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DISTRIBUTION OF A NONSTATIONARY ELECTRON BEAM 

IN A DENSE GAS 

Yu. M. Sklyarov, Yu. L. Syts'ko, 
and L. A. Shelepin UDC 937.568 

The problem of the temporal and spatial dependences of the parameters of the action 
of a modulated fast-electron beam on a dense gas is posed on the basis of the 
transport equation. The problem is simplified by making it nondimensional and by 
transforming to the Fokker-Planck approximation. A Green's function formalism is 
developed for this problem and is used to express the solution of the general non- 
stationary problem in the form of a convolution of a nonstationary boundary flow 
with a stationary Green's function. The use of the derived equation is illustrated 
using as an example the solution of a problem with the simplest stationary Green's 
function corresponding to the "straight-ahead" approximation. This approximation 
is used to consider a general relativistic case with model scattering cross sections. 
The methods and results of a numerical computer solution of the nonstationary problem 
of electron retardation in the upper layer of the atmosphere are surveyed. 

INTRODUCTION 

One of the most universal methods of pumping visible band lasers with large energy output 
is assumed to be to supply energy to the medium from some external hard ionizer [i, 2]. In 
laser experiments, such an ionizer is frequently a high-power beam with initial electron 
energy V in the range 0.1-2 MeV and with current density j = (0.I-i0) kA/cm 2. These beams 
carry larger currents than those used to stabilize the discharge in electron-beam pumped 
lasers, but in the class of relativistic beams [3, 4] they are regarded as weak. The 
classification is based on the ratio of the energy of the intrinsic magnetic moment of the 
beam-current field to the electron kinetic energy. A beam is regarded as weak if the ratio 
v/y << i, where ~ = Ir0/ev, I is the beam current, r0 = 2.818"10 -1~ cm is the classical 
radius of the electron, e is the electron charge, v is the electron-beam velocity, and 

= [i - (v/c)2]-i/2 is the relativistic factor. For I = 1 kA and V = i00 keV we have the 
ratio ~/y % 0.06; v/~ = 1 for subrelativistic beams at 1% 7 kA. 

We consider below beams with v/y << i, whose retardation is determined according to 
[3] by independent retardation of each electron, and collective effects play no role. Note 
that laser pumping by beams with v/~ > i, whose retardation is determined by collective 
effects, is a moot question, since bulk ionization of the gas by the beam electrons is pro- 
duced only by passage of a low-current beam. When beams with v/~ >> 1 pass through a gas, 
the principal gas-ionization mechanism is that of breakdown on the front of the beam in the 
electric field induced by the rapid change of the current's magnetic field [3]. 

Supply of energy to a gas by bulk ionization with an electron beam offers a number of 
advantages. First, the beam energy goes mostly to production of plasma electrons rather 
than to heating of the plasma electrons, ions, and the gas. Second, in such pumping there 
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is no feedback of the plasma parameters to the energy source, and hence no restrictions imposed 
by charge contraction, arc ignition~ etc. Interest attaches also to the possibility of ob- 
taining modulated laser emission by pumping the medium with a modulated electron beam [5]. 
It is just the modulation of the electron flux entering the medium which makes the problem 
considered below nonstationary. The spatial inhomogeneity of the problem, on the other hand, 
is due to the deceleration of the beam electrons by collision with the gas. The need for 
considering the spatial distribution of the p~mp over the entire beam-deceleration length 
follows from the following considerations: from the standpoint of obtaining maximum effi- 
ciency of conversion of the beam-electron energy into light, it is convenient to choose the 
length of the active zone of the laser (or its width in the case of transverse pumping) of 
the same order as the total beam-deceleration length. In which case the active zone can 
contain regions with negative gain, and to reveal these regions the spatial distribution 
of the pump must be known. 

The greatest difficulty in the analysis of the deceleration is raised by allowance for 
the bending of the particle trajectories as a result of multiple scattering. No exact 
analytic solution of the corresponding transport equation has been obtained so far even in 
the simplest case of deceleration only by elastic scattering, without energy loss. What 
has been developed by now in sufficient detail is the so-called small-angle approximation, 
which is valid when the total deflection angle from the initial partlcledlrection is small 
over the entire deceleration length [6, 7]. The authors of [6] present in their book 
valuable analytic results of the solution of the problem ofpassage of fast charged particles 
through solids. These results are quite accurate when the bending of the trajectories is 
small. It must be noted, to be sure, that the equations obtained in [6] are quite unwieldy 
and in the most general case the solution is represented in the form of the Mellin's for- 
mula for obtaining the inverse Laplace transform. It can nonetheless be stated that the 
mathematical formalism developed in [6] is quite adequate for the complete solution of ~ 
problems in which the particle deceleration length I is much shorter than the scattering 
transport length Itr: 

~ < t .  (o) 
The transport length is connected with the mean squared deviation of the particle in the 
course of scattering and determines in fact the length over which complete isotropization 
of the initially i/nidirectional flux takes place. 

Relation (0) does not hold for electron deceleration in a gas. In fact, Z ~ (V/W)/N~r(V), 
where W is the average energy lost in one inelastic-scattering act, N is the gas density, 
~r(V) is the total inelastic-scattering cross section; Ztr % I/N~tr(V) , where Ctr is the 

scattering transport cross section, if the electron is decelerated in helium, which is 
frequently used as a buffer gas in laser mixtures, we have at V % i00 keV, W % 3Ry, 
Or[za ~] % 16/V[Ry], ~tr % 43/(V[RY ])2 so that i/ltr % 0.9 and is practically independent of 
V in the considered nonrelatlvistic case. In the relativistic case, the scattering cross 
sections tend with increasing V to constant values and l~tr increases in proportion to V. 
The small-angle approximation is thus all the more inapplicable to the case of deceleration 
of relativistic electrons in a gas. Electron deceleration can be considered with the aid of 
the small-angle approximation only if their penetration depth into the gas is small compared 
with the total deceleration length so that the electron energy losses are low. This case, 
however, is of little interest from the standpoint of obtaining maximum electron-energy 
conversion. 

