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The vibrational kinetics of molecules simulated by anharmonic oscillators is 
developed under essentially nonequilibrium conditions. Analytic expressions 
are obtained for the vibrational distribution function, the relaxation time, and 
the dependence of the vibrational energy on the pump power; the limiting capacity 
of the energy reservoir of the anharmonic molecules is estimated. Vibrational 
kinetics is investigated in mixtures and a redistribution of the vibrational 
energy among the modes is observed as a function of the component concentration. 
The singularities of vibrational relaxation in liquids and molecular crystals, 
due to collective interactions, are studied. A number of concrete applications 
are considered: the rate of nonequilibrium dissociation is calculated, an 
analytic model is developed for the CO laser, isotope separation in chemical 
reactions of vibrationally excited molecules is investigated, and a new type of 
lasers based on intramolecular transitions in liquids and molecular crystals is 
proposed. 

INTRODUCTION 

The last decade has seen a very rapid development of vibrational kinetics, which is 
the basis of a large number of practical applications, including questions of chemical 
kinetics and the physics of the atmosphere, gasdynamics and rocket technology, molecular 
lasers and laser chemistry. By the early 1970s it was recognized that the model of harmonic 
oscillators and the concept of vibrational kinetics have limitations. For a number of pro- 
cesses, the functional role of the anharmonic molecules was clarified, since it is precisely 
the system of anharmonic oscillators, which simulates a set of different molecules (diatomic 
and monatomic), that describes correctly the behavior of real gases in a wide range of non- 
equilibrium conditions. After the discovery of the new type of population distribution of 
the vibrational levels (the Treanor distribution), which depends not only on the reserve of 
vibrational energy but also on the gas temperature and is due to the anharmonicity of the 
molecules, other quasiequilibrium population distributions were also obtained, valid for 
nonequilibrium conditions in definite time intervals or for definite level groups. The use 
of these distributions has made it possible to replace the system of balance equations for 
many dozens of levels by equations for two or three parameters, made it possible to under- 
stand the generation mechanisms of a number of molecular lasers, and to investigate certain 
aspects of the action of laser radiation on matter. In particular, it made it possible to 
analyze, for certain regimes, the processes of stimulating a nonequilibrium dissociation 
chemical reaction with IR radiation. 

At the same time, practical needs have raised new important problems of vibrational 
kinetics, connected with the recently noted three basic trends in the development of the 
physics of molecular lasers and in the investigation of the interaction of resonant IR 
laser radiation with molecules: 
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First, the use of intense mechanisms for pumping energy into the vibrational degrees 
of freedom; this use calls for analysis of the vibrational kinetics under conditions of 
strong deviation from equilibrium, when the temperature of the medium is low, and the non- 
equilibrium reserve of vibrational energy substantially exceeds the equilibrium volume. 

Second, the use of mixtures of molecular gases and gases of polyatomic molecules in 
the experiments; this requires a theoretical investigation of vibrational relaxation in 
such systems. 

Third, the use of high working gas pressures in pulsed lasers on vibrational--rotational 
transitions, which raises the question of the possibility of using liquids and molecular 
crystals as active laser media, It becomes necessary then to study the vibrational re- 
laxation in these media. 

The present paper is devoted to the development of these most vital trends of vibra- 
tional kinetics. Their analysis yields important information on the electrical, optical, 
thermal, and other types of action on the molecular systems, and on the use of such systems 
for laser generation in chemical reactions. 

Much attention is being paid in the article to applications of the developed theory 
of vibrational relaxation to the analysis of concrete physical and physicochemical problems. 
These problems deal with stimulation of the dissociation reaction, investigation of pro- 
cesses in a CO molecular laser, and the study of the question of isotope separation in 
chemical reactions of vibrationally excited molecules. The general premises obtained in the 
paper have made it possible to consider not only the qualitative but also the quantitative 
aspects of these phenomena. 

In Chap. I is developed the theory of vibrational relaxation in a single-component 
mixture of anharmonic oscillators at strong deviations from equilibrium. The vibrational 
distribution is considered, the relaxation time of anharmonic oscillators is calculated, 
and the dependence of the vibrational energy and of the temperature on the pumping proba- 
bility is investigated. 

In Chap. II questions of vibrational kinetics in gas mixtures are considered. The 
distribution of the vibrational energy among the modes and the vibrational distribution 
functions inside the modes are obtained for different ratios of the vibrational-process 
times; the relaxation rates in the presence of two relaxation channels and the rate of 
energy exchange in the binary mixture of anharmonic oscillators are calculated; the influ- 
ence of the concentrations of individual components on the distribution of the vibrational 
energy in the mixture is investigated. 

Chapter III considers various applications of the developed theory of vibrational re- 
laxation to concrete physical problems, namely, the analysis of nonequilibrium dissociation 
of diatomic molecules and the dissociation in a mixture, calculation of the coefficient of 
isotope separation in chemical reactions, and investigation of physical processes in an 
electric-discharge CO laser. 

In Chap. IV the probabilities of the vibrational processes in liquids and molecular 
crystals are calculated; the possibility of developing lasers based on intramolecular vi- 
brational transitions in these media, when pumped with a high-power electron beam, is in- 
vestigated. Also considered is the possibility of stimulating laser-chemical reactions in 
the liquid phase. 

SURVEY OF THE LITERATURE ON VIBRATIONAL KINETICS 

AND ITS APPLICATIONS 

The main stages in the development of vibrational kinetics up to the early 1970s were 
considered in [i]. In this review the role of various vibrational processes is analyzed 
(VV -- vibrational exchange within a given oscillator, W' -- vibrational exchange between 
different oscillators, VT -- vibrational--transitional exchange). The harmonic approximation 
and the role of anharmonicity are also discussed in detail. An analysis is presented of 
the mechanisms of population inversion and lasing on vibrational--rotational transitions 
of molecules. We mentioned below only the published data dealing with the new trends in the 
development of vibrational kinetics, and only directly related to the results of the present 
paper. 
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The importance of a consistent allowance for the anharmonicity of molecules in vibra- 
tional kinetics has already been noted in the Introduction. We consider first papers deal- 
ing with the relaxation of a single-component mixture of anharmonic oscillators. As shown 
in the basic paper of Treanor, Rich, and Rem [2], under nonequilibrium conditions, in con- 
trast to the harmonic model, the distribution of the populations of the vibrational levels 
in a system of anharmonic oscillators (even if the distorting action of the sources is 
neglected) differs substantially from a Boltzmann distribution. In the cited paper they 
solved the kinetic equations for the populations of the vibrational levels under the assump- 
tion that the VV processes play the dominant role, and obtained the following expression for 
the vibrational distribution function f(n) in a single-component system of anharmonic os- 
cillators: 

El -- . 

Here n is the number of the vibrational level; E: and AE, values of the lower vibrational 
quantum and the anharmonicity of the oscillator (~ T, gas temperature; and T~, "vibra- 
tional temperature" of the first level: 

T1 = El l ln  1/(0)11 (1)]. (0 .2 )  

D i s t r i b u t i o n  ( 0 . 1 ) ,  l a t e r  c a l l e d  the  T reano r  d i s t r i b u t i o n ,  i s  c h a r a c t e r i z e d  a l r e a d y  
no t  by one b u t  by two p a r a m e t e r s  (T: and T) ,  and i t s  d i f f e r e n c e  from a Bol tzmann d i s t r i b u -  
t i o n  i s  l a r g e r  t he  g r e a t e r  t h e  d i f f e r e n c e  be tween  T and T: and t h e  l a r g e r  AE. At T: > T, 
r e p o p u l a t i o n  o f  t he  upper  v i b r a t i o n a l  l e v e l s  t a k e s  p l a c e ,  and s t a r t i n g  w i t h  t he  l e v e l  

E1 T n * -  2~E ~ § (0 .3)  

absolute calculation inversion between the vibrational levels is realized. 

Kuznetsov [3] derived distribution (0.i) from the detailed balancing principle and 
from the grand canonical distribution of a system of anharmonic oscillators in energy and 
in particle number, and calculated the rate of the quasistationary thermal dissociation. 
For real molecular systems, the Treanor distribution, obtained without allowance for the 
VT and radiation processes, and positive and negative molecule sources, is valid only for 
sufficiently low vibrational levels. To take into account these processes, a number of 
numerical calculations were made to determine the quasistationary [4-13] or nonstationary 
[14] distribution functions for individual molecules under concrete conditions. 

Vibrational relaxation in molecules (anharmonic oscillators) that constitute a small 
admixture in a gas of structureless particles (i.e., in the case when there are no VV pro- 
cesses) was theoretically investigated in [15-18]. Frequently, however, great practical 
interest is attached to molecular systems in which the dominant role is played by VV pro- 
cesses, at least for the group of lower vibrational levels. For such systems, in the par- 
ticular case of weak deviation from equilibrium, the problem of finding the vibrational 
distribution function for the entire vibrational spectrum was analytically solved in the 
papers of Gordiets, Osipov, and Shelepin [19-21], and also in the papers of Savva [22]. 
The lucid solutions they obtained for the kinetic equations show that when account is taken 
of the vibrational--translational processes, the distribution on the intermediate vibrational 
levels is neither Boltzmann nor Treanor. Using the analytic form of the vibrational dis- 
tribution function, the authors of [21] estimated the rate of nonequilibrium dissociation 
that takes place at low gas temperature. 

The influence of two-quantum VV transitions (i.e., transitions in which one quantum 
of one oscillator is exchanged for two quanta of another oscillator) and the vibrational 
distribution function were investigated in [19]. This function is determined on different 
sections of the vibrational spectrum by the competition between the probabilities of the 
single-quantum and two-quantum exchanges and of the VT process. In each of these sections, 
an analytic expression was obtained for the populations. 

The investigations reported in [19-21] are valid for weak deviations from equilibrium. 
In the case of strong deviations, when the margin of the vibrational energy greatly exceeds 
the equilibrium value~ the upper vibrational levels are noticeably populated. In addition, 
besides the other processes, a significant role is assumed by resonant exchange of vibra- 
tional quanta, i.e., as a result of the strong dependence of the exchange probability on the 
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transition-energy deficit, an important role is assumed in the kinetic equations by the 
terms that describe exchange with neighboring levels of colliding molecules. For these 
conditions, Brau [23] obtained in a classical approximation a kinetic equation for the 
distribution function and found its solution for a bounded region of the spectrum. This 
equation, however, is unsuitable for the case of practical importance, that of low gas tem- 
peratures T ~E~. 

BeSides the analysis of the distribution function of the populations for a one-com- 
ponent system of anharmonic oscillators, some studies [2, 4, 5, 24] investigated 
the characteristic times TVT of the VT processes in anharmonic oscillators. The strong de- 
pendence of the probabilities on the transition energy leads in such oscillators to a 
deviation of the time TVT from the classical Landau--Teller expression ~VT ~ P~, where 
P1o is the probability of deactivation of the first vibrational level. This difference is 
illustrated in the papers of Treanor et al. [2] and Bray [4, 5]. We note that the calcula- 
tion was carried out in these papers by numerical methods for certain concrete cases. For 
this reason, it is difficult to analyze the calculation and to draw generalizing conclu- 
sions. 

anh 
Loser, Shatalov, and Yalovik [24] obtained an analytic expression for ~VT, taking into 

account the exponential dependence of the probabilities of the VT process on the number of 
the level. However, owing to the proposed Boltzmann type of distribution function of the 
populations, the result (which agrees qualitatively with experiments in shock waves) is 
only approximate at low T. 

A number of studies [25-33] were made of the dependence of the reserve of vibrational 
energy e (or T~) on the pump power ("external" positive source). Artamonova, Platonenko, 
and Khokhlov [25] obtained such a dependence in the harmonic model also for the case where 
the pump acts on the 0--i transition. The maximum value of TI/EI was determined in this 
case by the expression /Q1o/P1o where Q1o and P~o are the probabilities of VV and VT proces- 
ses for the lower levels. The nonequilibrium kinetics of molecules in resonant radiation 
(of any multiplicity) and in a cascade mechanism was considered in general for a harmonic 
model in [26-30], and for an anharmonic model, assuming the VV processes to play the dominant 
role, in [33]. 

It is thus seen from the brief survey of the works on single-component systems of an- 
harmonic oscillators that whereas the case of weak deviation from equilibrium has been in- 
vestigated quite satisfactorily, the case of strong deviation from equilibrium has hardly 
been developed, although the practical need for it is great. The analysis of the vibra- 
tional distributions, the investigation of characteristic times, and the questions dealing 
with the pumping are therefore most vital problems for this regime. 

Vibrational relaxation in gas mixtures, connected with the analysis of multicomponent 
oscillator systems, has a more complicated character and was much less investigated than 
relaxation in single-component systems. Principal attention was paid here to the study of 
the distribution of the energy among the modes as a result of VV' processes of vibrational 
nonresonant exchange. The quasiresonant distribution among two modes in single-quantum non- 
resonant VV' exchange was first determined by Osipov [34]. It was shown in [2] for this 
case that the vibrational temperatures T A and T B of two harmonic oscillators A and B are 
connected by the relations 

EA/TA = EB/TB -- (EB -- EA)/T (0.4) 

Here E A and E B are the values of the vibrational quanta for the oscillators A and B, re- 
spectively. It is seen that at TA, T B > T a redistribution of the vibrational levels of 
the oscillator with the smaller quantum takes place. This result was qualitatively con- 
firmed in experiment [35]. Expression (0.4) was subsequently generalized to include the 
case of one-quantum exchange with participation of arbitrary vibrational modes [36], two- 
quantum exchange with participation of two oscillators [19], and multiquantum exchange be- 
tween oscillators [37]. Biryukov and Gordiets [38] obtained in the harmonic approximation 
the most general kinetic equations for a multicomponent mixture, and generalized expression 
(0.4) to include multiquantum VV' exchange with participation of an arbitrary number of 
modes. The distribution functions and the dependence of the vibrational energy of the 
modes on the probability of the excitation of the vibration were obtained in [30] for a two- 
component system of harmonic oscillators with different rates of the VT processes in both 
modes. 
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The distribution function in a two-component system of anharmonic oscillators was in- 
vestigated only in particular cases: in VV' exchange [39], and with allowance for VT pro- 
cesses with weak deviation from equilibrium [21]. 

We note that expression (0.4) describes a rigid connection between the temperatures of 
the individual vibrational modes and is valid if the following relation holds between the 
characteristic times of the VV, VV', and VT processes: 

�9 v v ,  ~ v v " < ~ v ~ .  (0.5) 

It is thus seen from the foregoing discussion that the investigation of vibrational 
kinetics in gas mixtures is far from complete. For many practical applications it is im- 
portant to lift restriction (0.5) and to investigate the case TVV, ~ TVT, and to determine 
�9 VV' with account taken of the anharmonicity. It is also very important to analyze the 
distribution functions of multicomponent systems of anharmonic oscillators in the case of 
strong deviation from equilibrium. 

Vibrational relaxation in dense gases and liquids can differ strongly from the relaxa- 
tion in gases of moderate density. We note here that the vibrational kinetics of liquids 
is in any case in the initial stage of development at present. The reason is that besides 
binary collisions, which determine in practice the vibrational processes in gases, it is 
necessary to take into account in liquids the collective actions of neighboring molecules. 
(For superdense gases it is necessary to take into account multiple collisions [40-42].) 

Various model assumptions were made in [43, 44] to estimate the probabilities of 
vibrational--translational transitions of molecules in liquids. The probability of VT pro- 
cesses under conditions when the action of neighboring molecules is simulated by the effect 
of an external periodic force on a selected molecule was estimated by Ismailov [44], but 
he did not specify the connection of the amplitude and frequency of this force with the 
parameters of the liquid. Herzfeld [43] simulated the nearest environment by a sphere whose 
action on a molecule situated at its center is given by a Lennard-Jones potential. He also 
calculated the relaxation time due to collective interaction of neighboring molecules for 
a particular case (see also [41]) and showed that it is several dozen times larger than the 
experimental values. It was therefore concluded in [41, 54] that the mechanism of vibra- 
tional relaxation in nonassociated and weakly associated liquids is due principally to 
binary collisions. It was shown in [45, 46] that there exist a number of liquids for which 
explanation of the experimental data calls for the assumption that two or more relaxation 
times are present. 

