~(p)], where p is the coordinate on the 
receiving aperture. The deterioration of the resolution of telescopes is due principally to 
phase fluctuations exp [i? (p)]. 

For an object of arbitrary and unknown shape, it is impossible to separate the amplitude-- 
phase distortions ~(p) due to the atmosphere from the amplitude--phase distribution due to the 
object. However, if a point source (say a star not resolvable by the telescope) is located 
in the isoplanatism zone alongside the investigated object, the situation changes. In the 
absence of the atmosphere the point source produces at the receiving aperture a spherical 
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wave front that can be regarded as planar for remote objects (such as stars). Consequently, 
by separating the radiation from this source and measuring its phase distribution on the re- 
ceiving aperture, we obtain the distortions due to the atmosphere. Since the point source 
is located in the isoplanatism zone near the object, the atmospheric phase distortions deter- 
mined by the factor exp [i? (p)] are identical for the point source as well as for the in- 
vestigated object. Introducing a phase transparency exp [--i~ (p)] in front of the receiving 
aperture we can thus compensate for the phase fluctuations of the atmosphere and make the 
resolution of the optical system close to diffractive. The influence of the phase component 
of the atmospheric turbulence will be compensated for all objects having an adjacent point 
source in the isopl~natism zone. 

The necessary phase correction of the wavefront is effected most conveniently with the 
aid of a controllable ("flexible") mirror having a variable reflecting-surface relief. Since 
the state of the atmosphere varies with time, the correction must be effected during the time 
that the atmosphere is frozen. 

The method described is known as the adaptive-optics method. It can be seen that its 
idea is simple and understandable. Twenty years have elapsed, however, before the start of 
its development in laboratories. The point is that construction of adaptive optical systems 
calls for the solution of many major engineering and technical problems. These are outside 
the scope of the present book, the more so since they are well covered in [13, 14]. We shall 
therefore analyze only a number of fundamental features that determine the effectiveness of 
any specific adaptive optic system intended to obtain images of objects. 

2. Error of Static Wavefront Correction. The principal element of any adaptive optic 
system is an adaptive (active) mirror intended to correct the wavefront. Adaptive mirrors 
were initially constructed in the form of a set of independently controllable (e.g., piezo- 
electric) "pistons" which displaced individual mirror elements in a vertical direction (Fig. 
5.12a) [15]. The initial wavefront correction of such mirrors, however, will be shown below 
to be subject to large errors. The adaptive mirrors now employed have therefore a flexible 
reflecting surface (Fig. 5.12b) [13]. The main question that arises in the design of adaptive 
mirrors is how many individual drives (pushers) are needed to achieve the required wavefront- 
correction accuracy. Obviously, this depends on the shape of the corrected wave front and 
on the bending of the adaptive-mirror upon application of the control signal. 

Following [16], we assume the adaptive mirror to consist of N discrete drives. When a 
unit control signal is applied to the j-th drive, the phase will be corrected in the plane 
of the coordinate p. The correction is defined by the so-called response function RJ(p) of 
the j-th drive (Fig. 5.13). If the correcting wave is incident on the adaptive mirror at 
an angle a, we have 

R~ (p) ---- 2hi (~)/X cos ~, (5 .80 )  

where h j ( p )  i s  t he  d i s p l a c e m e n t  p roduced  on t h e  s u r f a c e  of  t he  a d d i t i v e  m i r r o r  a t  t h e  p o i n t  
p by the  j - t h  d r i v e  i n  r e s p o n s e  to  a u n i t  c o n t r o l  s i g n a l .  The t o t a l  p h a s e - c o r r e c t i o n  f u n c t i o n  
at the instant of time t is 

N 

~o (~, t) ---- ~ a~ (t) R~ (~), (5.81) 

where aj(t) is the amplitude of the signal that controls the j-th drive. 
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Let the phase distribution of the wave incident on the adaptive mirror be ~ (p, t). 
Then the distribution of the phase in the reflected wave, i.e., the correction error, is 
given by 

~(~, t ) = ~ ( p ,  t)--~o(p,  t). (5 .82)  

We consider first the ability of the adaptive mirror to effect static correction of the 
phase distortions, i.e., how well-prescribed phase distributions can be corrected. We spe- 
cify phase distributions in the form of tilts, focusings, and third-order aberrations. In 
the general case, for a mirror in the form of circle with unity radius [7], we have 

.~ (P, O) = C t,o cos 0 -j- Cf p2 _~_ Cs p4 _j_ CaPS cos 20 -~- C c p 3 cos O, (5.83 ) 

where  Ct ,  Cf ,  Cs, Ca, and C c a r e  c o e f f i c i e n t s  t h a t  d e t e r m i n e ,  r e s p e c t i v e l y ,  t he  t i l t ,  f o c u s -  
i n g ,  s p h e r i c a l  a b e r r a t i o n ,  a s t i g m a t i s m ,  and coma; p and 0 a r e  t he  p o l a r  c o o r d i n a t e s  i n  t he  
p l a n e  of  t h e  m i r r o r .  I t  i s  c o n v e n i e n t  to s p e c i f y  each  a b e r r a t i o n  s e p a r a t e l y  i n  such  a way 
t h a t  t h e  m e a n - s q u a r e d  d e v i a t i o n  o f  t he  w a v e f r o n t  from a p l a n e  w i t h i n  t he  a p e r t u r e  be e q u a l  
to the wavelength ~: 

] I~2 (p, O) p dp dO - -  2~. 
0 0 

In this case, C t = 47, Cf = 2vf37, C s = 2/57, C a = C c = 4/27. 

The mean-square correction error over the aperture area is defined as 

(5.84) 

[ " 
.~2=-_ t i82(p) d2p__----i f =  ~(P)- -  5a ; / i t j (p )  d2p. 

3 = l  

(5.85) 

It is now necessary to minimize 62 with respect to all aj. In a real adaptive system, as we 
shall see later, this is performed automatically by the electronic control system. At pres- 
ent, however, we must carry out this operation mathematically. 

Expanding the brackets in (5.85) we get 

where 

N N N 

a~---~2o--2 Z ajb.~-~ E ~-~ aft.fly.,, (5 .86)  
j=L 3=1 m=l 

We note that 6o = 27 in accordance with the 

We differentiate 62 with respect to a j  

~o2---1 I ~ 2 (p)d2p, (5.87) 

b - - !  ~ - -  = I + (P) n j  (~) d'p, ( 5 . 8 8 )  

d - - i  J~ -- ~ I Rj (~) B,~ (~) d~p (5.89) 

assumed normalization (5.84). 

and equate the derivative to zero. 

N 
--2bs.-J-2 ~] a,fli,==O , (5.90) 

Then 
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from which we obtain the optimal coefficients aj : 

i~ aj--~ ~ b,fl-' (5.91) 

Here dI:jm is the matrix inverse to djm. Substitution of (5.91) in (5.86) yields the minimum 
correction error 

N N 

__ 2 ~ ~ -~ (5.92) 
J~l m~l 

To continue the calculations we must specify the actual form of the response function 
Rj(p). Assume that all the drives are located inside a circular aperture of unity radius at 
the nodes of a square net and at its center. Two types of response functions were used in 
[16] for the calculations: 

; - ,. / ,  I u - u , l < r ,  
% @ =  Ix--  ~-I>~r, 

o, I .u- .ujl~"; 

Bj (~) 
I i ~, I ~ i e , / > / r ,  

(5.93) 

(5.94) 

where x and y are Cartesian coordinates in the mirror plane, pj is the coordinate of the j-th 
drive (its Cartesian coordinates are xj and yj), and r is the mesh of the square net of drives. 

The response function (5.93) has the form of a pyramid, while (5.94) is bell-shaped. 
They are shown, respectively, in Figs. 5.14a and 5.14b. A pyramidal response function is 
possessed by adaptive mirrors whose reflecting surfaces are made up of separate elements. A 
bell-shaped response function corresponds to adaptive mirrors with deformable reflecting sur- 
faces. Other types of response functions are also possible, such as is shown in Fig. 5.14c, d. 