Problems closest to those considered above are encountered in the physics of atmospheric 
plasma [8-10]. The electrons produced when the neutral atmosphere is ionized by solar radia- 
tion or by particle fluxes of magnetospherlc origin undergo many collisions before they slow 
down to thermal energies, causing thus ionization, excitation, and heating of various 
components of the upper atmosphere, ionization exchange between magnetically conjugate 
points of the ionosphere, etc. Calculation of the effectiveness of these processes has 
much in common with the calculation of processes that take place in the active media of 
plasma lasers. As a rule, the calculations of the kinetics of atmospheric plasma are based 
on computer solution of the corresponding kinetic equations by finite-difference methods or 
by the Monte Carlo method [ii]. Unfortunately, the results of these studies do not yield 
the relations needed for specific laser mixtures. Moreover, only stationary deceleration 
is considered in all these papers. 
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We report below a nonstationary formulation, based on the transport equation, of the 
problem of determining the temporal and spatial dependences of the parameters of the action 
of a modulated fast-electron beam on a gas. The problem is simplified by nondimensionalization 
and bytransforming to the Fokker-Planck approximation. A Green's-function formalism is 
developed for this problem and is used to express the solution of the general nonstationary 
problem in the form of a convolution of the nonstationary boundary flux with a stationary 
Green's function. In other words, an exact analytic solution with respect to the time 
variable is obtained and the general nonstationary problem is reduced in fact to finding 
the solution of a special stationary problem. Byway of example of using the equations 
obtained, we solve the problem with the simplest Green's function of the stationary problem 
corresponding to the "straight ahead" approximation [6]. We consider in this approximation 
a general relativistic case with model scattering cross sections. The methods and results 
of a computer solution of the stationary problem of electron deceleration in a gas are 
surveyed. 

i. Formulation of the Problem 

We consider first briefly the character of formation of the energy distribution of the 
electrons when the gas is ionized by a hard ionizer, in this case an electron beam. On 
the energy axis, along which the electrons of the produced plasma are degraded, one can 
separate several intervals with corresponding electron groups [I]. The first group comprises 
the beam electrons. These are decelerated in the gas, thereby exciting and ionizing it, and 
their trajectories are bent also on account of the elastic collisions. The knocked-out 
secondary electrons of energy E, higher than the minimum gas-excitation energy (and also the 
threshold inelastic-interaction energy), makeup the second group of the ionization-cascade 
electrons. The below-threshold electrons, whose energy is much higher than the gas temperature, 
belong to the third group. They are cooled mainly by elastic collisions with the gas. The 
fourth and most numerous group of plasma electrons includes the cooled slow electrons whose 
temperature is of the order of that of the gas. When these electrons collide with one another 
they acquire a Maxwellian distribution and determine the recombinationflux. The electron 
energies are thus in the range i-i000 eV in the first group, I0-I000 eV in the ionization 
cascade, I-i0 el/ in the subthreshold region, and 0.05-1 eV in the plasma. Note that such a 
sharp demarcation of electron groups is possible only in the case of a simple atomic gas with 
a threshold excitation energy much higher than the temperature. In mixtures with substan- 
tially different component densities, this grouping of electrons becomes arbitrary, since, for 
example, electrons can be effectively cooled by both elastic and inelastic collisions in one 
and the same energy region. 

The character of the approximations and the mathematical methods used to determine the 
energy distributions of the electrons of the different groups are essentially different. 
We consider in this paper only electrons of the first group, the beam electrons, for it is 
just their deceleration which makes the obtained plasma spatially inhomogeneous. The 
formation of the electrons of the remaining groups can be treated in the spatially local 
approximation, since the mean free path of these electrons is much shorter than that of 
the beam electrons. 

Assume that a modulated electron beam with flux density j(t, E, ~) isintroduced into ages 
occupying the half-space z > 0. Here t is the time, E the energy, and 8 = cos p, where 8 is 
the angle between the electron-velocity vector and the z axis. Let theentering electron 
beam be wide enough, with width much larger than the deceleration length or let a strong 
external magnetic field be applied in the beam propagation direction along the z axis. Both 
assumptions lead to the same mathematical formulation of the problem. In fact, consider the 
equation for beam-electron transport in an external magnetic field H = (0, 0, H) 

0, 
ot vl) + ( 1 . 1 )  

Here f is the beam-electron distribution function, e and m the electron charge and mass, c 
the speed of light, and Ist the collision integral. The action of the magnetic field on the 
electron is described by the third term of the left-hand side of (i.i). In a cylindrical 
coordinate system this term can be easily transformed, with allowance for the form of H, into 

~ m c  Oq 2 ' 
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where ~ is the polar angle in velocity space. It follows from this form that an external 
magnetic field simply twists the electron trajectory into a helix and does not influence the 
electron energy or its velocity components v z and v i. The radius R of the helix can he easily 
expressed in terms of the perpendicular component vi of the electron-velocity vector and of 
the strength of the magnetic field H:R = v• Collisions of the beam electron with the gas 
change the value of v• and ultimately increase the radius of the helix with increasing depth 
of electron penetration into the gas. Thus, the true trajectories of the electron in the 
external magnetic field are easily found with the aid of the obtained values of the distribu- 
tion functions by solving the problem of the deceleration of an infinitely wide beam without 
taking the external magnetic field into account. We shall therefore consider hereafter Eq. 
(I.i) without the third term in the left-hand side, and assume the beam to be infinitely 
wide. This simplifies Eq. (i.i), We rewrite this equation with a specified form of the 
collision integral: 

I O0 O0 - -  Ncr (E) �9 + N I d3v'e (v' --> v) �9 (v'). ( 1 . 2 )  
r 

Here ~(t, z,E, ~) Evf, Or(E) is the total scattering cross section, and o(v' + v) is the 
differential cross section for scattering the beam electrons by the gas particles. Equa- 
tion (1.2) is integrodifferential and difficult to solve even with a computer, in view of 
the large number of independent variables. However, the specific features of the inter- 
action of the beam electrons with the gas allows us to simplify this equation and reduce 
it to a differential equation of the Fokker-Planck type [I0, 6] 

I ~ aO a ~ ( 1 . 3 )  
at ~ ~ ~ = ~ -  [L (E) ~1 + Q (E) ~ (l --  ~,) _ _ "  

Here L(E) =-dE/dz is the electron stopping power and Q(E) = <8~>/4, <8~> is the mean 
squared angle of electron deflection by the collision. We can write approximately L(E) % 
W/Ic, where ~c is the electron mean free path; Q(E) % i/(21tr). 