The question of vibrational relaxation in molecular crystals have been studied even 
less. Notice should be taken here of the work of Ovchinnikov and Zel'dovich [47, 48]. In 
[47] estimates are made of the times of VV exchange of a highly excited quantum of an an- 
harmonic oscillator with the lowest quantum, and it is shown that these times can be quite 
long as a result of the large energy defect. Vibrational kinetics in molecular crystals, 
which were simulated by anharmonic oscillators, was investigated in [48], where a distribu- 
tion function was found similar to the distribution function in gases at weak deviation from 
equilibrium [21]. On the whole, the general situation for liquids in molecular crystals in 
this region is such that, in contrast to gases, it is necessary above all to analyze the 
foundations of the vibrational relaxation, i.e., to estimate the characteristic times of the 
vibrational processes. 

Various aspects of the application of vibrational kinetics, particularly to dissocia- 
tion, molecular lasers, and chemical kinetics~ were considered in [i, 49-61]. A new recent 
trend is the focusing of attention on the important problem of the action of infrared (IR) 
radiation on matter. 

Artamonov, Platonenko, and Khokhlov [25] were the first to consider the possibility 
of controlling a chemical reaction by acting on a selected vibrational mode of the molecule 
with coherent IR radiation. The estimated laser power turned out to be quite sufficient 
for an effective "heating" of the vibrations. Chemical reactions induced by IR laser radia- 
tion were experimentally investigated in [62-64]. 

Theoretical investigations of the chemical reactions induced by resonant IR lasers are 
the subject of [21, 26, 27, 65-72]. In [21] the dissociation rate constant is calculated, 
and in [65] the dissociation rate and the energy reserve in a one-component system of 
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harmonic oscillators is calculated, under the assumption that the energy dissociates via a 
dissociation channel. In [69], similar calculations were carried out for anharmonic os- 
cillators. The dissociation rate in the case of cascaded multiphoton excitation of oscilla- 
tions by laser radiation with participation of VV and VT processes, for the harmonic and 
anharmonic models of truncated oscillators, was calculated in [26, 27, 66]. In [67, 70] 
the problem of dissociation of truncated harmonic oscillators in the case when high-power laser 
radiation "chases" the molecules to the dissociation limit was considered. Quasistationary 
adiabatic dissociation is considered in [71], where it is shown that the gas can be cooled 
as a result of an endothermic dissociation reaction. 

We note, however, that dissociation in the most intensive regime of strong deviation 
from equilibrium and in molecule mixtures has hardly been considered. Since monatomic gases 
and molecular mixtures are used in the experiments, and a very large amount of energy is 
fed to the vibrational degrees of freedom when laser radiation acts on the substance, while 
the temperature of the gas of the medium usually remains low, an analysis of this problem 
under the indicated conditions is becoming vital. 

A new field of application of vibrational kinetics is isotope separation in chemical 
reactions of highly excited molecules. This possibility was first pointed out in [73], 
where the isotope-separation coefficient was calculated under the assumption that each com- 
ponent of the isotopic molecules has a Boltzmann distribution. Soon afterwards, Basov et 
el. [74, 75] obtained an experimental confirmation of this phenomenon. On the other hand, 
a quantitative study of this problem is possible only on the basis of the development of 
the theory of vibrational kinetics in mixtures. 

As emphasized in [i], one of the most important applications of vibrational relaxation 
is the investigation of the operation of molecular lasers. A detailed analysis of the vi- 
brational kinetics of anharmonic oscillators has demonstrated the need for taking into 
account the influence of the anharmonicity of the molecule on the physical processes that 
take place in the laser medium. In the case of lasers based on vibrational--rotational 
transitions of diatomic molecules (e.g., CO lasers), it turned out to be even impossible 
to explain the lasing mechanism without invoking the anharmonicity of the working-gas mole- 
cules. The theoretical investigations, however, were made in this case on the basis of a 
numerical solution of a large number (from 20 to 80) population-balance equations [6-11, 
52-54]. It is obvious that while this approach is indeed capable, in principle, of pro- 
viding the necessary accuracy, its practical use is restricted. 

The applied problems considered above are, in our opinion, the most vital. Therefore, 
besides developing methods of vibrational kinetics on their basis, we have also carried out 
a quantitative and qualitative analysis of the indicated applied problems. 

CHAPTER I 

VIBRATIONAL KINETICS OF A SINGLE-COMPONENT SYSTEM 

OF ANHARMONIC OSCILLATORS 

A theory of vibrational relaxation is developed for a single-component system of an- 
harmonic oscillators. An approximation based on a stong deviation from equilibrium is pro- 
posed and obtained. Analytic expressions are derived for the distribution functions of the 
populations and for the relaxation rates of the vibrational energy. The dependence of the 
reserve of the vibrational energy and of the "vibrational temperature" on the pump is in- 
vestigated. The results of this chapter are based on [76-80]. 

i. Vibrational Distribution Function 

A single-component system of anharmonic oscillators that simulate the gas of diatomic 
molecules can have, under nonequilibrium conditions, a vibrational-level population dis- 
tribution that differs substantially from a Boltzmann distribution. For the group of lower 
levels there is realized the Treanor distribution (0.i), obtained under the assumption that 
the only process in this system is VVexchange. In real systems, however, an important role 
is played for the highly excited states by the VT processes, by radiative transitions (for 
radiating molecules), and by chemical reactions (e.g., dissociation). In the general case, 
therefore, the vibrational distribution function should be obtained by solving a nonlinear 
system containing a large number of population-balance equations (up to several dozen). On 
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the other hand, the known analytic distribution functions [19-23] describe only cases of 
relatively small deviations of the vibrational energy from the equilibrium, when the princi- 
pal role among the VV processes is played by nonresonant vibrational-vibrational exchange 
of highly excited states with the lower quanta. The only exception is [23], but the 
kinetic equations obtained there are not suitable for the case of greatest interest, that 
of low gas temperatures, and the distribution function was obtained for a limited number 
of vibrational levels. 

To find the population distribution of the vibrational levels under nonequilibrium 
conditions we shall use, following [22, 23], the diffusion approximation and assume a smooth 
variation of the populations on going from level to level. In the derivation of the equa- 
tion for the corresponding vibrational distribution function, however, we shall start from 
the usual system of balance equations for the populations N n of the vibrational levels n: 

dNn _ ~ _ ~  . . . . .  +*N N nm+l,m x N x I [~'~nm,m+l N N ~ + I ' = N  N ) dt : t Vn+ l ,~  m n + * - - V ~ , n + l  m+* n] ~ - \ / . . l ~ n , ~ - I  ~. ~ - - V ~ - l , ~  ~+* n-* + 

+A~+I, .N~+,--A~,~_,Nnq-F~,  n - -  0, l ,  2 . . . .  , k .  ( 1 . 1 )  

Here N is the density of the molecules; Q~,~, probability (in sec -I) of the vibrational 
,0 

exchange when a transition to the levels q and j takes place as a result of collision of 
molecules located on the levels p and i; Pij and Aij, probabilities (in sec -~) of the 
collisional and spontaneous radiative transmtions i+j; Fn, a term describing the change 
of the population of the n-th level on account of external actions (its form will be 
specified later for electric and optical pumping); and k, total number of vibrational levels 
of the molecule. Equation (I.i) takes into account only single-quantum transitions, which 
play the principal role in the population of the levels. 

Transferring F n in (i.i) to the left-hand side and summing over n from 0 to i, we ob- 
tain 

i 

m, m+l - -  = - -  Vi,~+l ~ ' ~ + ~ " ~ J  + P~+I,~N~+I P~,~+IN~ + A~+I.iN~+I. ( 1 . 2 )  

The physical meaning of (1.2) is quite simple: in energy space this is the total flux 
of molecules through an arbitrary cross section between the energy levels i + 1 and i. The 
probabilities of direct and inverse transitions in (i.i) and (1.2) are connected by the 
usual relations: 

i,~+~ ~ + 1 , i  e x p  [ - -  2 A E ( m - -  i)/T], (1.3) 

P~3+1 = P i+ l , i  e x p  [-- (El --  2AEi)/T]. (1.4) 

Here T is the gas temperature (in ~ and E~ and hE are, respectively, the values of the 
lower vibrational quantum of the molecule and its anharmonicity (in ~ 

We shall assume hereafter that the gas temperature is substantially lower than the 
characteristic value (i.e., T ~Ei), and shall be interested in the populations of the 
levels i such that 

E1 --  2AEi ~ T. (1.5) 

In addition, we shall assume that exchange of vibrational quanta can influence the 
level populations only when the resonance defect 2kE(m -- i) is such that 

2 A E  I m - < r.  ( l .6) 

If the populations vary slowly with changing number of the level, then the term 
Pi,i+ Ni in (1.2) can be neglected if (1.5) is satisfied. We note also that condition 
(1.6) is not stringent and is usually satisfied in a wide range of temperatures. 

It is now convenient to change from (1.2) to the diffusion approximation. Considering, 
for simplicity, a quasistationary regime and assuming that the external perturbations take 
place only for the very lowest levels, we can set the left-hand side of (1.2) equal to zero. 
We introduce a continuous vibrational distribution function f(i) such that 
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dlnf(i) ] (1.7) 
,,v~ = N / ( 0 ,  ?r = m / ( 0  t + a-----7-~ �9 

Form (i.7) presupposes a smooth variation of the populations on going from level to 
level, i.e., satisfaction of the relation 

d In/(0/di  < 1. (1 .8 )  

Expanding the exponential in (1.3) in a series of substituting (1.3) and (1.7) in 
(1.2), we obtain, after replacing the summation by integration, 

f r~m'm+l ~ ,,: ~+a,~ j (m) [dln/(/)di dlnf(m)ctm ~' --7-2AE (m--i)]dm-{-P{+l,~ q- A~+I,~ =0.  (1 .9)  

Relation (1.9) is an integrodifferential equation for the vibrational distribution 
function f(i) in the quasistationary regime, and is valid if the relations (1.5), (1.6), 
(1.8) are satisfied, i.e., under the conditions of interest to us. The main difference be- 
tween (1.9) and the analogous equations of [22, 23] lies in the expression for the term 
that describes the vibrational--translational relaxation, inasmuch as it was included in 
(1.9) with relations (1.4), (1.5), and (1.8) taken into account. If we put Pi+1,i = 0 
in (1.9), then its solution is, as expected, the Treanor distribution function [2] 

where TI= E1/in[f(0)/f(1)] is the "vibrational temperature" of the first level, determined 
from the overall nonequilibrium reserve of the vibrational energy of the system. 

To solve (1.9) we must know the dependence of the probabilities on the number of the 
vibrational levels. We shall henceforth use, for simplicity, mainly probabilities, where 
the anharmonic effects are taken into account only in calculations of the exponential fac- 
tors that give the most significant dependence on the energy, and consequently also on the 
anharmonicity AE. If in this case, when determining the exchange probabilities, we take 
into account only the short-range interaction forces of the colliding molecules, we get 
[i, 81, 82]: 

~+a,i ~ V , ~ q - t ) ( i - i - l ) O i o e x p ( - - 6 v v l i - - m l )  3 I e x p ( - - 6 v v l i - - m ] )  2 2 
(1.11) 

P~+I, ~ ~ (i ~- I) PIo exp (6VTi), A~+a. ~ ~ (i + 1)'AIo. 

Here 6VV ~ 0.427/~7TAE/a, ~ is the reduced mass of the colliding particles (in a.u~), a 
is the constant in the exponential potential of the intermolecular interaction (in A). The 
expression for 6VT is similar, but ~ and ~ can be different if the VT processes are deter- 
mined by collisions with the impurity gas. 

An analytic solution of (1.9) with allowance for the last two terms can be obtained 
only under certain approximations. Let us examine these approximations, transforming 
(1.9) to differential form. 

We discuss first the case of "weak" deviation from equilibrium. By this term we 
designate a regime in which the principal processes for highly excited molecules are colli- 
sions with molecules in low vibrational states (this regime is analogous to that considered 
in [19-21] in the discrete approximation). The main contribution to the integral in (1.9) 
is then made by terms with small m. Substituting, therefore, function (i.i0) in place of 
f(m) as a first approximation, and integrating approximately, we obtain for f(i) the dif- 
ferential equation 

. A,o (6vv0} (I.12) 
-7- d~ ~'~--\'T-7 T 8--~~"\--~-1 --  LQlo 

This equation has a simple solution 

~-~-f7 (1.13) T~ T 
[ P~o{eXp[(6VV~-bVT)~] -I} A~o[exp(6vvQ--l]]} 

Q~oi (o) (6vv -6 6VT ) t- ~ (O--~v v �9 

It can be shown that under conditions when (1.12) and (1.13) are applicable f(0) 
E~/TI. On the lower levels, owing to the low values of P1o/Qxo and A~o/Q~o, expression (1.13) 
is close to (i.i0), as expected. We note that in distribution (1.13), at certain values 
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of the parameters T, T,, Pio, Q1o, andA1o, absolute inversion of the population of the vi- 
brational levels is possible. This inversion can exist only for states above the level 
corresponding to the minimum of function (i. I0). The number n* of this level is 

n* = Et T 1 
2AE Ti +-Z-" (1.14) 

It is necessary to bear in mind, however, that if i > n*, the terms containing Pio and 
Aio in (1.13) remain considerably smaller than the first term in the argument of exponen- 
tial, then Eq. (1.13) cannot be used to calculate the distribution function. Indeed, in 
this case, owing to the appreciable absolute inversion, the populations of the levels i > 
n* will be comparable with the populations of the lower states, and the principal role among 
the VV processes will be played not by exchange with the lower vibrational quanta (this was 
assumed in the derivation of (1.13)), but by collisions of two highly excited molecules with 
a small resonance defect in the quantum exchange. This situation takes place usually at the 
strongest deviations of the vibrational energy from the equilibrium value, i.e., at low gas 
temperatures and high values of TI. This will hereafter be called the regime of "strong" 
deviation from equilibrium. 

For the indicated case, Eq. (1.12) is not valid, and (1.9) can be transformed to dif- 
ferential form in a different manner, by recognizing that at low gas temperatures the param- 
eter 6VV (see (i.ii)) is such that the exchange probability Qm,m+~ has a sharp maximum at 

i+i,l 
m = i. This means that the main contribution to the integral in (1.9) is made by the 
vicinity of the point i, where function f(m) can be expressed in terms of f(i) by expansion 
in powers of (m-- i) [23]: 

/(m)~/(O+~(m-O+ ~2 ~2](nd~2 ( m - ~ ) ~ +  �9 . .  (i.i5) 

S u b s t i t u t i n g  ( 1 . 1 1 )  and  ( 1 . 1 5 )  i n  ( 1 . 9 )  and  i n t e g r a t i n g  w i t h  r e s p e c t  t o  m, we o b t a i n  
one more form of the differential equation for the vibrational distribution function f(i): 

3Q'~ V d~d [(i @ t): /,( 2AET d:ln')] +Pi~ e ~ V T i i d i 2  + N~o (g + l) / :  0. (1,16) 

Thus, the system with a large number of equations, of the type (1.1), is replaced by 
a single nonlinear differential equation of the third order. Even this circumstance alone 
greatly simplifies the problem of finding the distribution function. Unfortunately, Eq. 
(1.16) does not have a clear analytic solution. It is possible, however, to obtain an 
approximate analytic solution for the levels i > n*, by recognizing that for a wide range 
of the parameters T, T,, Q:o, P,o, A~o in the region i ~ n*t 

# i n / I d i  2 ~ 2AEIT. (i. 17) 

Under condition (1.17), the solution of (1.16) takes the form 

C Plo T6~V e6VTi Ato T6~V 
/(i)  -- i +  i O~o t2AEfvT ~@ I Q~o t2AE ' i>/n* .  ( 1 . 1 8 )  

Following [23], we determine the integration constant C from the boundary condition at 
the point i = n*: 

/ (n*) = e-O.5/(0) exp { - -  �9 - - = I (o) oxp [ .  - o . 5 ]  �9 ( 1 . 1 9 )  F Et 

In this case it can be assumed with good accuracy that on the levels i < n* the dis- 
tribution function takes the form (i.i0). Only in a small vicinity of the point n* at i < 
n* will the exact solution of (1.16) differ from the Treanor solution (l.10) and go over 
smoothly into (1.18). 