T. 

o ; , ,  , ol  

- _ l  2 2 2  o'.. o .-6 
z j  x 

a b 

\,, 

O 

P / /  /9 !=../' 
oj 

Fig. 5.14 

110 

9 ~ 
3 I 

; o + 
j I 

1 I 

&- -~>---~ 

F 

540 



TABLE 8. Wavefront Correction 
Error for Two Different Response 
Functions 

~Type of 
aberration 

Correction error 

pyramidal bell-shape 
response response 
function function 

Tilt 
Focusing 
Astigmatism 
Coma 

0,0123 
0,0~07 
O,02M 
0,0295 

0,0338 
0,t180 
0,074U 
0,0745 

The results of the calculations in [16] for the response functions (5.93) and (5.94) are 
listed in Table 8. The mesh of the net of drives was chosen to be r = 0.105. 

3. Correction Error of Atmospheric Distortions of Wavefront. Under real conditions the 
wavefront of the arriving wave varies randomly with time. We assume that the wavefront is 
distorted by atmospheric turbulence and obtain the minimum correction error averaged over the 
ensemble. From (5.92) we get 

N N 
~2 - i  / < ~,>=<~> - Y~ E d~. e#,b. (5.95) 

J=im=l 

The mean values in this expression are obtained by averaging (5,.87) and (5.88): 

,,2 i I <72 (~)>d2p, (5.96) <~ =--~ 

<b yb~> =-~- i B j. (Pl) R,,~ (~2) lV (~z) ~? (~)> d2p~d2P2" ( 5 . 9 7 )  

We n o t e  now t h a t  t h e  a d a p t i v e  m i r r o r  c o m p e n s a t e s  n o t  f o r  t h e  a b s o l u t e  v a l u e  o f  t h e  p h a s e  
f l u c t u a t i o n  a t  a g i v e n  p o i n t  0 o f  t h e  a p e r t u r e ,  b u t  t h e  d e v i a t i o n  o f  t h e  p h a s e  f r o m  t h e  v a l u e  
averaged over the aperture 

f (~) d2p. (5.98) 

The quantity ~' is random and changes from realization to realization; its average over all 
the realizations is 

<?'> = 0. ( 5 . 9 9 )  

Thus, i t  is  necessary to replace ?(p) in  (5.96) and (5.97) by ?(p)--?'. 

We begin with (5.97). In view of the foregoing, we replace the correlation function 

(~(Pl)?(~2)> by 

<[~ (P1) - -  ~'1 [,~ (P2) - -  ?'1> = (~  (PI) ? (m2)> - -  2 <~ (~) ~'7 -~ (~'~>- ( 5 .  i00) 

On the other hand, the phase correlation function <?(#1)?(~2)> can be expressed in terms of 
the phase structure function ~(~--P2) (see Sec. 5.1): 

I 
<~ (#x) f ([:2)> : <f~--~- ~ (~ - -  ~2), ( 5 . 1 0 1 )  

where 

Sl -- ~2 I/Po) , ~ (~ - -  ~) _-- 2 (I  ~'~ 

and P o is the phase correlation function on the receiving aperture. 
we have for ~2> a new expression: 

(5.102) 

In analogy with (5.100) 

(5 .i03) 
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The expression for the structure function ~(p~--~) is unchanged by virtue of its defini- 
tion. 

Substitution of (5.101) in (5.100) yields, when account is taken of (5.103), 

i 
<[~ (h) -- ~'I [~ (P~) -- ~']> = --~ ~ (h -- P~) + <[~ (P) -- ~'l~> (5.104) 

whence 

It is convenient to normalize the response function Rj (p) to 

I BJ (P) dzP = O. (5.106) 

This is done trivially, by introducing in (5.93) and (5.94) a supplementary additive coeffi- 
cient that is of no importance for our analysis and can be left out of all the expressions. 
Using the indicated normalization, we reduce (5.105) to the form 

<b ~b,~> ~ t - -  ~'~2 f Bj  (~t) B,~ (p~) ~ (Pt - -  P2) d2PldzPe" (5 .107)  

We proceed now to calculate expression (5.96). To this end we integrate (5.103) with 
respect to d=p: 

(5 .lO8) 
I I 

Using (5.101), we express the integral obtained in terms of the known phase structure func- 
tion 

~ s ] 2  \ , / 2 ~  _ _  i i~ I <I,~ (~)-,~ ~,,-~ ~,--~-~ f ~(~"-~,~) ~ A % .  (5.109) 

We turn now to the basic equation (5.95) and reduce it with the aid of (5.107) and 
(5.109) to the final form 

2V N 

o 2 t 

j = l  r a = l  

(5.11o) 

where ~r(PI--P2) is given by (5,102). Before we proceed to the results of the numerical cal- 
culation, it is useful to note that ~ 0  as 00 + ~; hence <62min > § 0. This is natural, 
for the "smoother" ~e initial wavefront ~e better it will be approximated by the adaptive 
mirror. 

Numerical calculations using (5.110) were performed in [16] where, besides the already- 
cited pyramidal and bell-shaped response functions, a Gaussian response function was investi- 
gated (Fig. 5.14c): 

[ (p_~;)2j (5.111) B d ( p ) = e x  p -- r~ , 

O, gg 

0.02 

g 

>/(2~f Parallelepiped 
_ Bell-shaped 

~ function 
/ IPyramidal 

/ / ~  function 
/ //J-"~au~sian ~ funcdon 

1 2 .f 4 5 (r/po) :/d 

Fig. 5.15 
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and a response function in the form of a parallelepiped (Fig. 5.14d): 

l, tx--x~l<r, [ ~ - - y j l < r ,  
B j ( p ) =  O, [x--xjl>~r, l y - - g j l > ~ r .  (5 .i12) 

It may seem that the last case corresponds to an adaptive mirror of the "piston" type, shown 
in Fig. 5.12a. This is not so, however, since the effective range of the response function 
(5.112) extends to include neighboring drives (actuators), so that a cross-coupling is pro- 
duced. 

Figure 5.15 w plots of the average minimum wavefront correction error <~=min > vs 
the ratio (r/po) 513. It is interesting to note that, for all the considered response func- 
tions, the plot is a straight line and can be approximated by 

<B~,n> = ~ (r/Pe)~m, ( 5 . 1 1 3 )  

where r is the period of the net at whose sites the drives are located, Po is the field co- 
herence radius, and the coefficient a depends on the concrete form of the response function 
of the drive. 

4. Adaptation via Sharpness Function. So far we have dealt with the potentially feas- 
ible approximation of a wavefront by an adaptive mirror without considering how the adapta- 
tion takes place in real devices. At present there exist two basic adaptation methods: via 
direct measurement of the front and via maximizing the so-called sharpness function. We pro- 
ceed to examine just the latter method. 

Assume the existence of a physical quantity S that can be measured in practice and 
reaches, for a given object, an absolute maximum when all the phase distortions within the 
limits of the receiving aperture are zero. If, as before, we denote the signals that control 
the drives of the adaptive mirrors by aj (j = i, 2, ..., N), then S is a function of all the 
aj: 

S = S ( a , ,  a2, . . . ,  a~). (5.114) 

This is called the sharpness function. If any of the arguments aj is varied, i.e., if one of 
the control signals is changed somewhat, S changes. From the manner in which S changes (in- 
creases or decreases) one can conclude how to vary aj so as to increase S. By analogous 
reasoning for all a=, S can be brought to its maximum value. This state, by virtue of the 

J 
stipulated property of S, corresponds to compensation for all the phase distortions within 
the limits of the receiving aperture. The described algorithm of finding the maximum is known 
as the "gradient rise" algorithm. In the adaptive-optics literature it is frequently called 
the method of "going up the hill." 