Equation (1.2) can be transformed into (1.3) because the energy loss and the deflection 
angle of the beam electron are small in each individual act of scattering from the gas 
particles. Indeed, in each collision the beam electron loses on the average an energy AE 
of the order of the electron-ion pair-production energy W, which is approximately equal to 
2I, or double the gas-particle ionization potential; the deflection angle is here 48 ~ /I/E. 
Even at the very end of the acceleration, when the beam-electron energy drops to 1 keV, we 
have AE/E % 0.05; 48 ~ 0.I. The transformation of Eq. (1.2) into (1.3) is effected by ex- 
panding the function ~ in the collision integral in powers of the small ratios AE/E and 48. 
Electron collisions with gas particles, accompanied by transfer of high energies and by 
deflection through large angles, are rare and are effectively taken into account by the 
corresponding term in the expression for L(E). Besides the simplification of the form of the 
equation, another factor favors the change from (1.2) to (1.3). The differential cross 
section ~ (v'-+v)and particularly its angular part, is known with lower accuracy thanthe angle- 
averaged quantities L(E) and Q(E), It is therefore not clear beforehand which of the 
equations, (1.2) or (1.3), can provide a more accurate description of the electron decelera- 
tion in the gas. 

To complete the formulation of the problem we must add to (1.3) an initial and a 
boundary condition. We assume that the gas was not ionized prior to the entry of the 
electron beam 

(t = o, z, E, ~) = 0. ( 1 . 4 )  

The boundary condition is set by the flux entering through the cross section z = 0 

<t, z = 0, E, ~) = ] <t, E, ~). ( 1 . 5 a )  

Mathematically speaking, Eqs. (1.3)-(1.5a) constitute a mixed problem or a Cauchy problem 
on a semiinfinite straight line for the transport equation (1.3). Note that the flux j is 
specified on the boundary z = 0 only for ~ > 0, i.e., only the forward flux. The backward 
flux should be obtained during the solution of the problem. It is clear beforehand that at 
depths exceeding the deceleration length the sought solution is zero; we consider therefore 
hereafter the problem in a planar layer of thickness zz smaller than or equal to the decelera- 
tion length. The boundary condition for z = z I is that the backward flux be zero 

575 



qD (t, z = zz, E, I X <  0) = 0-  ( 1 . 5 b )  

The end purpose of the problem of the electron-beam deceleration is to obtain the 
frequencies v 7 of the ionization and excitation of the gas particles by the primary electrons 

V 1 
( 

(t, = I (E) o r (t, E, Ix) dix dE, 1.  6 ) 

E * ~ I  MoB - -1  

where o~(E) is the cross section for the excitation of gas particles to state y, including 
an ionized gas. We wish also to determine the integral 

V i (1.7) 
S ( t , z , E ) =  I g ( E ' - + E ) I O ( t , z , E ' , ~ ) d ~ d E ' ,  

E*+I --1 

that enters as the source in the integral equation for the degradation spectrum that deter- 
mines the energy distribution of the secondary electrons. The frequencies v~ summed with 
the corresponding excitation and ionization frequencies of the gas particles by the secondary 
electrons are used next to solve the spatially local problem of the physicochemioal kinetics 
of the laser active medium [i]. 

2. Derivation of Green's Function of the Nonstationary Problem and Reduction 
of the Initial Problem to a Nonstationary One 

2.1. Nondimensionalization. To solve Eqs. (1.3)-(1.5) it is convenient to replace the 
energy E by a new variable and make the problem nondimensional [6]. We consider in place of 
the energy the residual range 

E 

r ( E ) = I  dE' ( 2 . 1 )  L-2~' 
o 

where r(E) is the path that must be covered by an electron of energy E. We note that since 
the trajectory is bent by multiple scattering, the path of the electron differs from its 
penetration depth. The natural dimensionless units for the problem are the range r 0 = r(V) 
for the electron, having as it enters the gas the maximum energy V required in the problem 
to make z and r dimensionless and also t o = r0/v0, where v 0 = v(V) is the velocity in the 
problem. We shall use t, z, and r to denote the dimensionless variables. In addition, 
all the quantities of the problem such as energy, velocity, flux, density, and frequencies 
v7 are assumed to be the dimensionless values of these quantities at the entry z = 0 into 
the gas. 

We introduce a new distribution function ~ of the dimensionless variables, such that 
~dr = r i.e., 

( t , z , r ,  IX) = roL (E)O (t ,z ,  E, IX). 

E q u a t i o n s  ( 1 . 3 ) - ( 1 . 5 )  t a k e  now i n  d i m e n s i o n l e s s  v a r i a b l e s  t h e  f o r m  

v (r) at + Ix W - -  T A- Q (r) ~ ( l  - -  Ix 2) a~ 

tp (t = O, z, r, ix) = O, 

(t, z -= O, r, IX) = J (t, r, Ix), 

(2.2) 

(2.3) 

(2.4) 

where 

v (r) -~ v (E (r)), Q (r) ~-- roQ (E (r)), J (t, r, ix) = roL (E (r)) j (t, E (r),ix). 

E q u a t i o n s  ( 1 . 6 )  and  ( 1 . 7 )  a r e  t h e n  t r a n s f o r m e d  i n t o  

1 1 

~ (t, z) -~ l o~ (E (r)) I ~ (t, z, r, ~) d~ dr, 
r * ~ r ( E * )  - -1  

( 2 . 5 )  
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1 1 

S(t,z,E)~- I o(E(r')-+E) I ,(t,z,r',~)d~tdr'. (2.6) 

We examine now the range of the variables of Eqs. (2.2)-(2.4). After nondimensionali- 
zation, the variables z and r range from 0 to I. It is easily noted, however, that the 
function ~ is zero at r > i - z. Indeed, at the entrance to the gas, at z = 0, the most 
energetic electron has a residual range r = I. When this electron reaches the depth z, it 
has covered a path longer (in view of the bending of the trajectory) or equal to z, meaning 
that it has a residual range r ! i - z. Generally speaking the function ~(t, z, r, B) 
is discontinuous on the line r = i - z and the derivatives in Eqs. (2.2) in the square 
0 < z < i, 0 < r < I are generalized. In other words, in this region Eq. (2.2) is valid 
not for ~(t, z, r, B), but for the product ~(t, z, r, B) D(I - r - z), where ~ is the unit 
step function. 

We consider now the range of the time variable t. The dimensionless time t ranges from 
0 to T, where 

V 

t S dE 7 ----g- v(E)L(E) 
o 

is the dimensionless deceleration time of the most energetic electron from its entry into 
the gas to a complete rest. Note that T > i, for unit dimensionless time was taken to be 
to = ro/v(v) and the average deceleration rate is not less than v(V). 

The variable ~ ranges from -i to i in the problem but only from 0 to i in the boundary 
condition (2.4). 