One frequently uses in the calculations, besides (i.ii), also probabilities in which 
the anharmonic effects are taken into account approximately also when the preexponential 
factors are calculated. In this case the probabilities Q~$~+~, Pi+,,i and Ai+:, i in (i.i!) 

must be multiplied, respectively, by the factors 

tWhen solving (1.16) it was assumed in [76, 77] that d 2 in f/di 2 = --4AE/T. A correction 
factor must be introduced in the corresponding formulas of [76, 77] if the more accurate 
condition (1.17) is used. 

249 



/ �9 -z 

T =  I Y J  K 

\ 

b 

/ y ~  _ i / 
~ ,  = yy.torr 

cB 
/y zz _ 6" 

\\ 

/O  "~ I I \ \  
/O IY JE 4 F  i 

Fig. 1. Dependence of the populations of the CO 
vibrational levels, on the number i of the level, 
in a mixture 0.2 torr CO + 6 torr He at various 
gas temperatures (a) and in mixtures 0.2 torr CO + 
p torr He (b) at an exciting-electron density 

_3 
2.5"109 cm I) Present results, 2) numerical 
calculation by Rich [6], 3) the Treanor distri- 
bution [2] at T~ = 1950 K, T = 150 K (a) and T2 = 
2050 K, T = 175 K (b). 

(I j (I-T, m!l (I- 
- ' -~FU ' 

(,- --~--Z) _ E1 i) 3" 

Equations (1.12) and (1.16) are also correspondingly modified, and the solution that 
takes the place of (1.18) has the form 

[c P~o T~v A,o ~ ' ~  ~ (1 2~ i~ l  I-~E~/~, 
Qlo t2AE6vT e6VT'@ Q~o 12AE 8AE - -  Ex / J i + l  , i > n * .  ( 1 . 2 0 )  l(0 

From the form of solutions (1.18) and (1.20) it is clear that they have no physical 
meaning for the group of levels where f(i) < 0. This restriction on the domain of the 
solution is due to the use of relation (1.17) in the derivation of (1.18) and (1.20), and 
also to the fact that Eq. (1.16) itself is valid only for levels where (1.5) is satisfied. 
We note, however, that the level populations for which (1.18) and (1.20) yield negative f(i) 
are quite small and make no contribution to the overall reserve of the nonequilibrium vi- 
brational energy. 

Figure i shows a comparison of the distribution function calculated from formulas 
(I.i0), (1.19), (1.20) with exact calculations made in [6] by numerically solving 80 non- 
linear balance equations. It is seen that the agreement is good for a large group of 
levels. For levels i < n* the distribution is of the Treanor type (i.I0), and at i > n* 
no inversion of the vibrational levels is produced and the distribution takes the form of 
a gently sloping plateau, this being due to the predominant role of the first terms in 
(1.18) and (1.20). With increasing i, an ever-increasing role is assumed by the second terms 
of (1.18) and (1.20), causing in the final analysis an abrupt decrease of the populations. 
The number n** of the level corresponding to this sharp inflection in the distribution func- 
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tion can be approximately determined from the condition f(n**) = O. For nonradiating 
oscillators we have 

Q~o'I2AE6vT =e6VTn* +(n, + t ) Qlo 12AE6vT [ ~- ] 
e~VT~=C 3 P~o T6~v f(O)exp----(n*)2--0.5 . (1.21) 

PIoT6vv 

Knowledge of the inflection point n** is important for the determination of the re- 
laxation rate of the vibrational energy under strong nonequilibrium conditions. Thus, when 
the conditions (1.5), (1.6)) (1.8) are satisfied) the functions (i.I0), (1.13)) (1.18) and 
(1.20) are the vibrational distribution functions) respectively, for the conditions of 
"weak" and "strong" deviation from equilibrium. It is clear that with increasing reserve 
of vibrational energy and with decreasing gas temperature, function (1.13) should be gradu- 
ally transformed into (i.i0)) (i.18)) and (1.20). The values of TI and T corresponding to 
this change of regimes can be approximately determined from the condition that for functions 
(1.10), (1.18), and (1.20) the particle flux through the level n* due to the nonresonant 
vibrational exchange with the lower quanta is equal to the flux due to the quasiresonant 
collisions with the molecules on the levels n ~ n*: 

m, ~--1 
= V-*, n*+11 (m) I (n*). (1.22) 

Substituting in the left-hand side of (1.22) the function (i.i0), and in the right-hand 
side the expression 

/ (m) ~ m + ~ = I (0)  ~ e x p  - ~ (n*)  ~ - -  0 . 5  , 

we ob t a in  a f t e r  approximate  summation 

T t \ T1 6VV 

The dependences of TI/EI on AE/T, satisfying the condition (1.23) at various ~VV, are 
shown in Fig. 2. The obtained curves divide the plane of the points (TI/EI, AE/T) into two 
regions corresponding to the regimes of "strong" and "weak" deviations from equilibrium. 
The upper region, where the right-hand side of (1.23) becomes larger than the left-hand 
side, corresponds to the "strong" deviation from equilibrium, and the vibrational distribu- 
tion function is determined in this case by expressions (i. I0), (1.18), and (1.20). For 
the points (T~/EI, AE/T) from the lower region, the inequality is reversed, meaning a weak 
deviation from equilibrium and a distribution function either in the form (1.13) (for 
TI/E, > i) or in the form obtained in [19, 21] (at arbitrary T,/E,). 

The entire preceding analysis of the distribution functions is based on the assumption 
_m,m*~ t h a t  t he  exchange p r o b a b i l i t i e s  Qi+~, i  are  de termined only  by the s h o r t - r a n g e  i n t e r a c t i o n  

f o r c e s  of  t he  c o l l i d i n g  molecu les .  However, f o r  molecules  having a nonzero d ipo le  moment, 
in  c o l l i s i o n a l  exchange of  quanta  wi th  a smal l  resonance  d e f e c t ,  an impor tan t  c o n t r i b u t i o n  
to the  exchange p r o b a b i l i t y  can be made by a long- range  i n t e r a c t i o n  f o r c e  [14, 82-84].  In 

�9 m , m §  
this case, the quantzty Qi+~,i is equal to the sum of the probabilities calculated with 

account taken of short-range and long-range forces. If the anharmonicity is taken into 
account here only in the calculation of the exponential factors, then we can write in place 
of ( 1 . 1 1 )  [14] 

Q~' ~+a ( m +  t) {Q~%exp(-6vvli'm[) {+1,  i : i)(~ ~ 

[32 21 o x p ( - - 6 v v ] i - - m } ) ] +  Q~exp[--Avv(i--m)']}, (1.24) 

where Q~o and Q~o are the probabilities of resonant exchange for the lowest levels 0 and l, 
calculated with account taken respectively of only the short-range and long-range forces, 
and AVV is a parameter determined by the temperature of the gas, by the masses of the 
colliding particles, and by the character of the long-range forces. 

When (1.24) is used in place of (I.ii), analytic expressions can be obtained also for 
the vibrational distribution function at "strong" deviation from equilibrium. In this 
case, the calculation is perfectly analogous to that considered above and reduces in final 
analysis to replacement in (1.16) and in Eqs. (1.18), (1.20), and (1.21) of the quantity 
Q1o by • where the factor ~ is calculated from the equation 
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2. Vibrational-Energy Relaxation Time 

The concrete form of the distribution function obtained in the preceding section is 
determined by the deviation of the vibrational energy of the molecules from the equilibrium 
value. In a system of harmonic oscillators, the relaxation time of this energy does not 
depend on its magnitude, and in accordance with the well-known Landau--Teller expression, is 
determined only by the probability P:o of deactivation of the first vibrational level. On 
the other hand, for anharmonic oscillators under nonequilibrium conditions, owing to the 
repopulation of the upper levels, where the deactivation probabilities are large, the re- 
laxation time can be substantially decreased and, furthermore, depends on the reserve of 
vibrational energy. An exact calculation of this time, just as in the case of the dis- 
tribution function, can be made only numerically, is very cumbersome, and has so far been 
performed only for individual cases [2, 4, 5]. On the other hand, the analytic expressions 
obtained in [24] are mainly purely qualitative in character and can be used in practice 
only for a "weak" deviation from equilibrium. 

We turn now to finding an analytic expression for the relaxation time of the vibra- 
tional energy in a system of anharmonic oscillators at an arbitrary deviation of this energy 
from equilibrium. We carry out the analysis for a single-component system, or else for a 
diatomic molecular gas partially diluted by a gas of structureless particles. Multiplying 
(i.I) by n/N and summing over all n, we obtain an equation for the rate of change of the 

reserve of quanta 8 = (~nN~)/N per molecule: average 

k k ~ 

ded.___~ = -- "--N't Pn+l, nN•+l q- -~- Pn, ,Z+lN~ " --~ A.+, . . . . .  +z -[  ( 1 . 2 6 )  
n = 0  ~ 0 ~ = 0  n = 0  

In this section we are not interested in the last term of (1.26), which describes the 
energy pumped into the vibrational degree of freedom from external sources, and consider 
only the change of the reserve of quanta on account of vibrational--translational energy ex- 
change (the first two terms) and spontaneous radiative transitions (third term). 

For a harmonic oscillator, relation (1.26) assumes after summation the known Landau-- 
Teller form. For low gas temperatures T ~ E~ and for large deviations from equilibrium, 

we have in this case 
. har hat de/dt = - -  S / T V T  - -  Aloe, T V T  : Pi~. ( 1 . 2 7 )  

For an anharmonic oscillator, if the probabilities are chosen in form (I.ii), the 
radiative relaxation c, as can be easily seen from (1.26), does not depend on the form of 
the distribution function and, just as in the case of the harmonic model, is described by 
the second term in (1.27). However, the rate of vibrational--translational energy exchange 
can depend substantially on the form of the vibrational distribution function and, as will 
be shown below, exceeds (by up to several orders of magnitude) the rate given by (1.27). To 
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find this relaxation rate, we start from the distribution functions (i.i0) and (i.18). 
Changing in (1.26) from summation to integration, and taking (1.5) and (1.21) into account, 
we obtain for nonradiative oscillators 

d_..e_edt "~ -- P10 ie~Vrif(i) di .~ -- PIo ie ~vT* fTr(i)di -- ~-I0 ploT6~----- ~ (n,* -~- t)2 f2 (n*), ( 1 . 2 8 )  
0 0 

where  f T r ( i ) ,  n* ,  f ( n * )  a r e  d e f i n e d  by  ( 1 . 1 0 ) ,  ( 1 . 1 4 ) ,  and ( 1 . 1 9 ) .  I t  was t a k e n  i n t o  
a c c o u n t  i n  ( 1 . 2 8 )  t h a t  t h e  p o p u l a t i o n s  of  t h e  l e v e l s  i > n** a r e  low and do n o t  i n f l u e n c e  
t h e  r e l a x a t i o n  r a t e .  

To r e p r e s e n t  t h e  r e l a x a t i o n  r a t e  d e / d t  i n  fo rm ( 1 . 2 7 ) ,  we c a l c u l a t e  a l s o  t h e  v a l u e  o f  
E: 

and 

~ET~ln* -- i + 6VTT/PAE I . Usually this parameter exceed unity. 
and approximate integration in (1.29) yields 

r~ (n**-- n* ~ l (o) ~ + ! (n*) (n* + I) - ~) 

e = - ~ -  
n ~ O  0 0 

Further transformations connected with the calculation of the integrals in Eqs. (1.28) 
(1.29) are more conveniently carried out for different values of the parameters 

In this case f(0) ~ E~/T,, 

(1.30) 

Calculating now the integral in (1.28) and using (1.30), we obtain a general expression 
for the VT relaxation time 

_I =Ploi(EI --6VT)-22v / (n*)[ T (t -~ OVTrt*)exp(SvT'Z*'~ 0.5)'~ 
"~VT 

(1.31) 
+ 

The c a l c u l a t i o n  (WTP~o)  - *  in  a c c o r d a n c e  w i t h  Eq. ( 1 . 31 )  f o r  p u r e  CO gas  i n  t h e  m i x -  
t u r e  3.2% CO + 96.8% He a t  d i f f e r e n t  p a r a m e t e r  T1 and T i s  shown in  F ig .  3. I t  i s  s e e n  t h a t ,  
w i t h  i n c r e a s i n g  T / T ~ ,  t h e  r e l a x a t i o n  r a t e  f o r  t h e  a n h a r m o n i c  model  b e g i n s ,  s t a r t i n g  w i t h  
a certain instant of time, to exceed substantially the corresponding value for the harmonic 
model. 

Expression (1.31) can be substantially simplified by considering various relations be- 
tween the reserve of vibrational quanta on the levels i < n* and n* -~ i < n**. If T, 
and T are such that the entire energy is concentrated mainly on the levels n* < i < n** 
(case of large deviation from equilibrium), then the first term in (1.30) and in the factors 
in (1.31) can be neglected, and we have for TVT 

6At (n* + 1) 
i = Qlo T6~V .f(n*)/(n**--n*-- 5VXT), ( 1 . 3 2 )  "~VT 

o r ,  t a k i n g  ( 1 . 1 9 )  i n t o  a c c o u n t ,  we g e t  

6AE El n * + i  exp [__ _~_ (n,)~ 0.5] " (1.33) 
= Q~o T~ T~ ;~**_,~,_ ~vu TV T 

Equations (1.32) and (1.33) clearly illustrate the fact that in the case of strong 
deviation from equilibrium the vibrational--translational energy exchange in a system of an- 
harmonic oscillators is produced mainly via levels that are close to the level n**, where 
the populations,are still relatively high, and the probabilities considerably exceed (by a 
factor exp(6vTn ~ for the level n**) the corresponding values for the harmonic model. 

It is also seen from (1.33) that, in the limit, the relaxation rate can be determined 
not by the value of P1o but by the probability of the vibrational exchange Q1o. Physically 
this is explained by the fact that in the case of rapid deactivation on the levels in the 
vicinity of n** the role of the "bottleneck" for the transition of the vibrational energy 
to the translational degrees of freedom is assumed by the rate, governed by the vibrational 
exchange, of supply of molecules to these levels. It is of interest to note that in this 
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Fig. 3. Dependence of the quantities I/~VTP~o (curves 1-3) and 
I/TVTQIo (curve 4) on T/T~ for the mixture 3.2% CO + 96.8% He 
(curves 1 and 2) and for pure CO gas (curves 3 and 4) (i -- T: = 
1850 K, 2-4 -- Tt = 3000 K). 

Fig. 4. Dependence of I/~vTQ~o on the He pressure in the mixture 
0.2 torr CO +ptorr He at T~ = 3000 K and at a temperature T equal 
to 300 (curve I), 400 (curve 2), and 500OK (curve 3). 

case the dep@ndence of TVT on the gas temperature T can differ greatly from the usual law 
T ~ exp(A/T ~/3) and has a nonmonotonic character. The dependence on the gas pressure can 
also be unusual. Thus, in a gas mixture, when the probability P~o in the investigated gas 
is determined by collisions with the impurity gas (e.g., in typical laser mixtures CO + He), 
the time TVT may nonetheless not be inversely proportional to the concentration of this 
impurity, and can change only very little (see (1.33)). The dependences of TVT on the 
temperature and on the pressure of the impurity gas under strong nonequilibrium conditions 
are illustrated by curve 4 of Fig. 3 and by Fig. 4, respectively. 

Expression (1.31) becomes simpler also when the vibrational energy is concentrated in 
the lower levels i ~< n*. If at the same time the principal role in (1.28) is played by 
the second term in the right-hand side, then we obtain for TVT 

i =Q~0 T~ 8 ~2 (n*~i) 2exp --~(n*) 2-I . (1.34) 
~VT v V V ~  1 

Finally, in the case when the vibrational--translational energy exchange takes place 
on the levels i ~ n*, we have 

I =pi01(1--Svv~1~-~+ 2AE 

In many practical cases, the second term of (1.35) can be neglected; this indicates that the 
?t* 

integral ~ iexp(Sw0fTr(0di is insensitive to the upper integration limit. Then (1.35) 
0 

coincides with the expression obtained in [24]. The relation (1.35) can be used to calcu- 
late the relaxation rate of e also in the case when the distribution function is of the 
form (i.13). 