S- measuring 
u m t  

ii/111//~ 
/ /  / /  

\ \  / / /  

% 

,, ,, -~ , ,  - ~ /  \ , 
, ~ z ~  . ~ - - - /  

Drives [ ~ , . .  ~ Undistorted 
I, ~2 ~N image 

[ 1  plan 

[ [~.... �9 - / [ ]  Analyzer 
Test-signal 
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In real devices the described process takes place automatically in accord with the 
functional diagram shown in Fig. 5.16. Test-signal generators apply small perturbations to 
the drives. The measured value of the sharpness function S (al, a2, ..., a N ) is analyzed 
by a special analyzer at whose output are formed N control signals that are summed with the 
test signal and propel the drives in the required direction. As a result, the field with 
the corrected wavefront produces an undistorted image of the object. 

The construction of the analyzer can vary, depending on the nature of the test signals 
and on the sequence in which they are generated [13]. A widely used method is to specify 
harmonic test signals with different frequencies fj (j = i, 2, ..., N). The analyzer is 
then a chain of N parallel filters, each tuned to its own frequency fj. The amplitudes and 
phases of the signals are analyzed at the outputs of the filters. Depending on the phase, a 
control signal is applied to the j-th drive with either "+" or "--" sign, ensuring thereby an 
increase of the sharpness function and compensation of the phase distortion. 

The requirements that the adaptation be fast and that the phase distortions be well 
compensated call for simultaneously increasing N and fj. This in turn imposes stringent re- 
quirements on the operating speed of the adaptive-mirror drives if they operate independent- 
ly. To relax the drive operating-speed requirement, another method [17] can be used. As we 
have seen in Subsec. i, the distortions of the wavefront can be represented as a sum of sev- 
eral aberrations described by appropriate functions and described by aberration coefficients. 
We group all N control signals aj (j = i, 2, ..., N) in such a way that they can produce a 
summary response of the adaptive mirror in the form of independent aberration functions, say 
defocusing, spherical aberration, etc. To describe an arbitrary distortion of the wavefront 
we need then not N independent control signals, but only few (4 or 5) corresponding to the 
first terms of the expansion of the aberration function. The total width of the control- 
signal spectrum, at the same adaptation time as before, can then be greatly decreased, and 
the drive speed requirements can be suitably relaxed. 

Adaptation via the sharpness function is an indirect method of improving the resolution, 
and requires additional proof that the maximum of the sharpness function corresponds to maxi- 
mum resolution. Let us consider this question in greater detail. 

5. Connection between Sharpness Functions and the Quality Characteristics of an Optical 
System. One can devise an infinite set of different sharpness functions, but only four, 
which are the most convenient in practice, have found application. They are listed in Table 
9 [17]. The most used is sharpness function $I. It is the integral of the intensity dis- 
tribution in the image plane of the optical system, over a small circle having approximately 
the same dimension as the Airy disk. To realize $I it suffices to place in the image plane a 
photoreceiver, and in front of the latter a diaphragm with small opening. If the opening is 
smaller than the Airy disk, then 

$1-~ f I (r) d2r ~ I (0) A, (5 .115 )  

where  I ( 0 )  i s  t h e  i n t e n s i t y  a t  t h e  c e n t e r  o f  t h e  p i c t u r e ,  and A i s  t h e  a r e a  o f  t h e  o p e n i n g .  
We n o r m a l i z e  $1 to  u n i t y  maximum. Then 

S i n :  I (0)/I o (0), (5. 116) 

where  I o ( 0 )  i s  the  i n t e n s i t y  a t  t he  c e n t e r  i n  t he  a b s e n c e  o f  p h a s e  d i s t o r t i o n s .  I n  o p t i c s  i t  
i s  c u s t o m a r y  to  r e f e r  t o  t h e  f u n c t i o n  S l n o r  d e f i n e d  by (5 . 116 )  a s  t h e  S t r e h l  d e f i n i t i o n  or  t h e  
S t r e h l  c o e f f i c i e n t  [7 ,  8] and d e s i g n a t e d  by  t h e  l e t t e r  ~ .  Thus ,  the  n o r m a l i z e d  s h a r p n e s s  
function Sx is the strehl coefficient ~. 

We shall show that, in the presence of only phase distortions, the Strehl coefficient, 
and hence also the sharpness function S~nor, is always less than unity. We note for this pur- 
pose that the intensity distribution l(r) is produced by an incoherent point source. It is 
therefore expressed in terms of the frequency--contrast characteristic T(~) of the system in 
accord with the equation (see Sec. 5.1) 

I (~)-= I ~ (~) exp ( i ~ )  ~ ,  ( 5 . 1 1 7 )  

where  ~ i s  t h e  s p a t i a l  f r e q u e n c y .  From (5 .117)  and (5 .116)  we g e t  
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where To(t) is the frequency--contrast characteristic of an ideal optical system without phase 
distortions. If g(p) is the complex function of the exit pupil of an optical with phase dis- 
tortions, we have, according to (5.32), 

where the integration is over the plane of the entrance aperture, f is the effective focal 
length of the system, and k is the wave number. 

We apply to (5.119) the known Schwarz inequality 

We then obtain 

r ~ (i) l ~ ~o (1), 
where it is taken into account that To(t) is a nonnegative function. 
(5.118) it follows directly that 

(5.121) 

From (5.121) and 

S m = ~ l  41. (5.122) 

In the presence of only phase distortions, the Strehl coefficient can be related with 
the resolution of an optical system. In fact, if d is the diameter of the central maximum 
of the distribution of the intensity I(r) and determines the resolving power, then 

I I ( r )  d2r ~.~ I (0) ~ d2/4, 

and, by virtue of the energy conservation law, 

whence 

I (o) d ~ ~ & (0) ~, 

where do is the Airy-disk diameter. In accord with the definition (5.116), we have 

Sin==  ~ ~ (do~d) 2. 

Consequently, if the Strehl coefficient ~ 
be obtained from the formula 

(5.123) 

(5.124) 

(5.125) 

(5.126) 

is known, the resolving power of the system can 

d ~ dog-!I% (5.127) 

TABLE 9. Comparative Characteristics of Sharpness 
Functions 

Sharpness function 

$ 1 =  II (r) der 
A 

S ~ =  I I  ~ (r) d2r 

$3 = I I (In') M (r) d2r 

[. 
s~ = t [I (,.) - 

- -  I 0 (p)lZd2r 

Object  

Pointl ike 

Pointl ike 
extended 

Extended of 
known shape 

Po int l ike,  ex- 
tended of 
known shape 

Detector 

3ingle-channel  

Matrix 

S ing le -channe l  

Matrix 

Sensitivity 
to wavefront 
t i l t  

Yes 

No 

Yes 

Yes 
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Thus, an adaptive optical system that maximizes the Strehl coefficient (i.e., the sharpness 
function S~) maximizes also the resolving power and brings it closer to the diffractive value. 

We consider now the sharpness function $2. It is remarkable in that it can be applied 
to a centrosymmetric object of any shape, not necessarily pointlike. By definition, 

The normalized sharpness function 

S~-~- t 12 (r) d2r. (5.128)  

S2n--== I 12(~')d2r/I l~(")d~r (5.129) 

is known in optics as "relative structural content" and is designated by the letter T [8]. 
It estimates mainly the sharpness of the image with respect to mean-squared values. 

We shall show that $2 reaches its maximum value when there are no phase distortions. To 
this end we change to the domain of spatial frequencies: 

where V(~) i s  the  complex s p a t i a l  spec t rum of the  image.  Since  

(5.130) 

v ( - ~ )  _~ v* (~), ~ ( - ~ )  = ~* (~), (5.131) 

we have 

$2-- I I2(r) d2r:: f ] V({)J2]~({)12d2~" (5.132) 

Independently of the shape of the object and its spatial spectrum, we obtain, by virtue of 
the condition (5.121), 

(5.133) 

or 

Sm~ I, (5.134) 

with the maximum value obviously reached when the phase distortions are compensated for. 
The function Sa is important in that it makes it possible to carry out adaptation not only 
for pointlike objects, but also for extended objects of unknown shape. 