It is thus required to solve Eqs. (2.2)-(2.4) in the closed region {O.~<t~.<T, O ~ z ~ < t ,  
r - . < l - - z ,  - - l < ~ < t }  �9 

2 . 2 .  G r e e n ' s - F u n c t i o n  Formal i sm.  We d e s i g n a t e  t h e  G r e e n ' s  f u n c t i o n  o f  Eqs.  ( 2 . 2 ) - ( 2 . 4 )  
by ~ (t, z, r, r', ~, ~') It satisfies in the region {0<t<T, 0<z<r', r<r'--z, 0<r'<l, 
--i<~< ~, 0<~'<i} Eq. (2.2), the zero initial condition, and the special boundary 
condition 

Co ot + t~ - ~  = - - ~  + q (r) ~ ( i  - t~ 2) -~-, 

$ (t = 0, z, r, r ' ,  ~, ~') = 0, ( 2 . 7 b )  

(t, z = 0,  r, r',  ~, K)  = 8 (t) 8 (r' - -  r) 8 (K - -  N ,  ( 2 . 7 c )  

where 6 is the Dirac delta function. 

The function ~ ~,z , r ,  ~,  ~, ~') describes the deceleration of an electron entering the 
gas at the instant t = 0 with a residual range r' and at an angle 8' = arccos ~' to the z 
axis. Since the electron has at depth z a residual range r, the function F @,z, r,r', ~, ~')=0 
for all r' < r + z but has a discontinuity on the line r' = r + z, 0 < r' < I. The solution 
of the Eqs. (2.2)-(2.4) is expressed with the aid of the Green's function ~ as follows: 

1 1 ( 2 . 8 )  
, i t ,  , .  r, = S  t'S  r'S ( t - t , .  z, r ,  r ' ,  (t'. 

0 0 0 

This can be verified directly. 

It turns out that the function ~ (t,z,r,r', ~, ~') can be expressed in terms of the Green's 
function G(z, r, r', p, ~') of the stationary problem by separating the time dependence 
and carrying out analytic integration in (2.8) with respect to the variable t'. 
late for the stationary function G the following equation 

~ = ~ + O (r) (~ - # )  , 

G(z = O, r,r',  ~, ~') = 6 (r' - - r )  6 (~ '  - -  ~t) 

{ O < ~ z < r ' , r < r ' - - z , O < r ' < i , - - i  ~< ~ ~< t ,  0 ~< ~' -.~< t}. 

We formu- 

( 2 . 9 a )  

(2.9b) 

( 2 . 9 c )  
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Just as the function ~, the function G(z, r, r', D, p') = 0, for all r' < r + z. Note 

that (2.9) is considerably simpler than (2.7), since it has fewer variables. This is a 
very important circumstance, since no analytic solutions have been found for (2.7) and (2.9), 
and it is much easier and "cheaper" to solve the stationary equation (2.9), from the stand- 
point of computer time, than the nonstationary (2.7) or the initial equations (2.2)-(2.4). 

To express ~ in terms of G, we take the Laplace transform of (2.7) 

$( t , z , r , r ' , l x ,  tx') < > F ( p , z , r , r ' , ~ t ,  lx' ). 

To obtain the transforms F we must solve the following equation 

OF OF a t aF 
P F+tx -~ -__~-~ fT -4 -Q(r ) .T~ .  ( --~')-ff~- v (r) 

F (p~ z--h--O, r, r', I ~, Ix') --~ 6 (r' - - r )  6 (pl -- ~), 

where the variables change within the limits (2.9c). 

We seek the solution of (2.10) in the form 

(2.10a) 

(2.10b) 

F ( p , z , r , r ' , ~ , ~ ' ) = e r  

From (2.10a) we obtain for 

dg/dr = p/v (r). 
Hence 

i (2.11) 
c 

where c refers to the integration constant. From (2.10b) we obtain, taking (2.9b) into 
account 

e~ (r=r  v)6  (r - -  r ' )  8 (~  - -  ~ ' )  - -  8 (r - -  r ')  8 (~  - -  ~ ' ) .  

Hence ~ ( r = r ' , p ) = 0  and c = r '  i n  ( 2 . 1 1 ) .  Thus,  

F (p,  z ,  r ,  r',  I~, rL') = e-'~(r'~')G (z, r ,  r',  I~, rt'). 

We have introduced here a function of two variables 

T" 

w (r, r') = f ax 7N-"  
T 

(2.12) 

This function has the physical meaning of the time that the electron requires to negotiate 
the path r' - r. Note that x(0, I) = T is the upper limit of the variation of t. 

Taking the inverse transform of F, we obtain with the aid of the retardation formula 

(t, z, r, r', ~, f )  = 5 (t - -  x ~,  r'))G ~, r, r', ~, f )  n (t - -  x). ( 2 . 1 3 )  

S u b s t i t u t i n g  e x p r e s s i o n  ( 2 . 1 3 )  f o r  ~ in  t h e  s o l u t i o n  ( 2 . 8 )  o f  t h e  i n i t i a l  p roblem and 
integrating with respect to t', we obtain ultimately 

i 1 

~ ( t , z , r , ~ ) - ~ -  f d r ' l d f G ( z ' r ' r " ~ ' ~ ' ) J ( t - - ~ ( r ' r ' ) ' r " ~ ' ) n ( t ' - x ) "  ( 2 . 1 4 )  
r+z  o 

The lower limit of the integration with respect to r' in (2.14) takes into account the 
fact that G(z, r, r', ~, ~') = 0 for r' < r + z. Equation (2.14) is an exact analytic 
solution of the initial problem (2.2)-(2.4) in terms of the time variable t. 

We consider now particular cases frequently encountered in applications. If the 
dependence on B can be separated in the limiting flux 

(t, r, ~) = S (t, r) ~ (~), 

there is no need to integrate with respect to ~': 
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where G~(z, r, 

1 

~ ( t , z , r , l ~ ) =  I d r ' J ( t - - ~ ( r , r ' ) , r ' ) G r  
r+z 

r', ~) is the solution of Eq. (2.9a) with boundary condition 

G m ( z = 0 ,  r , r ' , ~ ) = 8 ( r - - r ' ) ~ ( ~ ) .  

If, furthermore, the flux is also monoenergetic 

I (t, r, ~) = ~ (0 8 (r - t) r (@, 

there is likewise no need to integrate with respect to r', and the solution takes the form 

(t ,  z ,  r, ~)  = Z (t - �9 (r, t ) )  G~ (z,  r, 1,  @ .  

In the latter case the solution of the initial problem was simply reduced to a single solution 
of the stationary problem. In the general case it is necessary to solve the stationary 
problem a number of times (on the order of i00) with different r' and ~' and evaluate a double 
integral. We note that the integral in (2.14) is a proper one and can be easily evaluated 
with a computer. 