We note that the value f(0) ~ EI/TI and expressions (1.30) and (1.35) were obtained 

under the assumption that for the level group 0 • i • n* the sums of the type ~ f(g), 
i=0 

?t* ~* 

~, ie~p(Svri)f(i), and ~i](i) can be replaced by integrals. Such a replacement is possible 

if E:/TI ~ I. However, the fact that the integrals turned out to be insensitive to the 
upper limit of integration makes possible a direct approximate summation of the indicated 
expressions, and hence a generalization of the results to the case of low temperatures 
E~/TI > i. Indeed, when the vibrational temperature Ti is decreased to values at which 
E~/T~ > i, the population of the level n* decreases and consequently the sums, just as the 
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integrals become insensitive to the upper summation limit. This means that the energy for 
the level group 0 ~ i ~ n* is concentrated mainly in the very lowest states i ~ n*. 
Since the anharmonicity is still not strongly manifested here, it follows that, by using in 
the summation in the region 0 ~ i -~< n* a Boltzmann distribution with the temperature T~, 
we obtain for f(0), E and TVT in place of (1.30) and (1.31) 

] (0) = t - -  exp  ( - -El~TO, 
exp (-- El~TO 

8 = 1 - exp ( -  El/T1) + ! (n*) (n* + 1) (n** - -  n* - -  5v~), 

exp (- -  El~T1) 6AE [(n* ~ l ) / (n* )1% ( 1 . 3 6 )  
e = PIof (0) [t - -  exp (--  EdT~ q- 6VT)I 2 @ Qlo "~VT 

Thus, expressions (1.36) together with (i.19), (i.14), and (1.21), which determine 
the Values of f(n*), n* and n**, yield for the anharmonic-oscillator model analytic de- 
pendences of f(0), of the reserve of vibrational quanta e, and of the relaxation time TVT 
on the vibrational temperature in a large interval of values of T~. They clearly illustrate 
the difference between the anharmonic and harmonic models. This difference is largest in 
the case of "strong" deviation from equilibrium. In the case of "weak" deviation equi- 
librium, from n** ~ n*, the expression for the quantum reserve e is the same for both 
models, and TVT coincides in this case with the value given in [24] 

Equations (1.30)-(1.36)were obtained under the assumption that the parameter 
AE~ET~[n* -- 1 + ~VTT/2AE[ > i. It can be shown that if the inverse inequality holds, prac- 
tically the entire vibrational energy is concentrated on the levels i > n*. To calculate 
the relaxation rate in this case, we can therefore use Eqs. (1.30) and (1.33), but we must 
remember that f(0) is no longer equal to I -- exp(--Ei/T:) but, as can be easily shown, is 
determined from the relation 

] (0) . ~  [n*e -~ In (n**/n*)]-k ( 1 . 3 7 )  

We note, however, that this case is very rarely realized in practice. 

To conclude this section, we present at the value of the parameter ~E7TIn* -- i + 
~VTT/2AEI > 1 equations for f(0), c, ~VT and for the time ~R of the radiative relaxation of 
E, obtained on the basis of the distribution function (1.20) as well as allowance for the 
anharmonic effects in the preexponential factors for the probabilities of the processes: 

f (0) = t - -  exp  (--E1/T~), ( 1 . 3 8 )  

exp (-- Ell Ti) Po 
8 = i - - exp  (--El~T1) -~- C (/Z**-- /Z*) - -  [exp (Sv rn  *~) - -  exp(Svrn*)]  @ 

6VT 

+ .40 -~- [n~ (n *) - -  n ~ (n**)l, ( 1 . 3 9 )  

f (0) exp (-- El~T1) C 
= PIo ~- [exp (6vTn**) - -  exp  (6VTn*)] - -  "rvT [t - - exp  (-- Ei/T 1 -]- 5VT)] 2 ' 6VT 

Po [exp (25VTn**) - -  exp (26vTn*)l + ~ [~i (n**) exp (6vTn**) - -  ~I (n*) exp (6VTn*)]} , ( 1 . 4 0 )  
26VT 

"~R = A , o {  exp(--Et/T~) k ~l' 
J - -  exp (-- ~'l/T1) ~ C - - ~  [T[ 4 ( n * )  - -  (n**)l - -  

Po 26VT [~2(n**)exp(6vTn**) . - -~2(n*)exp(6vTn*)l  @ - ~ - k [ q S ( n * ) - - ~ l s ( n * * ) ] }  �9 (1.41) 

We have introduced here the notation 

C 

P 0  ~ - -  

h (,0 = 

n , + ~  [ AE~ ] 
i --  n*/2k / (0) exp  - -  - - -~  (n*) 2 - -  0.5 - - A o q  4 (n*) q- Po exp  (6vTn*), 

Vlo T63VV Alo T6~v k 
Q~o 12AE6vT ' Ao = ~ 12AE 4 ' ~l (rt) = t - -  n/k, 

k 6 ~ T  t2 2 24 ~1 (n) @ 24 
n ' (n )  + n3(n) + (k~vr)~n (n) + (k~vT) 3 (k~vr)~ , 

3._~_ q~ 6 6 
~3 (n) § k6vr (n) + ~ ~ (n) + (k%r)3 �9 (1.42) 

The quantity k is the total number of vibrational levels of the oscillator, and their 
values n* and n** are determined from (1.14) and from the condition that the function 
(1.20) vanish: 
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Poexp(6yTn** ) = C + Ao~ 4 (n**). (1.43) 

The first terms in the right-hand sides of (1.39)-(1.41) yield r e/TVT , and S/rR for 
"weak" deviation from equilibrium. The presence of terms containing Po and Ao is due to 
allowance, in the course of the calculation of the quantum reserve and of the relaxation 
times, for the second and the third terms in the right-hand side of expression (1.20) for 
the distribution function. In many cases these terms can be neglected. Expressions (1.39) 
and (1.40) then become close to (1.36), thus indicating that the quantities s and e/rVT are 
insensitive to anharmonic effects in the preexponential factors for the probabilities. Only 
the radiative relaxation time x R becomes a weak function of T:, if the probabilities are 

A~+I ~ = (n q-- 1) Alo (1 - -  2AE 3 /  chosen in the form 

3. Dependence of the Vibrational Energy and of the "Temperature" 

T, on the Excitation Probability 

One of the important aspects in the study of selective "heating" of oscillations is an 
analysis of the nonequilibrium reserve of vibrational energy (or of the parameter T:) on the 
pumping probability. By determining these dependences we ascertain the external-source 
power necessary to obtain one degree of "heating" or another, and what the limiting "heat- 
ing" can be at all, i.e., the energy capacity of the investigated vibrational degree of 
freedom in the saturation regime. 

This question has been recently considered in a number of papers [25-32, 66], using 
for the analysis either the harmonic model [25-32] or the model of truncated anharmonic 
oscillators with the assumption of a weak deviation from equilibrium [66]. However, as 
will be shown in the present section, for real molecular systems, in many cases at low gas 
temperatures the dependence of the vibrational energy on the pump and its limiting values 
can differ substantially from those obtained in [25-32, 66]. 

To solve this problem it is necessary at first to obtain the definite form of the terms 
F n (see (i.i), (1.2), (1.26)) that describe the pump. For simplicity, we assume hereafter 
that the pump does not change total number of particles and acts only on the vibrational 
levels 0 and I.* In this case the last term of (1.26) takes the simple form 

(WioNi  - -  WoINo)/N, ( 1 . 4 4 )  

where Wox and Wto are the probabilities (in see -~) of excitation and deactivation of the 
first vibrational level under the influence of the external action. In the experiments 
this action is usually either electron impact (e.g., in an electric-discharge CO-molecule 
laser) or absorption of infrared laser radiation (e.g., in experiments on initiation of 
chemical reactions by laser radiation). In excitation by electron impact 

Woi = ~ %i v ~  n~, (1.45) 

where oo: is the cross section for the excitation of the first vibrational levels by the 
electrons, and n e and v are the density and velocity of the electrons, respectively; the 
averaging is over the electron distribution function. In the case of a Maxwellian distribu- 
tion with temperature Te, the values of Wo~ and W,o are connected by the usual relation 

Wol = Wlo exp(-- E~/r~). 
In optical excitation, the probability Wo, is proportional to the intensity J of the 

absorbed laser radiation, and is given by 

6"i0mqAl~ J. (1.46) 
W~ A~E~ 

Here A~ is the width of the absorption line (in see-X); q, fraction of the radiation-absorb- 
ing molecules on the vibrational level: J, expressed in W/cm2; A:o, sec-:; and Ex, OK. It 
can frequently be assumed with good accuracy that W1o = Wol. 

We turn now to a determination of the dependence of ~ and of T~ on W:o. For the 
stationary case, with allowance for (1.44) and for the relation between Wxo and Wo~, Eq. 
(1.26) can be written in the form 

*The generalization to other cases is not a fundamental problem and can be easily realized. 
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e/~VT + e/rn = Wlo/ (0) [exp (-- E1/Te) -- /(~)// (0)]. (1.47) 

In the case of optical pumping we must put T e = = in (1.47). In a regime far from 
saturation, f(1)/f(0) = exp(--E:/T~). However, in order for the balance equation (1.47) to 
describe also the saturation regime, it is necessary to take into account also the possible 
distortion of the distribution function (i.e., of the value of f(1)) by the pump. For this 
purpose, taking the pump into account, as well as the fact that A~o, P:o ~ Q,o, will ob- 
tain the ratio f(1)/f(O) from Eq. (i.i) written out for n = 0. Substituting its value in 
(1.47), we obtain 

k 

8 8 
(1.48) 

~VT TR 
Hrl~ ~ E m, m+l �9 Qlo I (m) 

m~O 

nm,m+z 
Owing to the decrease of ~:o and f(m) with increasing m, the main contribution 

to the sum in (1.48) is made by terms with small m, for which the distribution is still 
close to the Boltzmann distribution. Taking this into account, we obtain after approximate 
summation 

Q~, ~+i / (m) = Qio% 
m~O 

------ [l -- exp (-- E1/T,)]/[l -- exp (-- Ei/TI -- 8vv)] 2. (1.49) 

Substituting now (1.49) in (1.48), we obtain a final expression, which jointly with 
(1.36) (or (1.38)-(1.43)) determines the dependence of T, and of r on Wxo in a wide range 
of values of W1o*" 

Wlo (S/*VT + e/TR) 
Qlo -- Qlof (0) [exp (- EI/Te) -- exp (-- EI/TI) ] ~ -- ~/~VT -- 8/TR " (i. 50) 

By way of illustration, the TI(WIo) and c(Wlo) dependences were obtained by a numer- 
ical method from (1.50) and (1-38)-(1.43) at various temperatures and pressures of the 
gas, for the pure gases CO and HCI, as well as for the mixture CO + He. The results of the 
calculation are shown in Fig, 5. For comparison, this figure shows the analogous depen- 
dences for the harmonic as well as for the anharmonic model, but considering only "weak" 
deviation from equilibrium (this corresponds to inclusion of only the first terms in ex- 
pressions (1.39)-(1.41)). It is seen from the figure that at relatively low pump proba- 
bilities, when Tx/E, ~ 0.4-0.7, r ~ (i-3).I0 -I, the harmonic and anharmonic models give 
identical results. But further increase of Wxo/Qxo, however, for the harmonic model and con- 
sideration of only the "weak" deviation from equilibrium yield for e, and particularly for 
T~, substantially overestimated (by several orders of magnitude) values. Thus, the energy 
capacity of a reservoir of real anharmonic molecules-oscillators under strong nonequilibrium 
conditions turns out to be considerably smaller than predicted on the basis of the simplest 
molecular models. The physical reason is that in a system of anharmonic oscillators, in 
selective "heating" of the oscillations, the regime changes from "weak" to "strong" devia- 
tion from equilibrium. As a result, owing to the repopulation of the highly excited states, 
the relaxation rate of the vibrational energy increases, and this leads to a sharp decrease 
in the growth rates of e and T: with increasing pump. 

From a comparison of curves 4 and 4' in Fig. 5c it follows that whereas for radiating 
molecules at low pressure and with "weak" deviation from equilibrium the values of e and T, 
are determined by the radiative decay of the levels (initial section of curve 4'), in the 
regime of "strong" deviation from equilibrium the vibrational relaxation has a purely 
collisional character (curve 4 and 4' merge into one). Physically, this is due to the fact 
that in this case the dissipation of the vibrational energy proceeds via the upper levels, 
where even at low pressures the collisional probabilities for the VT processes exceed the 
radiative probabilities. 

*We note that in the saturation regime f(1)/f(0) ~ exp(--Ex/Te). Therefore, in the case of 
saturation the quantity TI contained in (1.36), (1.38), (1.43), (1.48), (1.49) should be 
taken to mean the vibrational temperature for the levels i and 2, i.e., T~ = E,/in[f(1)/ 
f(2) ]. 
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Fig. 5. Dependence of the reserve of vibrational quanta e (a) 
and Tz/Ez (b, c) on the pump power Wzo/Qlo without allowance 
(a, b) and with allowance (c) for the radiative transitions 
for the different molecules. Curves 1-3) CO in a mixture 0.2 
torr CO + 6 torr He; 4, 5) pure CO (pressure 0.2 and 1 torr, 
respectively); 6) pure HCI at various gas temperatures (curve 
1 -- 150, 2 -- 200, 3-6 -- 300 K). a) Continuous lines -- an- 
harmonic model, dash--dot lines -- harmonic, b) dashed lines -- 
calculation for anharmonic model in the approximation of only 
"weak" deviation from equilibrium, c) curve 4' -- calculation 
for pure CO and T = 300~ without allowance for radiative 
transitions. 
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t i o n a l  saturation temperature 
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parameters 6 w .  
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When He gas is added to CO as an admixture, owing to the strong increase in the rates 
of VT processes, the values of TI (curves i-3 on Fig. 5b) and e (curves 1-3 on Fig. 5a) de- 
crease substantially in the regime of "weak" deviation from equilibrium. In the case of 
"strong" deviation, however, the temperature T, is insensitive and e is little sensitive 
to the pressure of the admixture gas. The reason is that the time TVT is determined in 
this regime mainly by the rate of supply of molecules to the upper vibrational levels, i.e., 
by the probability Q~o (see the preceding section). 

It is seen from Fig. 5 that at W1o/Q~o ~ I the values of ~ and T~ saturate. The 
saturation regime follows directly from expression (1.50) if its denominator is equated to 
zero. Physically, however, the presence of this regime is due to the fact that the energy 
input to the system is limited by the rate of its spreading over the entire vibrational 
spectrum, i.e., by the exchange probability Q1o [26, 27]. 

An analytic expression can be obtained for T~ at in the saturation regime in the case 
of "strong" deviation from equilibrium. Neglecting in (1.50) the terms that describe the 
radiative relaxation, and equating the denominator to zero, we obtain for optical pumping 
at saturation 

Sat /2 
e /~vr = (0) ~Q10- (1.51) 

If we use for c and TVT in (1.51) the simplified expressions (1.36) with "strong" 
deviation from equilibrium, we obtain for T sat 

--I 

7' 1 2t, E In 2.2 - -  - - - V - - J  ( 1 . 5 2 )  

w i t h  t h e  f a c t o r  (n*)~/~ i n  ( 1 . 5 2 )  a f u n c t i o n  o f  TS~ a t .  S i n c e ,  h o w e v e r ,  T s a t  depends  w e a k l y  
on (n*)2/% we can  p u t  (n*)2/~ ~ T2/(2AE) ~ i n  t h e  p r a c t i c a l  c a l c u l a t i o n s ;  t h i s  c o r r e s p o n d s  to  
a v a l u e  T~ ~ E~. 