If the object shape is known, we can use the sharpness function $3 [where M(r) is a mask 
that duplicates the shape of the object] or S~ (see Table 9). We note that the normalized 
function S~ is called "faithfulness" [8]. An adaptive optical system using the function S~ 
is described in [18]. 

6. Adaptation via Signals of a Wavefront Sensor. Instead of assessing the distortions 
of a wavefront indirectly from the sharpness function, one can directly measure the relative 
phase distribution in a set of points of the aperture plane and shape control signals for the 
compensation of the distortions. The general scheme of the adaptive system will then differ 
somewhat from the preceding one (Fig. 5.17). The main difference is that the device that 
measures the sharpness function is replaced by a wavefront sensor [13, 14, 19]. This dis- 
penses with the need for generating test signals. 

The wavefront sensor is a complicated optical-mechanical setup, no less complicated than 
the adaptive mirror itself. Modern sensors work in white light and measure the local tilt 
angle of the wavefront, i.e., an angle independent of the wavelength. The wavefront tilt 
angle is in first-order approximation with the derivative of the optical path difference (ex- 
pressed in wavelength units) with respect to the coordinate in the aperture plane. Integra- 
tion of the tilt angle yields the optical path difference, calculated relative to the origin~ 
at a given aperture point. This eliminates the uncertainty of the phase measurement. 
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A classical example of a wavefront sensor that measures the tilt angles of a wavefront 
at specified points of the aperture is the Hartmann sensor (Fig. 5.18) in its various modi- 
fications [14]. A matrix of photoreceivers measures the relative shifts of the images of 
each section of the receiving aperture. These data are used to calculate the average tilt 
angle of the wavefront within the limits of a given section. The result is a system of par- 
tial differential equations for the distribution of the phase ~ (x, y): 

Or (x~, yj) (5.135) -~(z , ,  y~)=~,~, g-f = v  u 

T h e r e  a r e  many d i f f e r e n t  a l g o r i t h m s  f o r  n u m e r i c a l l y  i n t e g r a t i n g  t h i s  s y s t e m  o f  e q u a t i o n s .  
T h e s e ,  h o w e v e r ,  a r e  o u t s i d e  t h e  s c o p e  o f  t h i s  b o o k ,  and we s h a l l  n o t  d w e l l  on them.  We n o t e  
o n l y  t h a t  t h e  c o r r e s p o n d i n g  c a l c u l a t i o n s  can  be  p e r f o r m e d  b o t h  i n  d i g i t a l  and i n  a n a l o g  fo rm 
( s e e  Append ix  V I I I ) .  

7.  Dynamics  o f  A d a p t i v e  S ys t em .  As n o t e d  r e p e a t e d l y ,  an a d a p t i v e  o p t i c  s y s t e m  mus t  
c o m p e n s a t e  f o r  t h e  w a v e f r o n t  d i s t o r t i o n s  w i t h i n  a t i m e  s h o r t e r  t h a n  t h e  f r e e z i n g  t i m e  o f  t h e  
a t m o s p h e r e .  The t i m e  c o n s t a n t  o f  an  a d a p t i v e  s y s t e m  i s  a mos t  i m p o r t a n t  p a r a m e t e r  a l o n g s i d e  
t h e  a c c u r a c y  o f  t h e  d i s t o r t i o n  c o m p e n s a t i o n .  At t h e  b e g i n n i n g  o f  t h e  p r e s e n t  s e c t i o n  we c o n -  
s i d e r e d  t h e  s t a t i c  a c c u r a c y  o f  t h e  c o m p e n s a t i o n ,  by an a d a p t i v e  m i r r o r ,  o f  t h e  p h a s e  d i s t o r -  
t i o n s  o f  a r e c e i v e d  f i e l d .  We now c o n s i d e r  t h e  dynamic  p r o p e r t i e s  o f  an a d a p t i v e  o p t i c  s y s -  
t em.  

We are interested primarily in the time dependence of the resolution of an adaptive 
optic system. In accord with (5.127), the resolution is determined by the Strehl coefficient 
or, equivalently, by the sharpness function S~. It is therefore natural to consider adapta- 
tion via the sharpness function S~. An additional argument in favor of this choice is that 
systems with adaptation via the sharpness function S~ are most widely used at present. 

We consider a hypothetical diagram of an adaptive optical system (Fig. 5.19). We assume, 
for simplicity, that the adaptive mirror is an aggregate of individual independent pistons, 
as shown in Fig. 5.12a. The distribution of the phase of the reflected waves over all N 
pistons will be described by the vector 

P = ( P .  P2 . . . . .  P~),  (5.136) 
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where pj is the average phase within the confines of the j-th piston. All the pj will be 
arbitrarily called "slowly" varying functions of time, in contrast to the rapidly varying 
test signals cj sin mjt, the aggregate of which is characterized by the vector 

Q C = ( q s i n ~ j ,  c2sin ~ t  . . . . .  c~sin ~Nt), (5.137) 

where the modulation vector ~ and the matrix C of the modulation coefficients are of the form 

~I -----(sin (,/ ,  sin ~)~t . . . . .  sin ~ l ) ,  (5.138) 

(~ C1 C2 

C---- 

0 c~ 

The s h a r p n e s s  f u n c t i o n  S depends  on P + ~ and on t h e  t i m e :  

(5.139) 

S = S ( P  -~- (.tO, t). ( 5 .140 )  

Assuming smallness of all the modulation coefficients cj, we expand the sharpness function in 
terms of the small parameter ~C. Confining ourselves to the first term of the expansion, we 
get 

(" OS ~ (5.141) S~-S(IO, t)-~-~Ckop] , 

where  t he  s u p e r s c r i p t  T d e n o t e s  t h e  t r a n s p o s e  o f  a v e c t o r  

dS_(OS OS ..., 05'). (5.142) 
0I" @1 ' @2 ' dPzr 

The s econd  t e r m  i n  (5 .141)  i s  t h e  r a p i d l y  v a r y i n g  component  o f  t h e  s h a r p n e s s  f u n c t i o n ,  
u n l i k e  t h e  f i r s t  t e r m  which  v a r i e s  s l o w l y .  The s i g n a l  S ( t )  i s  f e d  n e x t  to  t he  i n p u t  o f  a 
c h a i n  o f  f i l t e r s ,  e ach  t u n e d  t o  i t s  own f r e q u e n c y  ~ j  ( j  = 1 ,  2,  . . . ,  N) .  The f i r s t  t e r m  i n  
(5 .141 )  i s  n o t  p a s s e d  by t h e  f i l t e r s ,  and t h e  i n f o r m a t i o n - c o n t a i n i n g  p a r a m e t e r  i s  t h e n  t h e  
a m p l i t u d e  (3S/~P)C (w i th  a c c o u n t  t a k e n  o f  t h e  s i g n )  o f  t h e  s econd  t e r m .  The s i g n a l s  a t  t h e  
f i l t e r  o u t p u t s  a r e  s y n c h r o n o u s l y  d e t e c t e d  to  p r e s e r v e  the  i n f o r m a t i o n  on t h e  s i g n ,  and a r e  
transformed into control signals for the drives of the adaptive mirror. Account must also be 
taken of the unavoidable noise present in the channel. The slowly varying noise component 
will be characterized by the vector 

K =  (~1, ~2 . . . . .  ~N) (5 .143)  

w i t h  a l l  t he  ~j ( j  = 1, 2, . . . ,  N) m u t u a l l y  i n d e p e n d e n t  random v a r i a b l e s .  