3. Solution, in the "Right-Forward" Approximation, of the Problem 
of Deceleration of a Modulated Electron Beam 

By way of example of the use of the equations derived in the preceding section, we 
consider the solution of the initial problem in the simplest "right-forward" approximation, 
in which the bending of the trajectories is not taken into account [6], meaning that ~ = 1 
and 8/a~ = 0 in all relations. The results of this approximation are good for deceleration 
of beams of heavy particles such as protons, in view of the additional multiplier m/M for 
the beam particle deflection angle in each individual scattering act. In [6] there was 
obtained also a more exact stationary Green's function in the small-angle approximation. 
It must be noted, however, that even if the small-angle approximation were valid in our 
initial problem, it would remain difficult to use. The equations obtained in [6] are 
complicated, and the specific results we need are obtainable from them by using computer 
calculations of approximately the same complexity as in the direct numerical solution of 
(2.9) by finite-difference methods without any simplifying assumptions. 

In the "right-forward" approximation the equation (2.9) for the stationary Green's 
function G(z, r, r') is of the form 

aG/Oz ---- aG/ar, 
G ( z = O , r , r ' ) = a ( r - - r ' ) ,  O < z < r ' ,  r < r ' - - z ,  0 < r ' < t .  

(3.1a) 

(3.1b) 

Its solution is readily obtained by the method of characteristics 

G (z, r, r') ---- 5 (r' --  r --  3- ( 3 . 2 )  

The s o l u t i o n  o f  t h e  i n i t i a l  p roblem i s  o b t a i n e d  in  t h e  " r i g h t - f o r w a r d "  a p p r o x i m a t i o n  from 
Eq. (2.14): 

q~ (t, r, z) = J (t - -  "~ (r, r -t- z), r + z) ~1 (t --  z (r, r "-t-z)). (3.3) 

To simplify the equations we assume an entering monoenergetic beam, i.e., 

J ( t , O  = P ( t )  a ( r - - l ) ,  
t h e n  

( t , r , z )  = P ( t - - ~ ( t - - z , t ) ) ~ ( t - - ~ ) a ( r + z - - l ) .  

For the ionization and excitation frequencies of interest to us we obtain 

( 3 . 4 )  

% (t, z)  = o~ (E ( t  - -  z))  P (t - -  T ( i  - -  z ,  t ) )  ~ (t - -  ~) .  
(3.5) 
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To obtain more concrete results from (3.5), we must know the forms of the functions or(E), 

P(t), L(E), v(r), E(v). We emphasize that v(r) and v(E) have different functional forms, 
Let the functions be of the form L(E) = W/~ : WN~= (E), ~= (E) = c~/v ~ (E), c= ----- const, v (E): 

f r,,r p l ' ~  c ll--i rn~S+E I I , where m0 c2 is the rest energy of the electron. We choose P(t) to be the 

step q(At- t), corresponding to one pulse of the modulated beam. From (2.1) we obtain for 
r ( E )  

c~ E ~ 
r ( E ) =  WNcs ,~c~+E " 

For the nondimensionalizing constant r0, we get 

c a V ~ 
ro = WNcs rnoc ~ + V " 

The relation between the dimensionless r and E is 

E' (I + E0) (3.6) 
r (E) = E q- E0 

The energy E and E 0 = m0c=/V are made here nondimensional by the energy V. From (3.6) we 
get for E(r) 

E (r) ----- r + ]fr (r + 4Eo (I q- E0)) (3.7) 
2 (t + Eo) 

A family of E(r) plots for different V is shown in Fig. I. In the limiting nonrelativistic 
case E0 >> i Eq. (3.7) goes over into E(r) = /r, and in the opposite limiting case E0 << i 
we have E(r) = r. 

We now write an expression for ~(r, r'): 

v" Elf') ~(r, r')---- I ~dz = I / - 2 E  ~ -I- i [ I - -  k ~.-2T#'-f-/f E. 19 v'j dE'. 
r E(r) 

After integration, we obtain 

T (r, r') ----- ~2E-~-o~ I {[E (r') (E (r') q- 2E0)l v, -- [E (r) (E (r) a u 2E0)] v' + 

n u E 0  a r c  s i n  E o + E ( r ' )  - - a r c s i n  E 0 + E ( r )  " 
(3.s) 

It is of interest to calculate the dimensionless upper bound of the time t: 

E0 r r  + - go 

In the extreme relativistic case Eq. (3.8) is transformed into 

(r, r ' )  = r '  - -  r,  ( 3 . 9 )  

w i t h  T % 1 + ( 2  - ~ / r ) E 0 .  T h e  o p p o s i t e  n o n r e l a t i v i s t i c  l i m i t i n g  c a s e  Eo >> 1 c a n n o t  b e  
c o n s i d e r e d  w i t h  t h e  a i d  o f  ( 3 . 8 ) ,  s i n c e  i t  i s  i m p o s s i b l e  t o  e x p a n d  a r c s i n  x i n  t h e  
vicinity of x = i, which is a branch for the arcsine. We consider this case separately. 
To this end we again integrate after substituting v(r) = ri/4. As as result we get 

(r, r ' )  ---- % [(r ' ) ' l ,  - -  r'/~] 

and T ~---~- E o + l  ] j �9 
(3.10) 

It is also of interest to find the depth z* at which the energy of an initially rela- 
tivistic electron becomes equal to m0c 2. From (3.6) we get 

z* = I - -  r*  = t - -  1/~E o (Eo -f- t ) .  (3.11) 
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We have thus z = 5/8 for V = 2mac 2 % I MeV and z* = 0.945 for V = lOm0 c2. This shows that 

an electron with V ~ i MeV remains relativistic over the greater part of its deceleration 
path. 

We consider now the question of longitudinal compressibility in the space of the initial 
steplike pulse D(At -- t) on passing through the gas. The coordinate z~(t) of the leading 
front is determined in accordance with (3.4) from the equation 

t = ~ ( 1  - -  zz: t ) ,  

and the coordinate zt(t) of the trailing edge from the equation 

( 3 . 1 2 )  

t - -  At = x ( t - - z t ,  l ) ,  ( 3 . 1 3 )  

where At is the initial temporal width of the step, i.e., the instant of time at which the 
trailing edge of the pulse enters the gas. The spatial width Az(t) of the pulse is equal to 

~ z  (t)  = z z ( t )  - z t ( t ) .  

The distortion of the contour of the distribution-function pulse 

i ~(t,r,z) / ( t , z , r ) - -  

and the ionization frequencies (3.5) are determined by the values of their ordinates on the leading 
and trailing edges. By differentiating with respect to t we easily obtain from (3.12) and 
(3.13) the velocities and the decelerations of the fronts. 