Thus ,  as  f o l l o w s  f r o m  ( 1 . 5 2 ) ,  i n  t h e  s a t u r a t i o n  r e g i m e  T~ s a t  does  n o t  depend  on t h e  
p r o b a b i l i t i e s  o f  t h e  p r o c e s s e s  and i s  d e t e r m i n e d  o n l y  by t h e  p a r a m e t e r s  6VV and AE/T. T h i s  
c o n c l u s i o n  d i f f e r s  q u a l i t a t i v e l  7 f r o m  t h e  r e s u l t s  o b t a i n e d  i n  t h e  a n a l y s i s  o f  t h e  h a r m o n i c  
m o d e l ,  whe re  T s a t / E ~  ~ dQ~o/P~o [ 2 5 - 2 7 ] .  The i n d e p e n d e n c e  of  T s a t  o f  t h e  p r o b a b i l i t i e s  
f o r  t h e  a n h a r m o n i c  model  i s  e x p l a i n e d  by t h e  f a c t  t h a t  i n  t h e  s a t u r a t i o n  r e g i m e ,  a t  a 
" s t r o n g "  d e v i a t i o n  f r o m  e q u i l i b r i u m ,  b o t h  t h e  r a t e  o f  e n e r g y  i n p u t  i n t o  t h e  s y s t e m  and t h e  
r a t e  o f  e n e r g y  d i s s i p a t i o n  a r e  d e t e r m i n e d  by  t h e  same p r o b a b i l i t y  Q~o. The d e p e n d e n c e  o f  
Tsat/E~ on AE/T at different values of 6VV is shown in Fig. 6. 

Equation (1.50) makes it possible to obtain the analytic T~(W~o) dependence even ahead 
of the saturation regime. At low pump probabilities, when the harmonic and anharmonic 
models yield identical results at T~/E~ < l, we have [26, 27] 

El , " 

For "strong" deviation from equilibrium, using (1.36), we obtain 

--E~ == T ~ n  2.2 g~o T61---- ~ - - - -  . (1.54) 

It is seen from a comparison of (1.52) and (1.54) that the saturation regime is reached 
at  Wlo/Qlo = q) (Tlsat). 

On the whole, the results obtained in this chapter indicate that the vibrational re- 
laxation in the case of "strong" deviation from equilibrium differs qualitatively from the 
relaxation at low pump intensities. These data can serve as a basis for the analysis of 
high-power lasers operating on vibrational--rotational molecule transitions and for the in- 
vestigation of the action of laser radiation on matter. 

CHAPTER II 

VIBRATIONAL RELAXATION IN MOLECULAR MIXTURES 

Vibrational relaxation is investigated in binary and ternary gas mixtures. The dis- 
tributions of the vibrational energy among the components, the relaxation channels of this 
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energy, the rate of vibrational exchange, and the vibrational distribution functions in 
each of the components are studied. The results of this chapter are based on [76, 80, 85- 
87]. 

i. Quasistationary Distribution in the Presence of Two VV' Channels 

In contrast to a single-component oscillator system, the vibrational relaxation in a 
mixture has not yet been sufficiently fully studied even within the framework of the model 
of harmonic oscillators. It is therefore useful to study some interesting features of the 
vibrational kinetics of molecular gas mixtures on the basis of the simpler harmonic model 
in the present section and in the next two. The analysis for the anharmonic model will be 
carried out later on. 

We shall show that in contrast to the previously considered cases [2, 20, 34, 36, 37] 
in which a nonstationary distribution existed with one channel for the exchanges of quanta 
between different modes, such a distribution can occur also in the presence of two and more 
relaxation channels for processes of this type. 

We consider a binary mixture of gases of diatomic molecules A and B, simulated by 
harmonic oscillators, with molecule densities N A and N B and with vibrational-quantum ener- 
gies EA and E B. Let E A > EB, and let single-quantum and two-quantum exchange be possible 
between the oscillators A and B. In two-quantum exchange, two quanta of the oscillator B 
go over into a single quantum of oscillator A (the generalization to the case of exchange 
of a larger number of quanta is obvious). Assuming a fast VV' process which leads to es- 
tablishment of Boltzmann distributions with temperatures T A and T B between the modes A and 
B, the relaxation equations for the average number of vibrational quanta e A and e B per 
molecule can be written in the form 

dt ," : 7 " + NBQ01 eB (t + 8A) --  eA (t + 8B) exp ~ 7 + 

(2. l a )  

n = O  

dt T - -  2AAQ01 e ~ ( l + e A ) - -  eA(t + sB) 2exp ~- 

+ N B P l o )  i - - e x p  --  (e~--eB) +--~B ~ nJ~, ( 2 . 1 5 )  
n = 0  

where  e A [ e x p ( E A / T A )  -- 1] -1  , eB = [exp(EB/TB) -- 1] - a ,  e~ and e~ a r e  t h e  e q u i l i b r i u m  ( a t  
t h e  gas  t e m p e r a t u r e  T) v a l u e s  o f  eA and eB. The f i r s t  two b r a c k e t s  i n  each  o f  t h e  e q u a t i o n s  

" " " " i I O  o f  ( 2 . 1 )  d e s c r i b e ,  r e s p e c t i v e l y ,  s i n g l e -  and two-quantum exchange  w i t h  p r o b a b l l l t  es  Qo , ,  
Q$~ (per molecule), =,u--~ pAA1o, pAB1o and P~, P~ are the probabilities (per molecule) of the 
VT processes for the deactivation of the first vibrational level of molecules A and B when 
they collide with molecules A and B. The last terms in (2.1) describe the pumping pro- 
cesses, with Jn A and Jn B the rates of formation of the molecules A and B on the n-th vibra- 

tional level. 

Since E A > E B, we shall assume hereafter for simplicity that the vibrational--transla- 
tional relaxation is effected only through molecules B (i.e., we put P,7~o = P~ = 0). 

We consider first the case of energy pumping into the vibrational degrees of the mole- 
cules by means of short pulses of duration Tpul ~ TVT, TVV'. The vibrational relaxation 
process in such a system is described by system (2.1) without sources, but with nonequi- 
librium initial conditions. Let TVV' ~ YVT, then for instants of time t such that TVV' < 
t ~TVT, the solution of (2.1) in the zeroth approximation can be obtained by putting 
pBA = pBB = 0. As seen from (2.1), in this case a stationary solution at T A, TB ~= T (mean- 

1 0  1 0  
ing the existence of a quasistationary distribution) is possible only when there is only 
one channel for the VV' processes with exchange, e.g., of m quanta of oscillator A for n 
quanta of oscillator B. (In the considered example m = 1 and n = I or else n = 2.) The 

quantity 
n e A N A  + meBNB = const (2.2) 

i s  c o n s e r v e d ,  and t h e  t e m p e r a t u r e s  T A, T B, T a r e  c o n n e c t e d  by t h e  r e l a t i o n  
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mEA/TA --  nEB/TB = (mEA --  nEB)/T.  ( 2 . 3 )  

Th is  r e l a t i o n  was o b t a i n e d  i n  a d i f f e r e n t  manner i n  [37] and i s  a g e n e r a l i z a t i o n  of  
Eq. ( 0 . 4 )  to  t he  c a s e  o f  m u l t i q u a n t u m  exchange  o f  two o s c i l l a t o r s .  

In  t he  p r e s e n c e  of  s e v e r a l  c h a n n e l s  f o r  t h e  VV' p r o c e s s e s ,  t h e r e  i s  no s t a t i o n a r y  
s o l u t i o n  ( 2 . 1 )  w i t h  TA, T B ~= T a t  pBA = pBB = 0. Even h e r e ,  h o w ev e r ,  one  can sp eak  i n  a 

I 0  I 0  

number of cases of a definite relation between the densities N A and NB of a quasistationary 
distribution. Let, e.g., the probabilities 1o 2 0  Qox and Qoz in (2.1) be of the same order, and 

[ ~  ~ 1 0 \ - - 1  2 0  - - 1  let N B ~N A. Then, considering times t > ~A ~ ~ B ~ o z )  , (NBQoz) , we can assume with 
good accuracy that in Eq. (2.1a) we have e B = const, and the connection between T A, TB, and 
T can be obtained from the condition 

deA/dt = 0. (2.4) 

Of c o u r s e ,  in  t h i s  c a s e  dEB/d t  v e 0 ,  b u t  t h e  t ime  v a r i a t i o n  o f  E B i n  ( 2 . 1 a )  can be  
neglected if the increment of the vibrational energy in B within a time on the order of ~A 
is small compared with the energy itself, i.e., 

I deB/dt I TA " ~  eB. ( 2 . 5 )  

This equation, with allowance for (2.1b), can be written at T h ~ (NBQ~) -z in the form 

N B s A -- 
NA ~ 8B (1 + eA) __ _.~B (~ .~_ 8B)2 oxp ( EA T2EB ) [ " (2.6) 

Inequality (2.6) yields the necessary relation between the densities, at which a quasi- 
stationary distribution of the vibrational energies of the components is possible as a re- 
sult of the VV' processes that take place simultaneously through two channels (single- and 
two-quantum exchanges). The time ~A is the characteristic time for the establishment of 
this distribution. An expression connecting in this case the temperature TA with T B and T 
was obtained in [20]. The result is of interest primarily because the distribution of the 
energy between the different modes in VV' processes that proceed effectively through two 
and more channels, in contrast to the case of a single channel, turn out to depend on the 
relative densities of the components. 

At a constant pump (~pul ~TVT, ~VV') a stationary solution of (2.1) with TA, T B ~ T 
always exists. In the general case, T A and T B are connected not only through the gas tem- 
perature T, but also through the concentrations of the components and the source power. 
Let, e.g., the excitation of the molecular vibrations be effected by collision with the 
electrons of molecules located at the zeroth vibrational level (0+n transitions). In this 
case 

oo 

NA L A = 1--exp - - ~  W0~- -W~oexp \  TA ] j n  e. 
n ~ 0  

(2.7) 

Here neWo n and neWno are the probabilities (in sec -I) of the excitation and deactivation of 
the n-th vibrational level of the molecule A, and n e is the electron density. A similar 
expression holds also for the molecule B. 

It follows from (2.1) and (2.7) that T A and T B are determined by the relation between 
NA, NB, and n e. At large values of N B the pump in (2.1a) can be neglected, and the remain- 
ing parts of (2.1a) are connected only with TA, TB, and T. This connection, with the VT 
processes neglected, is given by expressions cited in [20]. 

2. Relaxation of Vibrational Energy in VV' Processes 

As seen from (2.1), in a mixture of molecular gases, in the presence of several 
channels for the exchange of vibrational quanta between different species of molecules in 
the absence of sources and of VT processes, the only stationary solution of a system of type 
(2.1) is a solution corresponding to the equilibrium state for which TA = TB = T. This 
means that in such a system, at an initial nonequilibrium value of the total vibrational 
energy, relaxation will take place to an equilibrium energy even in the absence of the 
usual vibrational--translational exchange. In the considered case of a binary mixture of 
gases A and B (E A > EB) , the mechanism of establishment of complete statistical equilibrium 
via only W' processes includes exchange of energies between the vibrational and transla- 
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tional degrees of freedom, which takes place, e.g., when two quanta of molecule B go over 
into one quantum of molecule A, followed by a transition of a quantum of molecule A into 
a quantum of molecule B (i.e., in accordance with the scheme 2EB+EA-~EB). In this process 
the number of quanta EA and eB (or a certain combination of them of the type (2.2)) is not 
conserved, and the difference of the vibrational energy between the initial and final states 
is compensated by the change of the translational energy. 

Let us ascertain under which conditions and in which molecular mixtures can the rate 
of relaxation of energy via the VV' process exceed the corresponding rate for the ordinary 
VT processes. For a binary mixture with close molecular masses and concentrations N, the 
characteristic time TVV of the energy relaxation on account of the VV' processes is on the 
order of 

"~vv" N t / [N rain (Qo 1~ ~o Qo0], 

therefore the highest rate of relaxation via the indicated channel takes place in a molecu- 
lar gas mixture for which 

10 o0 Q o l ~  Q~r ( 2 . 8 )  

To estimate the probabilities, we shall use Herzfeld's expressions [41], and take into 
account in them only the most significant exponential dependence on the energy: 

PIo ~ CIV~ exp (--  3a~/~E~ ~ + EB/2T), 

QlO r T72 Tz~ 3a ~/~ EB) 2/~ (EA - -  EB)/2T], 01~ ~VAVB exp [-- (EA -- + (2.9) 
2O Qol ~ C3VIV~ exp [--  3a '/~ (2EB --  EA) ~/~ + (2EB --  E,~)/2T]. 

Here a = 0.32~/a, a is a parameter in the exponential potential of the intermolecular 
interaction exp(--~r) (in ~-~), B is the reduced collision mass (in a.u.); T, EA, E B are ex- 
pressed in OK. The squares of the matrix elements V~, V~ and the factors C~, C2, Ca depend 
relatively weakly on the quantum energy, so that we can assume that C~ ~ C2 ~ Ca, V~ 
v~. 

Practical interest attaches to the variant 

( 2 . 1 0 )  
E .  = (1,5 + ~) El3, 

At this value of n, 

where ~ ~ I, inasmuch as only in this case can we expect satisfaction of (2.8), meaning 
1 0  2 0  QOZ" also of the condition P1o~ Qo,, Substituting (2.10) in (2.9), expanding the arguments 

of the exponential in powers of ~ and retaining only first-order terms in n, we obtain 

,~-~. (ln V~)/(EB/T - -  5.0Za2/3E~'). 

the ratio 

is maximal: 

10 
Qol/PIo ~ ~vW'~vv" 

( 2 . 1 1 )  

I0 p 
(Qo~/ XO)max,~ V~ exp ( l . l ta ' / ,E~ '  EB/4T). (2 .12 )  

Expressions (2.11) and (2.12) were obtained for the case when aEB, a(E A -- EB), a(2EB -- 
E A) > 20. When the inverse inequality is satisfied, we can use in place of (2.9) a simpler 
(linear in the argument of the exponential) dependence of the probabilities on the energy 
defect [21, 81]. In this case we obtain in place of (2.11) and (2.12) 

3 .aEB , ( 2 . I 3 )  
\ P lO/max  ~ V B  e x p  2 AT " 

It follows from (2.12) and (2.13) that at typical values of VB, EB, ~, andathecondi- 
tion TVT ~ TVV', which corresponds to predominant relaxation of the energy via the VV' pro- 
cesses, is as a rule not satisfied for a binary mixture. It can take place only at low gas 
temperatures T ~ 300~ and for molecules with large values of the vibrational quanta EB 
3000~ (it is necessary here, of course, to choose mixtures for which the condition (2.8) 

would be satisfied). 

The situation can change significantly, however, in the presence of three and more 
vibrational modes with quantum energies E i satisfying, e.g., the condition 
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EI<E2<E3<. �9 -<E~<2EI- (2.14) 

Condition (2.14) is quite typical of vibrational modes of a polyatomic molecule. In 
this case, owing to the relatively small energy defects 2Ex --Ek, E k --Ek-x, ..., E2 --Et 
the rate of the summary VV' process, which follows the scheme 

2E1 -+E~  --> Ek_ I - ->- . . .  ---~ El,  ( 2 . 1 5 )  

can be high enough. Confining ourselves to the case aA~ < 20 (A~ is the maximum defect of 
the vibrational energy in collisions in accordance with the scheme (2.15)), and assuming 
that 2 o Qox(2Ex§ k) ~ Q~(Ek-~Ek-t) ~ ... ~ Q~[(Ea+Ex), we obtain for a mixture of k vibra- 
tional modes 

(TvT~ __Ui(k+l)/~oxpIZi(a--@) ~k~l �9 --~v,/m~x ~ �9 (2.16) 

It is seen from a comparison of (2.13) and (2.16) that the condition ~VT ~ xVV' in a 
multicomponent mixture of oscillators can be satisfied for a much larger class than in 
binary mixtures. 

Thus, the process of establishment of complete statistical equilibrium on account of 
VV' processes alone, in accordance with the scheme of (2.15), may turn out to be decisive 
in polyatomic systems in a number of cases. Naturally, such a mechanism can play in this 
case a role in the relaxation of systems where the vibrational temperatures T i ~ T. In 
the opposite case, the equilibrium will always be established as a result of VT processes. 