The p h a s e  p j  a t  e a c h  p i s t o n  i s  p r o p o r t i o n a l  to  t h e  c o n t r o l  s i g n a l .  Thus ,  

t 

P(t)=l:)o-~- I Y ( t ' ) H ( t - -  t')dt', (5.144) 

where  we h a v e  i n t r o d u c e d  a symbol  f o r  t h e  v e c t o r  o f  t h e  a m p l i t u d e s  o f  t h e  s i g n a l s  a t  t h e  f i l -  
t e r  inputs 

(t~ OS y ,  ,=g_FC+K (5.145) 

and the matrix of the pulsed responses of the filters 
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(,o o) h~ (t) 
H ( t ) =  . .  . 

h~v (t) ( 5 . 1 4 6  ) 

The vector Po characterizes the initial (unadapted) distribution of the phase of the wave re- 
flected from the adaptive mirror. 

Differentiating (5.144) with respect to time under the assumption that all the hj(t) are 
exponentially damped functions, we obtain a system for P(t): 

dP(t)  = I f ( t )  H ( 0 )  - -  P ( l )  G, ( 5 . 1 4 7 )  
dt 

where G is the matrix of the reciprocals of the filter time constants Tj : 

G-~- T7l " �9 (5.148) 

We are interested in the S(t) dependence. If we assume beforehand that the adaptation 
varies more rapidly than the atmosphere, then 

S (t) = S ( P  (t)). ( 5 . 1 4 9 )  

Consequently, to solve our problem we must find the S(P) dependence, solve the system (5.147), 
and substitute the obtained solution in (5.149). 

Let us find S(P). We note for this purpose that, by virtue of (5.116), the sharpness 
function is proportional to the field intensity I(0) at the center of the image plane. If 
we confine ourselves to adaptation for a point source, the field at the entrance aperture can 
be regarded during the entire adaptation process as spatially coherent. Then, without averag- 
ing, we can write 

i (o)----I ~ ?, ( 5 . 1 5 0 )  

where E is the field at the center of the image plane. We assume next that N >> i. Then the 
diffraction pattern produced in the image plane by the field reflected from each piston is 
much wider than the aperture over which the integration is carried out in (5.115). Taking 
these remarks into account, we obtain an expression for the normalized sharpness function 

N N 

S H ( P ) - - - ~ - = N  -2 ~] ~] e x p [ i ( p , - - p , , ) ] ,  ( 5 . 1 5 1 )  

whence 

OS _ _ 2N-a sin (p~ - -  p,,,), sin (p~ -- p,~), 
0 P - -  "" ., ,,~=~ sin (px - -  p,,,)] . (5.152) 

Next, we assume for hj(t) the normalization hj(0) = T-li corresponding to a unity trans- 
mission coefficient of the filter at the resonance frequency-~j. System (5.147) is then re- 
duced to the form 

d P ( t )  OS 
dt - -  O> " C G @  T K G  - P (t) G .  ( 5 . 1 5 3 )  

T h i s  i s  a c l o s e d  s y s t e m  o f  e q u a t i o n s ,  s i n c e  t h e  e x p l i c i t  f o r m  o f  3S/~P i s  known.  

To o b t a i n  a s o l u t i o n  i n  e x p l i c i t  f o r m ,  we assume  t h a t  a l l  t h e  d i f f e r e n c e s  lPn -- Pml a r e  
small. Then 
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N 

~ _ _ I _ N - 2  ~ (p_p,~)2 ,  (5.154) 

~V 

dpjdt - -  --cr ~2N-2 ~ (PJ - -  P~) - -  Tj~PJ 2i- T}~$J �9 (5 .155)  

I f  a c a l c u l a t i o n  e r r o r  of 20% i s  a d m i s s i b l e ,  the c o n d i t i o n  t h a t  I P n -  Pml be smal l  i s  not  very  
restrictive, and takes the form 

l p , - -  p=l~<a.0, (5.156) 

corresponding to a maximum wavefront distortion 0.161. At any rate, the error will decrease 
in the course of time, since the differences Pn -- Pm will tend to zero (in the absence of 
noise). 

As a rule, we can neglect the channel differences and put cj = c, Tj = T (j = i, 2, ..., 
N). Then 

N 

~=_l__N-2 ~ 2 ~.m' (5.157) 

m<n 

d~.m __ 2e -f- N 
at NT %~, ~- r ~,,~, (5.158) 

where ~=p,--p~, $~-f$~. We now integrate (5.158), substitute the result in (5.157), 
and average. As a result, we get 

< ~ > = 1  ~--N-, ~t)]} (5.159) 2 {<~>exp(--2 2c + N t) -t-w N T[l__exp (__2 2c+ N 
(2z + N) 

where <~> i s  the average i n i t i a l  phase d i s p e r s i o n  and w = <52 > i s  the s p e c t r a l  d e n s i t y  of  
the phase no i se  in  one channe l .  Usua l ly ,  c << 1, N >> 1. In  t h i s  case ,  (5.159) takes  the 
simpler form 

(- +)]}. 
Since the spectral width of one channel is T-*, the parameter w/T plays the role of the 
mean-squared noise amplitude in one channel. The role of the adaptation time constant is 
played by the quantity T/2, half the time constant of the control circuit. A plot of the 
function <~(t)> is shown in Fig. 5.20, while Fig. 5.21 shows the change of the average re- 
solvable image element <d(t)>, calculated from (5.127). It is typical that in the absence 
of ~oise the adaptation leads in final analysis to the diffractive resolution. The noise af- 
fects the average resolution adversely. At low noise levels, when w/T << i, the deteriora- 
tion of the resolution can be estimated from the formula 

W 
~d~ ~ . (5.161) 

8. Experimental Results. Convincing results that demonstrate the capabilities of 
adaptive optics were obtained in [20]. The experiments were performed with a telescope of 
30-cm diameter both with laser illumination on a route of length 250 m (l = 0.63 ~m) and with 
an incoherent white-light noise. The adaptation was via the sharpness function S, along only 
one'coordinate, using an adaptive mirror of the "piston" type, consisting of six individual 
elements. The time constant of the system was 60 wsec. 

<0> 

1 

,-~<~ 
g 

  [2T 

Fig. 5.20 

<d> 

eo(1+~<#>; 

6 

Fig. 5.21 
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Fig. 5.22 

f 

5 angle  s ec .  

The adaptation process was carried out by successive correction of each of the six 
drives. One adjustment cycle lasted 8 msec. 

Figure 5.22 shows plots [20] of the one-dimensional image of a laser point source of 
light, shaped through a 250-cm layer of turbulent atmosphere. The ordinates and abscissas 
are, respectively, the relative illumination and the angular coordinates of the image. Fig- 
ure 5.22a shows the illumination distribution when the control is turned off and there is no 
adaptation. The areas under the curves are equal, and the width of the central peak of the 
adapted image is one-tenth the width of the unadapted image. 

Finally, notice must be taken of the successful test of an adaptive optic system using 
a wavefront sensor [21]. A monolithic piezoelectric mirror was used in these experiments 
with 21 drives. The distortions were compensated along two axes. 
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APPENDICES 

I. Table of the Functions H(x) and H(x)/x 

x 1t (x) 11 (x)/x x I-I (x) H (x)/x 

0,001 
0,01 
0,i0 
0,15 
0,20 
0,25 
0,30 
0,35 
0,40 
0,45 
0,50 
0,55 
0,60 
0.65 
0,70 
0,75 
0,80 
0,85 
0,90 
0,95 

9,999. t0 -4 
9,999 t0  -3 
9,992 �9 t0 -~ 

0, t49 
0,t99 
0,249 
O, 298 
0,346 
0,395 
0,443 
0,489 
0,536 
0,582 
0,628 
0,672 
0,716 
0,758 
O, 800 
0,841 
O, 880 