Since Eq. (3.8) is unwieldy, we consider below only limiting cases: a) purely rela- 
tivistic and b) relativistic. 

a) E 0 << i. In this case the dimensionless solution is 

( t , z , r )  = ~ ( z - -  ( t - -  At))~ (t - -  z) 8 (r q - z - -  t) ,  ~(1 - - z ,  t)  ~---z, ( 3 . 1 4 )  
1 

t h e  b e a m - e l e c t r o n  d e n s i t y  i s  n (t, z) = I dr f  (t, r ,  z) = N ( z - -  t + At) ~ ( t - -  z), , and  t h e  e x c i t a t i o n  
0 

frequencies are v~(t, z) = n(t, z). Recall that all the quantities are the dimensionless 
entrance values at z = 0. It can be seen from these equations that in the purely relativistic 
case the excitation and ionization wave travels along the gas without changing form, with 
constant unit front velocities. The reason is that, notwithstanding the decrease of the beam- 
electron energy by deceleration, their velocity, meaning also the cross section for inter- 
action with the gas, remains unchanged. 

b) E0 >> i. In this case 

(t, Z, I") - - n  (At - -  t ~- 4/s (t  - -  (1 - -  z)"/')) n (t - -  T) 8 (r ~- z - -  t ) ,  ( 3 . 1 5 )  
" ~  (1  - -  z ,  1 )  = % [ 1  - -  (1  - -  z ) ' / , ] ,  

the density n (t, z) = (i -- z)-V,q (At -- t + x) ~] (t -- x), and the frequencies ~ (t, z) = (I -- z)-V~q 
(At- z + 7)N (t- 7) . The coordinates z~ and z t are no longer linear but power-law functions 
of time: 

zz(t) = i - -  (I - -  3/~t) ,I , ,  z t ( t )  = z z  ( t - -  m ) .  

In the nonrelativistic case the excitation and ionization wave changes shape as it propagates 
in the gas. The spatial width Az(t) of the pulse decreases with time, and the height of the 
pulse increases, while the number of particles in the pulse 

zs 

I n (t, z) dz  = At  s 
z t 

r e m a i n s  c o n s t a n t  i n  t i m e .  I t  s h o u l d  be  n o t e d  t h a t  t h e s e  c h a n g e s  o f  t h e  w a v e f o r m  o f  t h e  e x c i -  
t a t i o n  and  i o n i z a t i o n  wave a r e  n e g l i g i b l e  i n  t h e  c o n s i d e r e d  mode l  e v e n  i n  t h e  n o n r e l a t i v i s t i c  
c a s e .  T h u s ,  t h e  d o u b l i n g  v~ a t  t h e  maximum, which  i s  r e a c h e d  on t h e  l e a d i n g  f r o n t ,  c o r r e s -  
ponds  t o  t h e  p o i n t  z 2 = 3 / .  a t  wh ich  t h e  b e a m - e l e c t r o n  e n e r g y  d e c r e a s e s  by o n e - h a l f .  T h i s  i s  
easily understood if it is recalled that the inelastic cross sections for beam-electron 
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Fig. I. Family of plots of E(r) for various V. The lower limiting 
energy E(r) = r corresponds to the ultrarelativistic case V >> m0c 2. 
The upper limiting curve E(r) = ~r corresponds to the nonrelativistic 
case V << mac 2. 

Fig. 2. Shape of an ionization step pulse vs. depth at At = 0.i. 
The bars 1-6 correspond to the pulse positions at t = 0.i; 0.3; 0.5; 
0.7;0.9;1.1. 
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Time dependence of the coordinate of the leading front of the 

Time dependence of the relative energy input. The curves 
correspond to: At = 0.i; 2) At = 0.3; 3) At = 0.5. 

interaction with the gas is exactly inversely proportional to the energy in this model. 

The energy input 9(t) to the ionized medium, referred to the initial value At, has 
the following time dependence: 

The leading front reaches a depth z 2 = 3/~ at the instant of time t 2 = 0.862, in which case 
the energy input 9 increases only to 1.33 times the initial value at At = 0.2 . 

The change of the shape of the ionization wave is illustrated in Fig. 2. Figures 3 
and 4 show the time dependence of the coordinate zl(t) of the leading front and of the 
relative energy input 8(t) for different values of At. 

In the general case E 0 < i, the solution (3.14) goes over continuously into the solution 
(3.15) in the vicinity of th~ point z = z* defined by (3.11). 

It follows from theconsidered model in the "right-forward" approximation that relativis- 
tic beams are preferable to nonrelativistic for pumping an active medium, since they produce 
an ionization that is more uniform in depth. This conclusion holds apparently for beams of 
heavy particles, for which the "right-forward" approximation is good enough. As to electron 
beams, no conclusions whatever can be drawn from our foregoing analysis inasmuch, as shown 
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above, as the deceleration of electron beams can be treated not only by the "right-forward" 

approximation but also by the more accurate small-angle approximation. Moreover, the 
estimates show that in the case of electron beams, the conclusion that relativistic beams 
are superior to nonrelativistic may be reversed. 

Indeed, the change of the ionization waveform in the case of electron deceleration is 
influenced by multiple scattering, to which the angular component of the transport operator 
pertains. For nonrelativistic beams the ratio of the total deceleration length r 0 to the 
transport scattering length Itr is approximately constant and is almost independent of the 
initial energy V of the entering electrons. In the relativistic case, however, as shown 
in the Introduction, the ratio of r 0 to Itr increases in proportion to V, so that multiple 
scattering assumes a greater role. 

4. Numerical Methods of Solving the Stationary Problem 

As shown in Sec. 2, the solution of the problem of gas ionization by a modulated elec- 
tron beam reduces to finding the Green's function for the stationary equation (2.9a). Since 
no analytic expression for the Green's function has been obtained to date, numerical 
solutions become particularly important. It should be noted that the problem of the 
stationary distribution function has not been solved in the formulation (2.9a). A number 
of workers [8-14], however,carried out a numerical investigation of the propagation of a high- 
energy electron beam (V ~ I0 keV) in the upper layer of the atmosphere. These studies are 
important, since the algorithms used in them can serve as a basis for a numerical solution 
of the Green's function problem. 