3. Energy Distribution in Gas Mixtures at TVV' ~ TVT. Role 

of Concentrations 

We consider a three-component mixture of diatomic gases A, B, and C. The vibrational 
relaxation in such a system, simulated by a mixture of harmonic oscillators with vibra- 
tional-quantum energies EA, EB, EC, is described in the single-quantum transition approxl- 
marion by the equations 

dt = (Plo NA -~- Plo NB ~- P]IO N c )  I - -  exp --  (e~ - -  cA) + 

- -  E B -~ QolI~ [~B(~. "JF'~A)--~A( 'l- i-~ ~B) exp (IEAs~7 ")] ~-" 

lo __ ~ + ~ nJ~ , 

n=O 
dt = (PlO NA + Plo NB + pBCNc) t - -  exp - -  (e~ - -  SB) - -  

Q : O l ( A B ) N A E e B ( I H _ e A ) _ e A ( I + e B > e x p ( E - A - - E B  lo 

md~ 
dt 

/ E A -- E C "C1 -- E o 
--Qol~ [ec (1 + eA , - -8A( l  + e c ) e x p ( ~ ;  t --Qol,~ (BC)NB LeG (i + eB, - -eB (i + ec, exp (EB T ' ) ] .  

The notation here is similar to that in (2.1), and the pump is included for simplicity 
only in the equation for E A. The stationary (but not equilibrium) distribution of the vi- 
brational energy in all three components A, B, and C is determined from the solution of 
system (2.17) at 

deA/dt = deB[dt =.dac/dt  = O. 

Just as before, it is necessary to assume that T is constant, i.e., that the energy 
flux due to pumping into the translational degrees of freedom should be offset by the out- 
flow of heat from the system. 

Equations (2.17) contain the concentrations of the components, so that in the general 
case the relation between the vibrational temperatures TA, TB, T C will change with changing 
NA, NB, N C. Only in the particular cases TVV ~ TVT ~rVV' and xVV, TVV' ~ ~VT will there 
be no such dependence. If xVV ~TVT ~TVV', we always have T B = T C = T, and if TVV, 
TVV' ~ TVT the connection between TA, TB, and T C is determined by the Treanor relations 
[2], i.e., by formula (2.3) with m = n = I. The purpose of the present section is to study 

(2.17) 
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the dependences of the vibrational temperatures on the concentrations for the case ~VV' ~ 

~VT' 

We consider the specific three-component system Na--O2--NO and its particular case, the 
binary mixture Na-O, (EN= = 3357 K, EO~ = 2240 K, ENO = 2700 K). We assume that the pumping 
is by electron collisions. Since the excitation cross section for collisions of an electron 
with N2 greatly exceeds the corresponding cross sections for 02 and NO, we take into 
account the pump only in N2 (therefore the index A in (2.17) pertains only to N2, B per- 
tains to 02, and C to NO). 

The probabilities used in the calculations are given in [85]. They were taken from 
the experimental papers (see the review [88]) or were calculated from the semiempirical 
formula of Milliken and White [89]. We note that in accordance with the results of the pre- 
ceding chapter, the energy relaxation rates can increase as a result of the VT processes 
considerably at TA, TB, T C > T because of the actually existing anharmonicity. Here, how- 
ever, the calculation will be carried out only for the case of a relatively high temperature 
T = 800 K. In this case the deviation from equilibrium is "weak" and the change of the time 
rVT can be taken into account in accordance with Sec. 2 of Chap. I by multiplying the 
probability P~o by the factor [i -- exp(--Eo2/T02)]2[l -- exp(--Eo2/T02 + 6VT)] -2. For the term 
in (2.17), which describes the pumping by electron impact in N2, we used the expression 

i L,zj,,~.~a.10-gne[i_exp\ TN, jjL \ TN,] ] (2.18) NN ' 
n=O 

The system of equations (2.17) for the stationary case dcN2/dt = dco=/dt = dcNo/dt = 0 
were solved with a computer for TN2, TO2 , TNO at n e = 109 cm -3, at different NN2 , NO2, NNO 
concentrations, and at a gas temperature T = 800 K. 

Binary Mixture. The dependence of the vibrational temperatures TN2 and TO2 on the 
nitrogen concentration NN2 at different values of NO2 is illustrated in Fig. 7. This de- 
pendence can be understood from a qualitative analysis of system (2.17). At low concen- 
trations NN2 the probability of transfer of vibrational quanta from N2 to O= is much less 
than the probability for the VT processes in 02: 

nOz--Oz~T I ~7 nO~--N~ 
NN,Q~7 (N 2 ---> 02) < F 1 0  l,o=-1- 1u NiCl0 �9 ( 2 . 1 9 )  

S i n c e  t h e r e  i s  no pumping by e l e c t r o n  impac t  f o r  Oa (J~ = 0 ) ,  TO2 ~ T, and t h e  v i b r a -  
t i o n a l  t e m p e r a t u r e  in  Na i s  c o n s t a n t  and i s  d e t e r m i n e d  by t h e  r a t i o  o f  t h e  r a t e  o f  e l e c -  
t r o n i c  pumping (meaning a l s o  ne)  and t h e  d e a c t i v a t i o n  e n e r g y .  The l a t t e r  i s  d e t e r m i n e d  a t  
NN,/No= ~ 0 . 1 - 1  by t h e  W '  p r o c e s s ,  inasmuch  as  i n  t h i s  c a s e  

nNt--N, ~r p~-O,No~. No,Q~ ( N ~ -  O~) > rm  ,vN, + (2 .20 )  

From the ratio of the pumping rates and deactivation rates it follows that at low NN, 
the constant value of TN2 is determined by the ratio ne/NO2. With increasing relative con- 
centration NNi/No2, the flux of the quanta in 02 on account of the W' process increases, 
inequality (2.9) no longer holds, and the vibrational temperature TO2 increases. However, 
with further increase of NN2 , the VT processes on account of the collision of N2 and Oi 
with N2 and 02 become predominant, and both vibrational temperatures begin to decrease. 

Thus, allowance for the VT processes in the case of TVV, ~ TVT causes the simple re- 
lation (2.3) between the vibrational temperatures of the components to be replaced by a 
more complicated expression that depends on the concrete relations between the pumping rate, 
the rate of the VT processes, and the rates of the VV' processes in the forward and 
backward directions, which are determined in turn both by the gas temperature and by the 
concentrations of the components. 

The Three-Component Mixture N2--Oa--NO. Role of Impurities. The substantial dependence 
of the vibrational temperatures on the component concentrations, which was demonstrated 
with the binary mixture N2--Oi as an example, is due primarily to the low rate of the VV' 
processes. One can expect an increase of this rate, effected in some manner, to lead to a 
redistribution of the energies among the vibrational modes, so that the relation between the 
vibrational temperatures will approach (2.3). For a binary mixture of molecules with vi- 
brational quanta E A > EB, E A < 2E B and one-quantum exchange between the different types of 
oscillators, an increase in the rate of the VV' process between A and B can be realized by 
introducing into the gas impurity molecules with vibrational quantum E C such that E A > E C > 
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Fig. 7. Dependence of the vibrational temperatures of nitrogen TN2 
(curves 1 and 2) and of oxygen T02 (i', 2') on the concentration 
NN2 at different concentrations of 02. i, i') NO~ = i016 cm-3; 
2, 2') N02 = 1017 cm -3. T = 800 K, n e = 109 cm -3. 

Fig. 8. Dependence of TN2 (curves 1-3) and of T02 (curves 1'-3') on 
NN0 at different values of N N and N02. i, i') NN~ = NO2 = i0 ~5 

--3. , __ -- 16 2 --3. 
cm , 2, 2 ) NN2 - N02 - i0 cm , 3, 3') NN= = N02 = 1017 cm -s 
T = 800 K, n e = 109 cm -3. 

E B. In this case the exchange EA+~-~EB can proceed via impurity molecules, EA~+~-Ec+-Z-EB, and 
since the exchange probability satisfies usually in this case the relation Q~(AB) < 

I~ the total rate of the VV' process for A and B can increase substantially. Q~(AC), QI~ , 

An illustration of the foregoing is the mixture N2-O2--N0 (EN2 > EN0 > E02). Figure 8 
shows the dependence of TN2, T02 on the concentration, calculated for different values of 
N02 , NN2 and N02/NN2 = i. It is seen from the figure that when NO is added, increase in 
the rate of exchange between the 02 and N2 causes the vibrational temperature of the oxy- 
gen first to increase. The appearance of a maximum and the subsequent decrease of T02 as 
well as of TN2 with further increase of the NO concentration are due to the increase in the 
rate of the VT processes in the collisions. 

It is important to note that a noticeable change of T0~ , as follows from Fig. 8, takes 
place when small amounts of the impurity are added (on the order of several percent of the 
total concentration). In the case of arbitrary mixtures, the sensitivity of the non- 
equilibrium distributions of the vibrational energy to the impurity additions, which change 
the ratio of the vibrational temperatures of the modes, making it closer to (2.3), will be 
larger the greater the increase in the rate of the VV' processes upon addition of the im- 
purities. 

Thus, by changing the concentrations of the individual components in the molecular-gas 
mixture and by introducing different impurities with corresponding choice of energies of the 
vibrational quanta, it is possible, under equilibrium conditions, to alter judiciously the 
distribution of the vibrational energy among the components. This is a very important cir- 
cumstance since it uncovers a possibility of controlling various physicochemical processes 
that depend substantially on the nonequilibrium energies of the vibrational modes, e.g., 
chemical reactions with participation of vibrationally excited molecules. Nor is it ex- 
cluded that catalytic and inhibiting properties of impurities in a number of chemical re- 
actions are due precisely to the action of these impurities on the relative reserves of the 
vibrational energies of the molecules that participate in the reaction. 

Another region where a practical application of the "controlling" action of the impuri- 
ties is possible is chemical lasers, particularly lasers based on the mixture DF--C0z or 
HF--C02. In these lasers, exothermic chemical reactions produce vibrationally excited DF or 
HF molecules. As a result of the VV' processes the vibrational energy from these molecules 
is transferred into the asymmetrical mode of C02. This produces in C02 a gap between the 
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vibrational temperatures of the asymmetrical and symmetrical modes, and the gap is suffi- 
cient to produce inverted population and lasing on the 00~176 transition. 

Rough estimates, however, show that owing to the large energy defect in the nonresident 
vibrational exchange DF--C02(~3), HF--C02(~3) the rate of this exchange is comparable with the 
rate of the VT processes, and this limits the favorable possibility of raising the tempera- 
ture of the asymmetrical mode v3 in C02 and the lasing power. Addition of DF-C02 of C 
molecules with quantum energy EC02 < E C < EDF (e.g., HBr molecules) to the binary mixture 
should apparently increase the rate of the VV' process and improve the operation of the 
laser. At the present time, however, owing to the absence of reliable values of the 
probabilities for a number of processes, a detailed analysis of the distribution of the 
vibrational energy in a system of the DF--C02--HBr type is impossible, and the performance 
of an appropriate experiment is most useful here. 

The high sensitivity of the partial vibrational temperatures to the concentration of 
the impurities makes it also possible to raise the question of diagnostics of the decisive 
stages of various chemical or physical processes, but this group of questions calls for 
additional research. 

4. Vibrational Distribution Function of Anharmonic Oscillators 

in a Mixture with a Rapidly Relaxing Molecular Component 

Besides the distribution of the total reserve of vibrational energy among the various 
modes, which was analyzed in Secs. i-3 of the present chapter for molecular mixtures, great 
interest is attached also to the distribution functions of the populations within each of 
the modes. For the model of harmonic oscillators in a quasistationary regime, these are 
Boltzmann distribution functions [30]. For the anharmonic model the situation, of course, 
is different but the distributionwithin the modes was analyzed only for two particular 
cases: when the role of the VV' predominates [39] (the distribution function in this case 
is of the Treanor type (0.i)) and with account taken of the VT processes, but for a regime 
with a slight deviation from equilibrium [19]. The purpose of this and following sections 
is to investigate the distribution functions in a binary mixture of gases of diatomic mole- 
cules A and B under substantially nonequilibrium conditions. 

To find these functions we add to the right-hand sides of the kinetic equations (i.i) 
for the oscillator A terms that describe the quantum exchange between A and B 

iea, ~+INBNA ~§ ~NB ~TA\ IZ~+I, ~ATB ATA ~, ~+I ~rB~TA~ 
E ~Vn+l, n ~ n+l ~, n+l ~+1 l'n) + E (2.21) \~-I, ~ v ~+i z v ?t-i 
k 

where ~,J is the probability (in cmS'sec -~) of quantum exchange between molecules A and B; 
-l,q 

N~, B are the population densities of the p-th level of the oscillators A and B; N A and N B 
are the total densities of oscillators A and B. 

Equations (i.i), which take into account terms of the type (2.21), must be supple- 
mented by a system of equations for the level populations of the oscillator B. In the 
general case, it is difficult to solve such a system analytically. For a "strong" deviation 
from equilibrium in both oscillators, this system can be reduced in principle to two coupled 
nonlinear equations of third order (see the next section). Here, however, we consider the 
case when the impurity oscillators B are rapidly relaxing, so that the populations in them 
are at equilibrium and are described by a Boltzmann distribution with a gas temperature T. 
This case is of practical interest when a study is made of relaxation in molecular mixtures 
containing a gas of polar (and consequently rapidly relaxing) molecules. 

Since we are considering only low temperatures T <EA, E B (E A and E B are the charac- 
teristic temperatures for the lower quanta of the oscillators A and B), we can confine our- 
selves, owing to the rapid decrease of the populations on the upper levels of the oscilla- 
tors B, to allowance for the vibrational exchange between A and B with participation of only 
the lowest quantum of the oscillator B, and can neglect the transfer of energy from B to A. 

-B~ol N A 
After summing (2.21) from 0 to i we then obtain soqi§ i+~" 

We note that the influence of the gas B on the vibrational relaxation in the oscilla- 
tors A depends on the relation between E A and E B. Thus, if E B < E A, the probability 

266 



i+t, decreases because of the increase of the resonance defect with increasing i. It 
follows therefore that the W' processes influence in this case mainly the vibrational 
temperature T A of the oscillators A, without changing the form of the distribution in A. 

If E A > E B the situation can be different. In this case the probabilities ~O1 
maximal at exact resonance, i.e., for mo determined from the expression "i+1,i are 

EB =.EA - -  2AEAm o. ( 2 . 2 2 )  

The determination of the distribution function in the oscillators A is similar to this 
case to that considered in Sec. 1 of Chap. I. It is then convenient to specify the ex- 

change probabilities ~o, in the simplest form, analogous to (i.ii): 
~i+*, i 

~01 Q~+,, ~ = Q'io (i -4- t) exp [6Asmo - -  I~AB (mo - -  i) [1, ( 2 . 2 3 )  
'b 

where Q~o is the probability (in cmS'sec -t) of the transfer of a quantum from A to B be- 
tween the very lowest levels, 6AB = 0"427/~AB/TAEA/~' and mo is given by (2.22). Taking 
(2.21) and (2.23) into account, it isnecessary to add in the right-hand side of (1.16) the 
term 

NoBQ~o exp (mo6AB --  6AB ]mo - -  i I) (i + 1) / (i). ( 2 . 2 4 )  

Under the condition mo > n* the solution of such an equation i > n* for nonradiative 
oscillators is of the form 

C Plo T6~v e x p  (6VTi) B Qloexp (6ABmo)6~zvT 
l(i) i_7t  Q~o 12hE 6VT(i ~-~-t) - - N o  QIo.t2AE6ABQ:,j_t ) exp(SAB[mo--il)sign(mo--i). ( 2 . 2 5 )  

The integration constant C, as before, is determined by joining together the Treanor 
functions (I.i0) and (2.25) at the point i = n*. 

The last term in (2.25) describes in fact the influence of the rapidly relaxing im- 
purity on the distribution function for the oscillators A in the case of a "strong" devia- 
tion from equilibrium in A and under the condition mo = n*. As seen from (2.25), the influ- 
ence can be very substantial in a number of cases. 