0,999 
0,999 
0,999 
O, 998 
O, 997 
0,995 
0,993 
O, 989 
0,987 
0,983 
0,979 
0,975 
0,970 
0,965 
0,959 
0,954 
0,948 
0,941 
0,935 
0,927 

t ,0 
1,5 
2,0 
2,5 
3,0 
3,5 
4,0 
4,5 
5,0 
5,5 
6,0 
6,5 
7,0 
7,5 
8,0 
8,5 
9,0 
9,5 

t0,0 

0,9t9 
t ,241 
1,426 
i ,468 
i, 388 
l, 223 
1,025 
0,842 
0,7t5 
0,669 
0,706 
0,812 
0,955 
i ,099 
i ,21i 
i, 265 
t ,252 
t ,179 
1,067 

0,9t9 
0,827 
0,713 
0,587 
0,463 
0~349 
0,256 
0, t87 
0,t43 
0,]22 
0,tt8 
0,125 
0,136 
O, 147 
0,t5t 
0,t49 
0,139 
0, i24 
0,107 

II. Proof of Satisfaction of the Reciprocity Principle 

Let G(r, r~) be a Green's function. This means that a point source placed at the point 
rl produces at the point r a field G(r, r~). The function G(r, rl) satisfies the following 
equation: 

S i m i l a r l y ,  t h e  f u n c t i o n  G ( r ,  r 2 ) i s  t h e  f i e l d  p r o d u c e d  a t  t h e  p o i n t  r by  a p o i n t  s o u r c e  
located at the point r2. It is required to prove that 

(If.l) 

The function G(r, r2) satisfies an equation similar to (II.I): 

5 G ( r ,  r 2 ) ~  - -k~nZ(r)  G ( r ,  r 2 ) -  4 ~ ( v  - -  ~z)- ( 1 1 . 2 )  

We multiply (II.i) by G(r, r2), (11.2) by G(r, r~), and subtract one equation from the other 

We integrate the obtained equality over a closed volume V. Then, using Green's theorem, we 
obtain 

- -  g [ a  (~', ~*i) VG (~', r2) - -  G (~ ,  ~'2) VG (~, @'1)] dS = --47~ [V (~'1, ~2)  - -  G (~F'2, @'1)], 
s 

(II.3) 

The integration is over the closed surface of volume V with outward normal. We choose the 
volume V to be a sphere of radius R. As R § ~, the integral in the left-hand side of (11.3) 
then tends to zero (by virtue of the Sommerfeld radiation condition). From this we get 

G (v~. r~) ---- G (r2, ~1), 

Q.E.D. 
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III. Summation of the Series in the Equation for Ps+no(~) 

The initial expression for Ps+no is of the form 

Ps * no (1) = 

~xp_(-~) ( ! Y (  ~ - a ~ ,,~ I (~  + L - -  ~ ) I [ ( c  - -  ~)(i--q)],~ {o - -  ~)d],, ( , [ ~  - a), o (c  - ~) - 'V 

We rewrite this expression in a different form 

< 
Ps+no(1)=exP(- -~)TT.  k ~ - - q ]  \U-Z--~ 7 . . . .  G - - d  J X 

n m j 

V (~ -- a) ~ c ]: 
, [~------F))~ j I(,~--0 !(m--/)!/! (1+ ~--~)!(,,--/)U-k 

In this expression the summation is cut off whenever the factorial becomes less than zero, 
i.e., at m < Z, j; n < j. We introduce the notation 

(III.l) 

A = ( l  - -  q) (G - -  i) (G - -  d ) - ' ,  B = ~ ( G - - i )  d ( G - - d ) - ' ,  
C = ( l  - -  d)~ C ( e  - -  l ) - ' .  

We s u m  f i r s t  o v e r  t h e  i n d e x  n :  

Bn 
(n--l) ! --BY oxp  (B). 

n=j 

The triple sum S in (III.l) is then equal to 

S = o x p B  A "  (m - -  Z) ! (m - -  i) ! i ! (j + L - -  l )  ! " 
j 

We sume now over the index m. We have 

:~ ( r a . - ~ L - - l ) ! m [  Am__A t 01 Z ( r a - ~ - L - - l ) !  Am . 

m m 

We introduce in the right-hand side of this expression a new summation index k = m -- j. We 
then obtain 

~(m+L--~)! ~,,=Aj~(k+n+j--t)l a,=A:(n+j--i)l 
( r e  - -  1 )  [ ( t  - -  A )  L+3~ 

m k 

The last equation is obtained in the analogy with the procedure used in the main text. The 
sum S is then equal to 

(BC): 0 z [ AJ (L -~_j~ i) ! 1 S = e x p s A ~  j ! ( / + L - - ~ ) !  ~.4' (7-A) ~§ " 
J 

The factorial (j + L -- i)[ cancels out, and after simple transformations we get 

} o ~ f~xp [BC ( i  - -  A)-'I / Ot e x p [ B C A ( t - - A )  -11 = A l e x p [ B ( l _ C ) ] - ~ [  ( ~ - - - ~ s  j .  (III.2) 
S = ex p  (B) A t - ~  (t --  A) L 

We c a l c u l a t e  t h e  l - t h  d e r i v a t i v e  i n  ( I I I . 2 ) .  T o  t h i s  e n d  w e  e x p r e s s  t h e  e x p o n e n t i a l  i n  

the form of a series 

exp  ~ \i--A] ~7! " 
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Substituting this expression in (111.2), we get 

Ot {explBC(l--A)-l]} I ~ {  BC ~m(L-Fm+l - - t ) !  
8-A'- (t - - A )  L -- ( l  - -  A) TM ~,~"A/  -mf-((L-'~m"-~))f" 

The infinite sum is inconvenient for computer calculations; we reduce it therefore to a sum 
of a finite number of terms. We note for this purpose that 

(1- -  A) TM ral(LJFm--t)  I - - ( l - - A )  L+~ OA t DL-lral --(t--A)L+ZDL-IOAI 

where 

D = BC (i - -  A) -x. 

Differentiating and making a trivial replacement of the summation index in the resultant 
sum, we arrive at the formula 

O_~t {.exp [BC (1 -- A) -1] }= 
l 

, ,  - -  (l - -  A) L+i exp [BC 
j=O 

Substituting this formula in expressions 

for Ps+no(~) : 

il(l--j) l(Lq-]--i)l " 

(111.2) and (III.i), we obtain the final expression 

i 

p s+  no (/) = exp V y, Gq ] ~l Z[ L-- ~ (i § ~)J (i § z)~+~ (L § z -- i) 1 
2"=0 

~Gq ]J i 
~ (t -~- x )  ] l ( l - - j )  l(L.~-]--i)l  " 

IV. Derivation of the Dependence of k z on k x and ky in Eq. (3.129) 

Consider a uniaxial anisotropic crystal. Figure A.I shows the optical indicatrix of 
such a crystal. The axes x~, y~, and zl are the principal axes of the optical indicatrix, 
and the wave vector of the extraordinary wave is directed along the z axis, which makes an 
angle e with the zl axis. Small changes of the direction of propagation of the wave (angle 
de) lead to small changes of the refractive index for this wave. The refractive index is de- 
termined by the absolute value of the angle e between the axes z and zl. In the notation of 
Fig. A.I we have 

dO = k~/k, 

where kx is the projection of the vector k on the x axis. 

The displacements de and dr cause the angle of inclination of the wave vector to the 
crystal axis z to change from 9 to eo (Fig. 11.2 -- side view as seen from the zl axis). The 
refractive index of the extraordinary wave is expressed in terms of the angle eo in the fol- 
lowing manner: 

n (0o) -~ no (i + ~ s i n  z 0o) -11~, 

where 

n o and n e are the refractive indices of the ordinary and extraordinary rays. 

It is easy to verify that 

c o s O c o s ~  cosOo, 

whence 
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e~ 

Fig. A.I Fig. A.2 

n (0, ~) = no ( i  q-  ~ s in  S 0 cos z y q-  s s in  S ~)-l lS.  

We h a v e  n e x t  

k2 z.2~U2 k~ = (kon ~ (0 q-  dO, ~, q-  d~) - -  ~ - -  .~j , 

where ko is the modulus of the wave vector in vacuum. 