To develop the most economical and effective numerical method it is necessary to compare 
critically the already developed difference schemes. We attempt below to analyze the methods 
based on the use of difference schemes [8-10, 12] and a numerical analog of the method of 
variation of the constant. The Monte Carlo method in which the calculations in [ii, 13, 14] 
are based is not considered, since it calls for much computer time. We shall concentrate 
hereafter on the method of variation of the constants, which is sometimes called, in 
analogy with [i0], the "eigensolution" method. The meaning of this designation will be made 
clear presently. The reason for the increased interest in this algorithm is, as stated in 
[i0], that the computer time required for the calculation by this procedure is much shorter 
than for other algorithms. The description of the numerical methods is based here in [i0] 
where, besides describing the algorithms (the predictor-corrector and eigensolution methods), 
the results obtained by different workers are also compared. 

Before proceeding to a direct exposition of the numerical methods, we write down in 
explicit form the expressions for L(E) and Q(E) in the model of [i0]. These expressions are 
obtained in terms of the variables z, r, and p by numerically determining the r(E) dependence, 
using Eq. (2.1). 

In [i0] was modeled the propagation of a beam of high-energy electrons in the upper layers 
of the atmosphere, with account taken of the elastic and inelastic collisions between the 
particles and the components of the atmosphere, as well as with allowance for the electron- 
energy lost to production of secondary electrons. It was assumed that after inelastic inter- 
action (excitation or ionization) the electron does not change the direction of its motion, 
and merely loses energy. Under these assumptions the expressions for Q(E) and L(E) take the 
form 

Q(E)----" v--g2-~ - L \ ~ / I+~ ' (4.1) 

(E--I)~2 

L (E) = Y, (E) + (E) + I (E, E,) E, (4.2) 
y 0 

where Z is  the atomic number of the sca t ter ing  center,  p the electron momentum, q the 
screening parameter, W~ the excitation potential, ~I the ionization cross section, and 
os(E , E s) the differential ionization cross section. 

The third term in the expression for L(E) describes the energy lost by the primary 
electron in the production of secondary electrons of energy E s. 

Now, having determined the expressions for the loss per unit length and the mean-squared 
scattering angle, we can proceed to write down the difference system. 
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The partial difference equation was reduced in [i0] to a system of ordinary differen- 
tial equations. This was done by using the following difference approximations of the 
angular and-energy operators: 

a ( t _ p 2 )  t~(D IEn~ =[(t__p~_,/,)(fDn, i_l__(Dn, i ) - - ( 1  ~ -z ( l - ~ f < N )  (4 .3 )  ,~ .  ~ , . - ~ ,+ ,~ , )  ( r  - r  (a~) 

I r --@n ~ (4.4) o ( t - - ~ t  2) a r  = - - 2  ' ' 
0-7- - ~ -  E., . ,  ~ ' 

b~ ---- 2 (~)~,N-1 --(~)n,N (4.5) 
A~ 

where BI = i, BN = -i, AB = 2/(N - i) is the mesh of the grid ~i-V,---- (~i-i-~ ~i)/2 , while i 
and n determine respectively the angle and energy coordinates, 

L n - l O n - l , i  - -  LndPn, i o (L (E) r [~, th = ( 4 . 6 )  
OE AEn_ 1 

Substituting expressions (4.3)-(4.6) in (2.9), we obtain the following system of ordinary 
differential equations �9 

d@n,i 2 B~(Dn~ -t- Snj, (4.7) 
J 

where B n. is a three-diagonal matrix, and Sn~ = Ln-1(Dn-1,~/hEn �9 In view of the unwieldy 
13 

expressions, we shall not write out the explicit form of the matrix Bij. It is obvious, 
however, that explicit expressions for Bij can be easily obtained by using expressions 
( 4 . 3 ) - ( 4 . 6 ) .  

4.1. Difference Analog of the Eigensolution Method. The obtained system of differen- 
tial equations can be solved either by direct numerical integration (by the predictor- 
correcter method) or by constructing an algorithm based on finding the eigenvectors and 
eigenvalues. The latter method, as stated by the authors of [i0], has the appreciable 
advantage of faster computation. 

The gist of the eigensolution method is the following. 
geneous system (4.7) with S i = 0 in the form 

N 

@i-~- ~' Ct*iz exp (--  ~qz), ( 4 . 8 )  
/ = 1  

We seek a solution of the homo- 

where I 1 is the Z-th eigenvalue, ~il the /-th eigenvector at the point Bi, and C 1 a constant 
determined by the boundary conditions. 

It is assumed next that C l -- CZ(z), and the expansion of S i in terms of the eigenvectors 
~i~ is determined 

N 

Si (z) = lh ~' dt (z) ~iz. ( 4 . 9 )  
l = 1  

The coefficients d/(z) are determined by inverting the matrix ~2il. After substituting (4.8) 
and (4.9) in the system (4.7), we obtain the relation between the coefficients C 1 and d/: 

r dC~ --d~] =0. (4. i0) ~ ,  [ ' ~ z  exp (--~'l z) *~z 
l 

If we put now 

we obtain the differential equation 
u z (z) -~- C l (z) exp (--  L~z), (4.11) 

dtt l az + ~lu~ ~ dr, (4.12) 
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The formal solutions of this differential equation, with the boundary conditions 

take the form 

z 

uz (z) = uz (0) exp ( - -  X,z) + ~ d, (z') exp [ - -  ~ (z - -  z')] dz', 
0 

~ (z) = u~ (z.)  exp  [~,~ (z - -  zo)] - -  ~ d~ (z') exp  [ ~  (z' - -  z)] dz'. 
0 

(4.13) 

(4.14) 

Here z0 is the maximum depth of penetration of the electron having the maximum energy. 
Expressions (4.13) and (4.14) for ui(z) are used for positive and negative Xl, respectively. 
Calculations show that the Xlare real and have unity multiplicity. The number of eigen- 
values is equal to the number of points of the p grid. In [i0], 1 is even, one half of the 
eigenvalues is positive, and the other half negative. The absolute values of the positive 
and negative X1 are pairwise equal. We shall assume hereafter, in analogy with [i0], that at 
1 ! N/2 h I they are negative and at l > N/2 they are positive. 

To find ul(0) and ul(z 0) it is necessary to use the boundary conditions respectively for 
z = 0 and ~ ~ 0 and for z = z0 and ~ < 0. Using expression (4.8) for r and also the rela- 
tion (4.11), we can write the boundary conditions in the form of a system of algebraic 
equations with 2N unknowns: 

ul (0) *it + ~ uz (0) *a ~-- @i (z = 0), i ~ N/2; (4.15) 
l < Y  l~ L> N I~ 

N uz(zo)t~it+ ~' ut(zo)eit =0, ~>N/2, ( 4 . 1 6 )  
I~N/~ l>N]2 

which can be reduced, using (4.13) and (4.14), to a uniquely solvable algebraic system of 
N equations with N unknowns: 

z 

l~N]2 l > N ~  l ~ N ~  

I~N/ s  I>N/2 I > N ~  0 

From t h e  s y s t e m  ( 4 . 1 7 )  and ( 4 . 1 8 )  we d e t e r m i n e  u l ( O )  and u l ( z 0 ) ,  wh ich  a r e  u s e d  n e x t  t o  
f i n d  t h e  e l e c t r o n  d i s t r i b u t i o n  f u n c t i o n .  