5. Distribution Functions in a Mixture under Essentially 

Nonequilibr ium Conditions 

We turn now to an analysis of the vibrational distribution functions in a binary mix- 
ture of molecular gases A and B for strong deviation from equilibrium. We obtain first for 
this regime differential equations analogous to (1.16). If we add to Eq. (i.i) the term 
(2.21) which describes the VV' process, then, summing (i.i) over n from 0 to i, going over 
to a continuous distribution function of the type (1.8), and replacing the summation by 
integration, we obtain in place of (1.9) an integrodifferential equation for the distribu- 
tion functions f(i) in the oscillator A. This equation differs from (1.9) by the presence 
of additional terms 

NBp.A B A ' ~  . . . . .  § [ ln/A(0 -- ldm" NA , + i , i - k ~ k ' i + , , ~ .  jB(m) .d di dln/B("')am -}- EA EB--2AEA*-~2AEBmT ( 2 . 2 6 )  

An equation for fB(i) can be written out also in analogy with (1.9) and (2.26). The 
system of such simultaneous integrodifferential equations is very complicated to analyze. 

But if it is recognized that at low temperatures of the gas the probabilities ~m,m+1 (AB) 
i+1,i 

have a sharp maximum at resonant VV and VV' energy exchange, then these equations can be 
rewritten in a differential form similar to (1.16). For this purpose, specifying the proba- 

Qm, m+* ~ ,  m+, 
b i l i t i e s  i + t , i  (AA) and i + , , i  (AB) i n  t h e  fo rm  ( 1 . 1 1 )  and ( 2 . 2 3 )  and e x p a n d i n g  fA(m) 
in a series in the vicinity of the point m = i, and fB(m) in the vicinity of the point m = 
mi -: mo + (~AB/6BA)iwe obtain after integrating in (1.9) with respect to m with account 
taken of (2.26) 

3QtoNAd( [ Ar r ,  AA ; , AB . A,A ~%r d~ (i + 1) ~ / i  (i) 2 ~  e~ t. IA (o ]~, 
2' d ~  ] )  -~ a* a v i + l ,  i ] a  (i) V- -'~ BPi+I ,  i /A (1) ~-  z+l, i/A (*) -~ 

( 2 . 2 7 )  
[ d l n / a ( i  ) dln/B('ni) ] 

' 2QI~ e 6AB'*~ (i 1) fA (i) (rn~ • t) fB (m~) d* d , . ,  i j = D. 
~-  6A B - . 
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A second equation that connects fA and fB can be obtained in similar fashion. 

A system of such two nonlinear coupled differential equations has a lucid approximate 
analytic solution if the concentration of one of the components greatly exceeds the con- 
centration of the other. This case is also of practical interest, since it makes it pos- 
sible to estimate the coefficient of separation of the isotopes in chemical reaction of 
vibrationally excited isotopic molecules with a considerable excess of a definite isotope 
in the initial mixture of molecules (see Chap. III). 

Let, e.g., N B ~N A. Then the system of equations of type (2.27) breaks up into two 
independent equations. The distribution function fB(i) is formed in B--B collisions, and the 
equations for it, as well as the approximate analytic solution, coincides with (1.16) and 
(i.i0), (1.18). On =he other hand, a simplified equation for fA is obtained if one neglects 
in (2.27) the terms that contain N A. The solution of such an equation with account taken 
of (i.i0) and (1.18) is 

[A (i) = 6"2 fB tYt0 ~ ~ i exp [ PI. 5BA 
. [ -~1,, 2 (.~i + 1) /B(m~)  " (2.28) 

The integration constant C2 is determined from the normalization condition ~/A(i) = I. 
i 

If the exponential factor in (2.28) is approximately equal to unity and AEB/AEA~--~I, then 
it is seen that fA "duplicates" the function fB with a shift amounting to several levels. 
Physically this is explained by the fact that fA(i) is formed in resonant processes of 
quantum exchange between A and B. 

6. Rate of Energy Exchange in a Binary Mixture of 

Anharmonic Oscillators 

It is clear that anharmonicity of the oscillations can exert an influence not only 
on the distribution function, but also on the rate of exchange of vibrational quanta between 
different modes. In the case of harmonic oscillators, the term responsible for the single- 
quantum W' processes in the relaxation equation (2.1) for the reserve of vibrational quanta 
is the first term. To obtain an expression that replaces this term for the anharmonic 
model, it is necessary, after specifying the probabilities of the processes, to calculate 
the distribution functions fA(n) and fB(k), by multiplying Eq. (i.i) with allowance for the 
added terms (2.21) by n, and sum over all the n. Since, however, in the general case it is 
difficult to obtain analytic expressions for fA(n) and fB(k) in a gas mixture, we confine 
ourselves below to weak deviation from equilibrium for both oscillators and to the case 
when the impurity gas is rapidly relaxing. In the first case, as indicated above (see 
Chap. I, Sec. 2, as well as [24]), it is possible to use Boltzmann distribution functions 
in the sun=aation and take the anharmonicity into account only in the expressions for the 
probabilities. 

We obtain, after specifying the probabilities of the VV' processes in the form (2.23), 
the rate of energy exchange between anharmonic oscillators with E A > E B. If it is assumed 
that mo is relatively large, then upon summation in (i.i) the expression (2.23) for the ex- 
change probability can be additionally simplified by leaving out the absolute-value sign. 
We than obtain 

( d s A / d t ) v v ,  = - -  QIoNB~ ( E A / T A ,  - -  bAB) ~ ( E B / T B ,  bBA) {exp ( - -  E A / T A )  - -  exp [ - -  E B / T B  - -  (EA - -  EB)/T]}. ( 2 . 2 9 )  

The function ~ (x, y) in (2.29) is defined in analogy with (1.49): 

(x, y) = (t  - - e -~) / ( t  - -  e-~-Y) 2. ( 2 . 3 0 )  

It is seen from (2.29) that the presence of anharmonicity increases the rate of energy 
exchange in oscillator A and decreases it in oscillator B. Physically, the reason is that 
at E A > E B the exchange of the upper quanta in A with the lower quanta in B becomes more 
effective in anharmonic oscillators on account of the improvement of the resonance condi- 
tions. At the same time, in exchange of the upper quanta in B with the lower quanta in A, 
owing to the increase of the resonance defect, the rate of exchanges decreases. 

Expression (2.29) can be generalized also to the case of multiquantum exchange, if m 
quanta of oscillator A are exchanged with n quanta of oscillator B when the molecules A and 
B collide. In this case we obtain 
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( deA~ Non I --exp(-- EA/TA) i --exp(-- EB/TB) 
'df-]vV" =NBQmo [t --exp(-- EA/T A ~ m6AB)] m+l [t --exp(-- EB/T B --n6BA)] n+l X 

(2.31) 
• [ e x p ( - - m E A / T A ) - - e x p ( - -  n TBEB mEA--TnE~)]- 

I t  i s  e a s y  to  show t h a t  i f  E A < E B t h e n  the  e x p r e s s i o n  f o r  ( d ~ A / d t ) v v ,  t a k e s  t h e  form 
( 2 . 2 9 )  o r  ( 2 . 3 1 ) ,  b u t  6AB and ~BA have  o p p o s i t e  s i g n s .  

In  t h e  c a s e  when t h e  i m p u r i t y  gas  B i s  r a p i d l y  r e l a x i n g ,  we can o b t a i n  an e x p r e s s i o n  
f o r  t h e  r a t e  o f  t r a n s f e r  o f  v i b r a t i o n a l  e n e r g y  f rom A to  B even  w i t h o u t  assuming  a "weak" 
d e v i a t i o n  f rom e q u i l i b r i u m  i n  A. I f  a t  t h e  same t ime  we u se  f o r  t h e  d i s t r i b u t i o n  f u n c t i o n  
A e x p r e s s i o n s  ( 1 . 1 0 )  and ( 2 . 2 5 )  ( w i t h o u t  t a k i n g  t h e  s econd  and t h i r d  t e rms  i n  t h e  r i g h t -  
hand s i d e  of  ( 2 . 2 5 )  i n t o  a c c o u n t ) ,  t h e n  a f t e r  summation and i n t e g r a t i o n  i n  ( 2 . 2 1 ) ,  we ob -  
t a i n  i n  the  same manner  as  in  Sec 2 of  Chap. I 

dSA ~ EA EA C 
- -  N B Q I 0 ~  ( - ~ A ' -  6AB)exp ( - -  -~--A) q- 6A----~ [exp (6ABn**)- exp ~xBn*)] ~r  EA > EB, -77- / vv  , ~ (2.32a) 

(deA/dt)vv. ~--~ -- NBQIo~ (EA/TA, 6AB) exp (-- EA/TA) ~r EA ~ E~. (2.32b) 

The constant C in (2.32) is the same as in expression (2.25), while n* and n** are de- 
termined from (1.14) and from the condition that the right-hand side of (2.25) vanish. 

To conclude this chapter, we note that the foregoing analysis of the vibrational relaxa- 
tion in gas mixtures is to some degree fragmentary. However, although the equations of 
vibrational kinetics for the mixture of anharmonic molecules cannot be solved in general 
form, an analysis of concrete particular cases demonstrates the need for taking into account 
the real anharmonicity in practical problems. At the same time, these results give grounds 
for an analysis of the energy distributions that exert a substantial influence on the course 
of the physical-chemical processes (e.g., on the rate of a chemical reaction) and on the 
operation of various physical devices (e.g., chemical lasers), as well as for an analysis 
of the possibilities of a judicious action on this distribution. 

CHAPTER III 

APPLICATIONS OF VIBRATIONAL GENETICS 

We consider the applications of the analyzed vibrational-relaxation theory questions 
to concrete problems such as the calculation of the rate of nonequilibrium dissociation in 
a gas of diatomic molecules and in a mixture of molecular gases, the calculation of the iso- 
tope separation coefficient in chemical reactions in which vibrationally excited molecules 
particulate, as well as an investigation of processes in a carbon dioxide electric-dis- 
charge laser. 

i. Dissociation of Diatomic Anharmonic Molecules in Selective 

"Heating" of the Oscillations 

One of the most vital problems whose analysis is connected with the use of the results 
of Chaps. I and II is the action of monochromatic radiation on matter and the possibili- 
ties of stimulating and controlling chemical reactions in which infrared laser radiation is 
absorbed by a gas. 

The simplest chemical reaction whose rate can be calculated as a function of the power 
absorbed in the vibrational transitions is the dissociation reaction. In this section we 
investigate the dissociation of diatomic molecules in selective "heating" of the oscilla- 
tions. (We note that selective "heating" can be produced not only by optical methods but 
also, e.g., by electric pumping.) We consider here the case, not analyzed so far, of 
"strong" deviation from equilibrium, which leads to the largest reaction rate and is con- 
sequently of greatest interest for the problem of initiation of chemical reactions by laser 
radiation. 

We shall regard dissociation as motion of molecules upward in energy space over the 
vibrational levels, followed by a transition of the levels from the boundary level k to the 
continuous spectrum. 
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For a Morse oscillator, the value of k is connected with the energy E~ of the vibra- 
tional quantum, the anharmonicity AE, and the dissociation energy D by the relation 

k : 2D/EI~EI[2AE.  (3.1) 

The dissociation rate is proportional to the population of this level, and its calcu- 
lation calls for knowledge of the distribution function (up to the level k). Unfortunately, 
at so "strong" a deviation from equilibrium it is difficult to obtain exact analytic ex- 
pressions for f(i) in the entire vibrational spectrum range, and the function f(i) obtained 
in Sec. i of Chap. I is suitable only when i < n **, where n ** is determined from expres- 
sions of the type (1.21). The situation, however, is facilitated by the fact that at i > 
n** the principal role is assumed in the formation of f(i) by VT processes and by dissocia- 
tion. Therefore the distribution here should be close to a Boltzmann distribution with the 
gas temperature T and is distorted by the dissociation process. Assuming that this dis- 
tortion is the same as in the case of equilibrium dissociation, we can write for the rate 
constant KD(T~) of nonequilibrium dissociation 

KD (T1)IKD (T) ~ / (i)// (i,T) ~r i > n**, (3 .2 )  

where KD(T) and f(i, T) are the rate constant of the dissociation and the distribution func- 
tion at equilibrium with temperature T. The value of KD(T) for the anharmonic-osciilator 
model can be calculated by following [90]. If at the same time the probabilities of the 
processes can be chosen in the form (i.ii), then we obtain 

KD (T) ~ P~ok/ (0, T) V ' ~  exp ( -  D/T + k6vr) [l ~- r (x)] -1, (3 .3 )  

where x = 6VT T/~7~AE , ~(x) is the error function. Since we are interested in the case T 
E~, we have then f(0, T) ~ i. The nonequilibrium function f(i) at the point i = n**, for 
the case of "strong" deviation from equilibrium, can be approximately estimated by using 
e~pression (1.18) and neglecting in it the terms that describe the influence of the radia- 
tive and VT processes. Taking this into account and using a Boltzmann function for f(i, T), 
we obtain from (3.2) and (3.3) the value of KD(TI): 

n@~J / / F E1 E1--AEn**n, , _  AE (n , )2_0 .5 ]  ~ 
KD(T1)~-~KD(T) n**+l  L ' - -exp\- - -T-T]3 exPL T T 

_- P.ok(n* + exp ( -  -roT. )] ((n* + + r (x}j}-, • 
E1 

[ aT 
[ D E,--AEn** ** AE ] 

•  - - - -T-+k6vT+ T T (n*)~-- 0"5 ' (3 .4 )  

where n* and n** a r e  c a l c u l a t e d  from r e l a t i o n s  ( l . 1 4 )  and ( 1 . 2 1 ) .  

We n o t e  t h a t  e x p r e s s i o n  (3 .4 )  d i f f e r s  f rom the  ana logous  f o r m u l a s  f o r  KD(T~), o b t a i n e d  
earlier in [3, 21]. This difference is due to the substantial difference between the vi- 
brational function of the type (1.18) and the functions obtained in [3, 21] for the case of 
"weak" deviation from equilibrium. 

The dependence of the rate constant K D on the pumping probability W~o and its value at 
saturation can be easily obtained by using (3.4) and expressions (1.54) and (1.52) for 
TI(WIo) and TI sat. It is clear, of course, that the result is valid if the dissociation 
process itself does not influence the reserve of vibrational energy, since Eqs. (1.52) and 
(1.54) were obtained for such a case. 

In the more general case, the quantities T,(W,o) and T~sat must be calculated by adding 
to the left-hand sides of (1.47) and (1.48) the term KD(T~)D/E~ , which describes the dissi- 
pation of the vibrational energy by dissociation. However, since the time TVI of the energy 
relaxation on account of the VT processes decreases considerably with increasing T~, the 
existence of such a regime becomes difficult and is possible only at a definite relation 
between the molecular parameters Q~o/P~o, AE/T, 6VV, 6VT, and k. Let us obtain this rela- 
tion, assuming that to overcome the energy dissipation due to dissociation it is necessary 

to satisfy the condition 

KD (T1)D/EI>~e/xvT. (3 .5)  

Substituting here the expressions (3.4) and (1.36) for KD(T~) and E/~VT, we obtain the 
condition imposed on T~ and necessary to satisfy (3.5): 

4AE In 6VT / k 6vTT T '/~ 
> - , 
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where 

= ( -  

2k~6VT V AE/~T 
B2 = n * * [ l §  Cz)] 

We note that condition (3.6) is quite stringent and it can be far from always satis- 
fied, since the temperature T~, which can be obtained by increasing the pump, cannot exceed 
the value of T~ sat given by Eq. (1.52). Thus, the regime in which the energy dissipation 
is effected by dissociation is possible only if T~ sat ~ T~. Substituting for these tem- 
peratures their values (1.52) and (3.6), and assuming that k/n** ~ i, [i -- exp(--E1/T1)]s/ 
[I-- exp(--E~/T~ -- ~VV] 2 ~ i, we obtain a relation between the parameters Q~o/P~o, AE/T, 
~VV, ~VT , and k at which the indicated regime is satisfied. For a pure gas, when ~VT = 6VV, 
we obtain 

Figure 9 shows, on the plane of the points (k, Q1o/P~o) at different 6VV and AE/T, the 
"demarcation" lines obtained from (3.7) with the equality sign; they divide the plane into 
two regions of values of k and Q~o/P~o, The inequality (3.7) is satisfied, and consequently 
the dissipation of the energy from the system proceeds mainly via dissociation at values of 
k and Q~o/P~o that lie in the lower right-hand region. Estimates carried out for the HCI 
molecule at 300K (k=25, AE/T=0.25, Q1o/P1o =1.6"10 = [91, 92], 6vv=0.43 [93]) show that 
the nonequilibrium dissociation of this molecule is slow and does not influence the energy 
balance. On the other hand, for the CO molecule at T = 300 K the point (k, Q~o/P1o) of 
Fig. 9 will lie in a region where dissociation can exert an overwhelming influence on the 
relaxation of the energy only if the long-range forces of molecule interaction are taken 
into account in the calculation of Q1o (this leads to an increase of Q~o). 