Using the smallness of the angles e and ~, we get 

i t Ln -  ~w+(n-~  - ]~f, (IV.i) 

where k is the modulus of the wave vector in the z direction. The corresponding derivatives 
were written for the initial value of 0 and ~=0. It is easy to verify that 0n/O~----0 at ~----0. 
The other derivatives are equal to 

0-~0 ~=o ~ --nos s in  0 cos 0 (i ~- ~ sin ~ 0) -312, 

n-1 ~ ?=o = --~ sin O cos 0 (t q- s si]] 2 0)  - 1  = - - t g  a, 

O'n I 
I~=o == --no~ I i - 2 (l -}- ~) s in  ~ 0 -{ ~ sin 4 O] (l ~ s s in  z O) -5/2, ( I V .  2 )  

O~n I 0~ z r ~o : --no~ (1 - -  sin ~ O) (t -[- ~ sin S O) -312. 

Substituting formulas (IV.2) in (IV.l), we get (3.129). 

V. Calculation of the Scattering Function T(x, y) 

The general expression for r(x, y) is (3.136): 

l Zo - i  

- - r  

Making the change of variables 

X - - X o ~ - - x l ,  k x - ~ - z = k x l ,  

we have 

2f-cD 

r (xl,  y) = --i~aA~zo exp  (ixlx) ~ a (k~l -{- k~) 
--r 

0xp [ - - /  (xlkx,  ~- yky)] dkx ldky ,  

where a = Zo/4k s. 

We then obtain 

We introduce the two vectors 

= (z~, y) ,  k = ( k ~ ,  ky).  

0 0 

- -  e x p ( - - i r k c o s ~ ) k d k  d~, 
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where ~ is the angle between the vectors r and k. Integrating with respect to d~, we trans- 
form the expression into 

r (r) = - - i ~ 3 A 2 z  0 exp (ixlx) i sin (ak z) 1o (rk) k dk, ~k----r-- (V. i) 
O 

where Jo(rk) is a Bessel function of zero order. 

We now calculate the integral in (V.I): 

co 

sin (ak ~) 
l ( r ) =  I ~ l ~  kdk"  

0 

We differentiate it with respect to the parameter r: 

d i sin (ak 2) 
d--7I ( r ) = - -  ak ~ 

0 

oo 

- -  k~]l (rk) dk ~ - - " ~  sin (ak 2) 11 (rk) dk, 
0 

where J1 (rk) is a Bessel function of first order. The last integral is equal to 

i 1 r z sin (ak ~) ]~ (rk) dk = r sin ( '~-).  
0 

Hence 

r rZl4~ 

l ( r )=A-- -~"  -~-sin ~ d t = A - - ~  a 
o 0 

du. 

The integration constant A is obtained from the condition 

I (0)= i sin (ak ~) ak-----T~k d k ~ 4 a  �9 
o 

As a result we get the following expression for l(r): 

x 

l ( r ) = ~ -  ~---Si ~ , S i ( x ) = j  u d=. 
0 

Substituting this expression in (V.I), we obtain ultimately 

VI. Asymptotic Representation of the Function ~(p) 

The initial expression is of the form 

(P) = i (1 -- ~)p-~ exp (px)dz. 
0 

We seek an asymptotic representation for e(p) in the form 

, (p)=*o(p)+~(p) ,  

where ~o(P) is the limit of ~(p) as p ~ O, and 6(p) is a certain function that must be deter- 
mined. At p << i, we have 
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I i 

(~) ~ f (~ - ~)~-~ d~ + p I (i - ~)~-~ ~ d~. 
0 0 

As p § 0 both integrals in the right-hand side of this expression have poles of equal order 
in their integrands. Consequently, the value of the second integral without the factor p 
does not exceed that of the first. In the limit as p § 0, we therefore obtain 

1 

~o (p) = (i - x)p-x d~ = - - .  p 
0 

Let us obtain d (p). We have 

i r 1 

~(P)=~(P)--~o(P) = xP-1[exP((l--z)p)--i]dx= -fiT. xP-l(i--x)~dx. 
0 k ~ l  0 

The integral under the summation sign is known: 

From this we get 

1 

I~p-~  (i - -  x)~ d~ = r (k + i) r (p) 
r ( k + p +  i) �9 

0 

cO 
r (p) 

~ ( P ) =  P~ r ( k §  �9 

Ultimately we have the following expression for s(p): 

l ~ pk 
~ ( p ) = ~ +  r ( p )  r ( k + p +  t)" 

k ~ l  

VII. Derivation of Eq. (5.72) 

In the integration with respect to the coordinate 0: (or P2) the integration region is a 
circle of diameter D. In the integration with respect to the dimensionless coordinate r (o r 
p) the integration region is likewise a circle, but its radius is now 2D/D = 2. Transforma- 
tion to polar coordinates yields, in accord with Fig. 5.10, 

f ~q 

Fig. A. 3 Fig. A. 4 
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2~: 1 

0 0 

The function S(q, r) in the r plane, however, differs from zero not in the entire circle of 
diameter 2, but only in a definite region whose boundary is determined by the condition that 
all four functions Eo in (5.70) overlap (see Fig. A.3). The symmetry center of this region 
is determined by the vector q/2 in the r plane, and the equation of the boundary (in the first 
quadrant) is determined from the condition (Fig. A.4) 

and is given by 

t 1 I 1 
z=_ T v(q' ~  2 

r(q, O) ------ s (q, O ) ~ - - q c o s O + ~ / t - - q 2 s i n  20, 

where, to avoid confusion, we introduced in the text a new function e(q, 0). In the new co- 
ordinates the function S(q, r, @) has identical integrals with respect to 0 in each quadrant. 
Therefore, 

I I I 
0 0 0 0 

and it is this which leads to Eq. (5.72). 

VIII. Reconstruction of Wavefront by Least Squares 

Consider a square aperture consisting of n x n equal square subapertures at each of 
which the tilt of the wavefront is measured. We shall identify each subaperture by a pair of 
indices (i, j), where i is the number of the row and j the number of the column (i, j = i, 2, 
..., n). In the notation (5.135) the average local tilt of the wavefront within the limits 
of the subaperture is determined by the partial derivatives ui, j and vi,j, which we shall re- 
fer arbitrarily to the center of the subaperture. The simplest algorithm for calculating the 
phase is to find in succession the phase increment on moving from one aperture to the other 
horizontally (subscript i) and vertically (subscript j). Then, however, we obtain two values 
of the phase in each internal node of the net. To eliminate this ambiguity is is expedient 
to use the least-squares method. 

We seek the distribution of the phase ?,,j at the corners of the subapertures. The 
values of the phase at the lower left corner of an aperture with indices (i, j) will be desig- 
nated %,j,, that in the upper left ~i,j+1 , in the upper right ~+i,j+i, and in the lower right 
~+~, j .  Clearly, the number of nodes at whidh the phase is to be determined is (n + 1) 2 , and 
the number of measurements is 2n 2, i.e., at n > 3 the number of equations exceeds the number 
of unknowns. 

Assume that all the values of the phase at the corner of the net have been measured. As 
an estimate of the local tilts of the wavefront at the center of each subaperture we can as- 
sume 

i I 

I i 
(VIII.l) 

We assume that the phase ?~,j (i, j = i, 2, ..., n + i) were measured well if the devia- 
tions of the estimates u'i, j and v'i, j (i, j = i, 2, ..., n) from the really measured values 
ui, j and vi, j (i, j = i, 2, ..., n) are minimal. As a measure of the deviation, we shall use 
the sum of the squares of the differences 

= ~ [(u~, j - .~,  j)~ • (~,~, .,. - ~;, ~)~]. 
i, j~1 

(VIII. 2) 
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This quantity reaches a minimum at values 

#A 
-------0 d~, 

The number of the equations in this system 

Substitution of (VIII.2) in (VIII.3) yields 

~ [ , O~ . ,~  . . o v ~ , . r  0 
2 (tt~, s" - -  u~, j )  0 ~ .  q -~ ( ~, Y - -  v~., j )  0~ , ,  q j 

i ,  j=l 

(p, q - - t ,  2 . . . . .  n q- 1). 