To a p p r e c i a t e  t t le  a d v a n t a g e s  o f  t h e  e i g e n s o l u t i o n  me thod ,  we s h a l l  d w e l l  in  d e t a i l  on 
t h e  d i r e c t  n u m e r i c a l  i n t e g r a t i o n  o f  t h e  s y s t e m  ( 4 . 7 ) .  

S i n c e  a f a s t  e l e c t r o n  c a n n o t  g a i n  e n e r g y  on t h e  d e c e l e r a t i o n  l e n g t h ,  and o n l y  l o s e  i t ,  
i t  i s  c o n v e n i e n t  t o  s t a r t  t h e  d i f f e r e n c e - s c h e m e  c a l c u l a t i o n s  w i t h  t h e  maximum e n e r g y  ( t h e  
maximum r e s i d u a l  r a n g e ) .  The n u m e r i c a l  c a l c u l a t i o n  scheme does  n o t  depend  on t h e  fo rm o f  t h e  
n u m e r i c a l  me thod ,  be  i t  t h e  p r e d i c t o r - a o r r e c t o r  method [10] o r  t h e  G a u s s - S e i d e l  i t e r a t i o n  
p r o c e d u r e  [ 9 ] .  We s h a l l  t h e r e f o r e  n o t  s p e c i f y  h e r e a f t e r  t h e  n u m e r i c a l  me thod ,  and d w e l l  o n l y  
on t h e  s e q u e n c e  o f  t h e  o p e r a t i o n s  t h a t  l e a d  t o  t h e  s o l u t i o n .  

For  e a c h  s p e c i f i e d  e n e r g y  we d e t e r m i n e  t h e  f l u x  a t  ~ > 0 f rom z = 0 t o  z = z0 .  The 
backward  f l u x  i s  a ssumed  t o  be  z e r o .  The f o r w a r d  e l e c t r o n  f l u x  i s  m e m o r i z e d  i n  t h e  z - g r i d  
sites. After obtaining the forward flux, we calculate the backward flux from z = z0 to 
z=0. 

The electron flux for ~ < 0 is calculated on the same spatial grid as the forward flux. 
To determine the backscatter, we use the previously memorized values of the forward flux. 
The procedure described is the first iteration. In the next iteration, we obtain the 
forward flux by using the backscatter values found in the first iteration, etc. Thus, only 
a few iterations are needed to calculate the electron flux with the required accuracy. The 
number of iterations depends on the accuracy selected. We note by way of example that three 
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Fig. 5. Angular dependence of electron flux. The solid curves were taken 
from [i0] and the dashed from [12]. Curves 1-5 correspond to heights 
(in km): 90(1); 95(2); 100(3); 141(4); 250(5). 

Fig. 6. Energy dependence of the electron flux. The solid curves were 
taken from [i0] and the dashed from [12]. Curves 1-3 correspond to heights 
(in km): 95(1); 105(2); 148(3). 

Fig. 7. lonization rate [cm-3.sec -l] at various electron-beam energies. 
Curves 1-3 correspond to energies (in keV): i0(i); 5(2); 2(3). 

iterations were needed in [i0] to obtain a solution that preserves the energy accurate to 1%. 

We see thus that solutions of (2.9) by various schemes have a number of features in 
common. First, iteration over the spatial coordinate, and second, a connection between the 
forward flux and the backscatter near ~ = 0. This tie-in of the fluxes imposes a stringent 
requirement on the difference scheme, viz., high accuracy of the approximation of Eq. (2.9a) 
of the difference scheme. Unfortunately, the cited papers contain no analysis of the quality 
of the difference schemes, and this prevents us in turn from assessing the solutions obtained. 
Moreover, the difference between the values obtained for the total flux in [9] and [i0] is 
apparently due to just this effect. 

If we now compare the "eigensolution" method with the algorithms based on difference 
schemes, we can point to the following advantages of the former. First, in the eigensolutions 
method there are no iteractions. Second, there are no restrictions on the approximation of 
the differential equation near D = 0. Thus, the quality of the numerical analog of the 
eigensolution method depends only on the quality of the procedure used to find the eigenvalues 
and the eigenvectors of a real matrix. 

Mention must be made of one more aspect of the numerical solution of the Green's 
function of a stationary problem. The numerical solution is made difficult by the presence 
of numerical dispersion due to the unilateral approximation of the derivative with respect 
to energy (to the residual range). This difficulty was first pointed out in [8]. The 
dispersion on the difference grid leads to an appreciable distortion of the solution, and 
this calls for testing the difference schemes. Unfortunately, the authors of [9, i0] do not 
mention this effect at all. Our calculations show that the influence of dispersion as 
well as of numerical diffusion is particularly substantial near breaks or abrupt changes 
of the electron distribution function. 

It follows from all the foregoing that further work must be performed both to develop 
new high-efficiency numerical algorithms and to investigate those already developed. 

4.2. Some Results of the Calculations. We cite in this subsection calculation results 
obtained by several workers [9, i0, 12]. Even though these calculations were obtained for 
definite initial conditions (isotropic distribution for B > 0 [i0, 12] and Gaussian distri- 
bution in E) and are not strictly speaking Green's function calculations, they help under- 
stand the qualitative aspects of the solution of the stationary problem. The notation on the 
figures is the same as in the papers from which they are taken. 
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Figure 5 shows the angular dependence of an electron flux with initial energy i0 keV 

at various heights. It can be seen from the figure that the angular distribution in depth 
tends to be isotropic, although at a height of 90 km, equal to the total mean free path, 
the electron flux does not become isotropic. 

Figure 6 shows the energy dependence of an electron flux at various heights. The in- 
crease of the flux at energies lower than i keV is due to the increase of the cross section 
for formation of secondary electrons. 

Figure 7 shows the ionization rate at various initial electron energies. It can be 
seen from the figure that the ionization rate is a maximum at the end of the free path. The 
reason is that at the end of the deceleration path the beam electrons have a much lower 
energy than at the start of the trajectory. Since the ionziation cross section is I/E, the 
ionization rate increases as the energy is lowered. 
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