~ , /  that are solutions of the system of equations 

(p, q = l ,  2 . . . . .  n + t ) .  (Vlll.3) 

is (n + i) 2, the same as the number of unknowns. 

(viii.4) 

Using (VIII.I) we can find the partial derivatives contained in (VIII.4): 

2 ~"L___L_ 

O~p, q 

Here 6 is the Kronecker delta defined as 

(VIII.5) 

1, p ~ q ,  
~P'~= O, p # q .  

We now substitute (VIII.5) in (VIII.4) and sum over (i, j) at arbitrary (p, q). As a result 
we arrive at a system of (n + i)2 equations: 

("p-~, q-, - "~-~, q-0 + ("p-,, g- ~-,, d - (%, ,-' - ~;, q0 - 
t t t _ _ ~ t  

- -  /)r q - l )  - -  (Up- l ,  q - -  ///I--1, ~) - -  (Up, q (Up, ~ - -  / lp ,  q) ~-  (Up_If q-1 - -  Up- l ,  q - l )  -f- (Op, ~-1 - -  p,  /1, q) = 0 

(p, q = l ,  2 . . . . .  n - ~ l ) .  

In this system of equations the primed terms are expressed in terms of the known phase values 
with the aid of Eqs. (VIII.I). For the inner nodes of the net of phase values, i.e., at 
p, q # i and n + i, we have 

4~p, q - -  ~p-1,  q-1 - -  T p - L  q+l - -  r q+l - -  ~p+l ,  q-1 = 
(VIII.6) 

~--~ Up--l, q-1 -~- Up--l, q ~ Bp, q--1 - -  Up, q -4- V p-1 ,  [l-1 "~- Up, ~--1 - -  Up- l ,  q - -  Up, q. 

A t  t h e  e d g e s  o f  t h e  n e t ,  a t  p ,  q = 1 ,  n + 1 ,  c e r t a i n  u and  v t e r m s  v a n i s h  f r o m  ( V I I I . 5 ) ,  
since they correspond to subapertures missing from the set of n 2 elements making up the total 
aperture. At the same time, for certain values of + it is necessary to use extrapolated 
values. There are eight variants of Eqs. (VIII.6) when p, q = i, n + I. The system of equa- 
tions for tp, q can be written in general form by introducing the discretely varying functions 

1, l~<p, q < n q - i ,  
]/1' ~ :  0 in other cases, 

, { 1, i<~p, q ~ n - - ~ l ,  
f/1' q =  0 in other cases, 

( 4, t < p ,  q < n - { - l ,  
I 

gp, q=~ 1, l>~q~- i ,  p = q = r t - ] - l ,  

1 2 in other cases. 

We t h e n  o b t a i n  t h e  f o l l o w i n g  s y s t e m  o f  (n + 1)  2 e q u a t i o n s  f o r  t h e  (n + l )  2 
t h e  p h a s e s  tp, q: 

(VIII. 7) 

unknown values of 

~p,  q~p, q -- ~p-1, q - l~p-1 ,  q--1 -- ~p-1, q+l~p-1,  q+l -- fp+l ,  q-1~/1+1, @--I -- 
-- fp+l, q+l~p+l, q+l = f~--l, q--I (Up--l, q--i ~- U~--I, q--l) -~ 

+ f~-~, q (%-, ,  q - %_~, q) + &, q-: ( - % ,  q-, + % q-~) + 
+ I~, q (-%, q + 02, q) 

(p, q=i, 2 . . . . .  n+i). 

(VIII .8) 
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The coefficients in this system are the 2n 2 measured values of the average tilts of the wave- 
front at each subaperture. It must be noted that a recurrence procedure cannot be used to 
solve (VIII.8), so that the usual method of solving equation systems must be used. 

We write the system (VIII.8) in a somewhat different form 

,+i 

E ~,j (ap, q~p, q -- bg, j) = O, (VIII. 9) 
p , q = l  

or 

where 

al, I i, 1 I, I 1, 1~1, 1 + al ,  2~1, 2 + . . .  + %+1, n+1~.+1, .+* ---- ba, x 

1 , 2  a l ,  I~ I ,  1 - ~  5 I :  22~1, Z "~- 1 ,2  _ _  �9 " " "3C a n + l .  n + l ~ n + l ,  . + I  - -  b l ,  ~. 

�9 �9 �9 �9 . . �9 �9 . . . . . .  �9 . . . .  . �9 �9 . . . 

1 ,  n + l  / 1 ,  n §  . .  �9 51, n + l  
5 i ,  , ~1,  1 - I -  a l ,  2 ~1, ~ ~ -  - ~  n + l ,  n + l ~ + l ,  n+ t  = b l ,  n+ l ,  

�9 . �9 �9 �9 �9 . . . . , . , . . �9 �9 . �9 . �9 . . �9 . �9 . 

n+ t ,  n + l  t n + l ,  ~41 - -  n+ t ,  n+ l  
a l .  1 ~1. 1--U 51. 2 ~1, Z - ~  �9 �9 �9 - ~  a n + l .  ~+i~0.+1, m+l ----- b , + l .  n+ l ,  

. . [ - - f p ,  q at  (p, q) ----- (r - -  t ,  j - - l ) ,  ( i - - l ,  / - ~ J ) ,  ( i - ~ - i ,  

' , 3 ~  j - - l ) ,  ( i + i ,  1 + t ) ,  
ap, q [ gp, q at (p, q)----(i, j), 

0 in the remaining cases, 

b i ,  j = 1~.-1, j - 1  (~s i f -1 - ~  v , - 1 ,  j - l )  - ~  I ~ - 1 ,  j ( ~ , - ] ,  ~ - -  U~- l ,  2') + / ~ ,  j - 1  ( - - ~ i ,  j - 1  - F  ~ , ,  i f - l )  - ~  l~ ,  j ( - - ~ 4 ,  2" ~ -  v i ,  3)  �9 

We note that the diagonal elements aPp:q#0. Consequently, the solution of system (Vlll.9) can 
be solved by using the Gauss method in its simplest modification. To this end we transform 

~'J in accord with the following algorithm. Let the matrix am,~Jq into the triangular matrix Cp, q 
m = i, k = I. For i = m + i, m + 2, ..., n + 1 and j = k + i, k + 2, ..., n + 1 we calculate 
the new matrix elements 

r  for p ~ r a ,  q ~ k ,  Cp, q 

~,j r  m,k for (p, q ) > ( m ,  k), Cp, q ~ ap,  q t r i ,  j a p ,  q 

where 

l i t  m , k  
ri, j ~ --a~, k/am, kt  

a n d  r e p r e s e n t  a n a l o g o u s l y  t h e  r i g h t - h a n d  s i d e s  o f  t h e  e q u a t i o n s :  

di, j =  b~, j  + r~,~bm, k. 

I n c r e a s i n g  m and  k i n  s u c c e s s i o n  b y  u n i t y ,  we r e p e a t  t h e  o p e r a t i o n  o f  r e p l a c i n g  t h e  m a t r i x  
e l e m e n t s  u n t i l  m and  k r u n  t h r o u g h  a l l  t h e  v a l u e s  f r o m  1 t o  n + 1 .  As a r e s u l t ,  we o b t a i n  
t h e  t r i a n g u l a r  m a t r i x  c ~  The  s o u g h t  s o l u t i o n  o f  s y s t e m  ( V I I I . 9 )  i s  t h e n  o b t a i n e d  f r o m  
the formulas 

~Ou+l, .+1 ----- d ~ + l ,  ~+l/Cm+l,  a+l~ 

- -  Cp+i, q + j ~ p + i ,  q+j  C~, 
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