The degree of selective action by laser radiation on the rate of a preferred chemical 
reaction is determined also by the conditions for the maintenance of a low gas temperature 
in the course of the reaction. It is clear that the transition of vibrational energy from 
the vibrational mode "heated" by the radiation to the translational degrees of freedom 
leads to a lowering of the selectivity, The most favorable regime must therefore be taken 
to be the one in which the investigated chemical reaction takes place within a time shorter 
than TVT. 

Figure i0 shows for pure molecular gases CO and HCI the dependences of the parameter 
KD(T~)~VT, which determines the ratio of the rates of two competing processes (dissociation 
and vibratlonal--translational relaxation) on the pumping probability. It is seen that even 
in the saturation regime (at W1o/Q~o ~ I) it is impossible to produce dissociation within 
times shorter than TVT. In the general case, on the other hand, the requirements imposed 
on the parameters Q1o/P~o, AE/T, 6VV, ~VT, k and needed for such a rapid dissociation are 
also stringent, since it is clear that it is even more difficult to satisfy the condition 
KD(TI) ~ TV~ than relation (3.5). 

The obtained conclusions pertain, of course, only to the dissociation reaction. It is 
obvious that for other reactions, with account taken of vibrationally excited diatomic 
molecules, large rate constants under nonequilibrium conditions are possible provided the 
steric factor of the reaction is large enough, and the activation energy of the reaction 
is such that in the saturation regime we have @act~n**[E1 --AE (n**--1)]. 

2. Nonequilibrium Dissociation in a Mixture 

As shown above, it is difficult to effect rapidly (within a time of the order of TVT) 
nonequilibrium dissociation in a single-component system of diatomic molecules. This cir- 
cumstance decreases considerably the possibility of controlling the dissociation process 
by "heating" the oscillations by laser radiation, inasmuch as the radiation energy goes 
over in this case to the translational degrees of freedom. More promising therefore is the 
use of polyatomic molecules with selective heating of some preferred vibrational mode as the 
chemically active components. Rapid dissociation becomes possible in this case if it is 
due to predissociation of the molecules from such vibrational levels of this mode, for which 
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Fig. 9. Demarcation lines that separate the values of the molecu- 
lar parameters (k, Q1o/P1o) at different 6VV and AE(T into regions 
into which dissipation of vibrational energy via the dissociation 
channel is possible (region to the right of the curves) and im- 
possible (to the left of the curves). The dissociating molecular 
gas is assumed to be diatomic and single-component (~VT = ~VV). 
i) AE/T = 0.25, 2) AE/T = 0.0625. 

Fig. i0. Dependence of the parameter KD(Tz)TVT on the pump power 
Wzo/Qzo for the molecules CO (curves 1-3) and HCI (curve 4) at 
different gas temperatures (i -- 500, 2, 2', 4 -- 300, 3 -- 200 K). 
Curve 2' -- calculation with allowance for the influence of the 
long-range forces on the probability Qzo. 

the VT processes do not yet influence the formation of the distribution function. This 
conclusion is confirmed both by experiments [62, 63] and by theoretical analysis [21, 66]. 

In a number of cases, however, it may turn out that for one reason or another (e.g., 
for lack of a laser of the necessary wavelength) it is difficult to obtain a direct selec- 
tive "heating" of a preferred vibrational mode. Interest is attached in this connection in 
an investigation of dissociation with indirect "heating" of the vibrations in a mixture of 
molecular gases, when the external source (e.g., laser radiation) excites one vibrational 
mode, and the "heating" and dissociation by a second mode are decreased by nonresonant vi- 
brational exchange between the modes (W' processes). One should note here one more im- 
portant feature of chemically active molecular mixtures, which was indicated in Sec. 3 of 
Chap. II. It consists in the fact that for a mixture, by varying the relative concentra- 
tions of the molecular components, it is possible, by selective "heating" of the oscilla- 
tions, to vary judiciously the distribution of the vibration energy among the modes, and 
consequently to control chemical processes. 

We investigate below nonequilibrium dissociation in a binary mixture of a diatomic gas 
and a monatomic gas, when an external source pumps energy into the vibrations of the di- 
atomic moleculej and the dissociation is produced as a result of predissociation from the 
vibrational levels of one of the oscillation modes of the monatomic molecule. 

In the analysis, following Sec. i of the present chapter, we shall neglect for the 
diatomic molecules the dissipation channel of vibrational energy by dissociation. For the 
investigated vibrational mode B of the polyatomic molecule, we choose the truncated anhar- 
monic Morse oscillator model with m vibrational levels such that the VT processes in B still 
do not influence the form of the distribution function, and can become important only for 
the determination of the reserve of vibrational energy in B. For the oscillators A we shall 
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consider an arbitrary degree of deviation from equilibrium, while for B we confine ourselves 
to the assumption that only a "weak" deviation takes place. Then, using for the expression 
(deA/dtvv') of the single-quantum vibrational exchange between A and B the formula (2.29), 
with optical pumping acting on the levels 0 and i of the oscillators A, we easily obtain a 
system of equations for the reserves of the vibrational quanta EA and E B in A and B. If we 
disregard here the spontaneous radiative decay of the levels and neglect small equilibrium 
values of CA and EB, then we have 

�9 EA EB ,6B' EA - - e x p / -  EB E A - - E B  
dt TAT 

(3.8) 

+ § 0 1] 

dSB SB KB(m---SB)~ -NAOIOT(T~ --6A> ~( '~B 6B)[exp(--  "~A)--exp(  EB E A T E B ' ) ]  " 
dt = TB T ' ' T B 

A Here eA, ~VT, and fA(0) a re  de termined  by r e l a t i o n  (1 .36 ) ,  and the f u n c t i o n  ~ (x, y) by Eq. 
B (2 .30 ) ,  wh i l e  fo r  eB and TVT we use the expres s ions  t ha t  d e s c r i b e  the "weak" d e v i a t i o n  from 

e q u i l i b r i u m  ( i . e . ,  the f i r s t  terms in Eqs. ( 1 . 3 6 ) ) .  The second term in  the r i g h t - h a n d  s ide  
of the  second equa t ion  of (3.8)  takes  i n to  account  the d i s s i p a t i o n  of the v i b r a t i o n a l  
energy of the oscillators B as a result of their dissociation. The expression for the 
dissociation rate constant K D in a single-component system of truncated anharmonic oscilla- 
tors was investigated in [21, 66]. It can be easily generalized to include the case of a 
binary mixture, and for single-quantum vibrational exchange between the oscillators it takes 
the form 

~B / EB AEB B -I 

(3.9) 

( - -~-( i -  t)--y- + 

Thus, the system (3.8) jointly with (3.9) determines the dependence of TA, TB, and KD B 
on the pump probability W~o and on the relative concentrations NA/N B for a binary mixture of 
anharmonic oscillators, one of which is truncated. In the quasistationary regime we can 
assume in the analysis of (3.8) that dr = dEB/dt = 0. 

By way of illustration, Eqs. (3.8) under the conditions dsA/dt = 0, dtB/dt = 0 were 
solved for the specific mixtures N~--N20 and CO-N20 at T = 300 K (in the case of N2--N20 we 
assumed not optical but electric pumping of N2). The calculation results are given in Figs. 
ii and 12, which show plots against W~o/QAo and NA/NB of the values of TA/E^, T=/En, K~/oB^ 
and of the parameter S : m~(r + ~B/~T)- . This parameter, which is the ratio of the 

energy fluxes going into dissociation and into the translational degrees of freedom, just 
as the parameter KDTVT (see Sec. i of the present chapter), characterizes the selectivity 
of the action of the absorbed radiation on the dissociation reaction. It is seen from the 
figures that the vibrational temperatures T A and T B can depend strongly both on W~o and on the rela- 
tive concentrations of the components, and the connection between them is not determined by the 
known Treaner relation [2], when EB/T B = EA/T A -- (E A -- EB)/T (see curves 2 and 2'). The 
reason is that the VV' processes are not dominant for the considered mixtures, and conse- 
quently the quasiequilibrium between the oscillator, which is assumed in the Treanor rela- 
tion, is not present. 

A change of TB/E B leads, naturally, to substantial changes of K B and of the "selec- 
tivity" coefficients S. It should be noted that in certain regimes one can obtain S > i 
and this, naturally, should lower the degree of heating of the gas. In a saturation region, 
when W~o/Q,o ~ i, high dissociation rates can be reached at large relative densities 
NA/N B ~ i, but the value of S decreases in this case, owing to the increased role of the VT 
processes for the oscillators A. 
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On the whole, however, the results of the calculation of the nonequilibrium dissocia- 
tion in a mixture of molecular gases make it possible to conclude that the use of mixtures 
for a purposeful action on the rates of chemical reactions of laser radiation is promising, 
for this extends the class of investigated substances and offers an additional possibility 
of controlling the reactions by changing the relative concentrations of the molecular com- 
ponents. 

3. Isotope Separation in Chemical Reactions of Vibrationally 

Excited Molecules 

One of the most important recent applied problems is isotope separation in chemical 
reactions that take place at a low translational temperature with participation of mole- 
cules in vibrationally excited states. This possibility of isotope separation by this 
method and its high efficiency were pointed out in [73] and demonstrated experimentally 
in [74, 75]. A theoretical analysis of this problem and, in particular, an estimate of the 
isotope separation coefficient and of the absolute concentrations of the isotopes, obtained 
after the separation, calls for a calculation of the vibrational distribution functions 
in a mixture of molecular gases. 

The purpose of the present section is to estimate, using the results of Chap. II, for 
the case of low gas temperatures and large reserves of vibrational energy, which is of 
greatest interest for applications, the isotope separation coefficient in the reactions that 
take place in a mixture of vibrationally excited isotopic molecules A and B with a con- 
siderable excess initial concentration of one of the isotopes. 

We shall assume in the analysis, for simplicity, that the reaction takes place only 
between molecules A and B that land on levels higher than the respective levels k A and k B 
whose energy is equal to or larger than the activation energy ~act. Since the anharmonici- 
ties of the isotopic molecules are close, and the quantum energies E A and E B differ insig- 
nificantly (with the exception of hydrogen isotopes), it follows that k A ~ k B = k. During 
the initial stage, when a small relative fraction of the molecules takes part in the reac- 
tion, the separation coefficient is determined by the rate constants YA and YB of the reac- 
tions with participation of A and B [73]: 8 = yA/YB -- i. Since ~A(B) % ZA(B)fA(B) (k), (Z A, 
Z B are the steric factors of the reactions) we have 

ZA /A(k) i. (3.10) 

At relatively small Z A and ZB, the reactions do not distort the form of the distribu- 
tion function. In this case at a concentration NB ~NA, in accordance with Sec. 5 of Chap. 
I~% we can use for fB(k) expressions (1.18), and for fB(i) Eq. (2.28). A particularly lucid 
form of fA(i) is obtained if one neglects in (2.28) the terms containing Pg~, PB~, A~o (this can 
be done in many practical cases). We then obtain 

[ EA AEA ] 
fA(0)exp .-~--A i ~i(i--I) , O < i < u * - - m o ,  (3.11a) 

/A (0 = 

. AE A i)I~SB/~EA i~.n*--mo.  (3.11b) 

For the separation coefficient B we have in this case 

ZA [ EB --E A EB~ 
-'Z~-B exp~ E B T / - - 1 '  n * > / k ~ m o ,  (3.12) 

= Z A E B~-E A E B(n*T-m0/2) J] -2~B exp [ - - i ,  n*~<k. (3.13) 

Expression (3.12) was obtained in [73] for a system of harmonic oscillators, and was 
later generalized in [74] to include also Morse oscillators. Under substantially nonequi- 
librium conditions, however, Eq. (3.12) is valid only if fA(i) and fB(i) are Treanor dis- 
tribution functions up to the level k corresponding to ~ac[- When T is lowered or the non- 
equilibrium reserve of the vibrational energy is increased, the level n* can become lower 
than k, the functions fA and fB on the upper levels take the form (1.18) and (3.11b), and 
the separation coefficient ~ should be calculated from (3.13). Notice should be taken of 
new qualitative distinguishing features of 6, which follows from (3.13). In contrast to 
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Fig. ii. Plots, for the gas mixture Na--NaO, of the vibrational 
temperatures TNI/ENI (curves i), TNaO/EN20 (curves 2), the 
parameter S (curve 3), and the dissociation-rate constant of 
NaO KN20/QN20 (curve 4) on the pump power in Na W1o/Q~(a) and on 

A) --IO 

the relative concentration NNi/NNa 0 (b) at T = 300~K. a) 

NNi:NNiO = i:i, b) W:o/Q~ = i02. Curves 2' correspond to the 
value of the vibrational temperature in NaO at quasiequilibrium 
of the vibrational energy in Na and NaO. 
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Fig. 12. Plots, for the gas mixture CO--NaO, of the vibrational 
temperatures Tco/Eco (curve i), TNaO/ENaO (curves 2), the param- 
eter S (curves 3), and the NO2 dissociation-rate constant 

/O CO (a) and vNaO/nNaO (curves 4) on the pump power in CO W1o~ ,io 
L~D # ' ~  i 0 

on the relative density Nco/NNa O (b) at T = 300~ a) NCO: 
NNaO = i:i, b) W:o/QC~ = i0 ~. Curves 2' correspond to the value 
of TNaO/ENaO at quasiequilibrium of the vibrational energy of CO 
and NaO. 

275 



/G z 

~/~.~ 
/#z _ g ~  

I \ 
g.i ~f 

f .e 
1,z 
"I--I I I I I I I 
/GO" /EG Z~G s 7, 

Fig. 13. ~.ependence of the separa- 
tion c~o%zicient 8 of the isotopes 
N'sO ~a N~40 in the chemical reac- 
tion 0 + N2§ + N on the gas tem- 
perature T at different values of 
the vibrational temperature TB of 
the nitrogen molecules. Curve 3 
was plotted in accordance with Eq. 
(3.12). 

(3.12), the separation coefficient under essentially nonequilibrium conditions becomes de- 
pendent on the nonequilibrium reserve of the vibrational energy (i.e., T B) and is practi- 
cally independent of T. Indeed, if account is taken of the explicit dependence of n* on T B 
and T (Eq. (i.14)), then (3.13) takes the form 

[ EB-- EA EB< TB EB--EA--2AE>] (3.14) 
= e x p [  T ~  25E l EB 2T " 

By way of illustration, Fig. 13 shows the dependence of ~ on T at different values of 
T B calculated from Eqs. (3.12) and (3.13) for the case of separation of nitrogen isotopes 
N .4 and N ~s in the reaction O + N2§ + N, which proceeds with a nonequilibrium reserve of 
vibrational energy in Na, and which has an activation energy ~act = 38,300 ~ (3.3 eV). The 
value ZA/Z B = 1 was used in the calculations. It is seen that with decreasing gas tempera- 
ture and with increasing TN2 the separation coefficient can differ considerably (by up to 
several orders of magnitude) from the value obtained from (3.12). The same figure (points 
1 and 2) shows the experimental values of 8 measured in [74, 75], respectively, in which the 
reaction of formation of N~O and N'sO in air was stimulated by exciting vibrations of N2. 
The initial temperature of the gas mixture was equal to the liquid nis temperature but, 
unfortunately, no measurements of T and TN2 are carried out in the course of the reaction. 
Since, however, the reaction constants are proportional to the populations of the level k, 
which according to (I.i0), (i.18), and (3.11) increase under nonequilibrium conditions with 
decreasing T, one can expect the experimentally measured relative concentrations of N~O 
and N~sO to correspond to the initial reaction temperatures. The experimental values of B 
in the figure correspond, therefore, to the temperature T ~ 100~ It is seen that in this 
case a good agreement with experiment can be obtained only by calculation in accordance with 
Eq. (3.13) or (3.14). 

We note that when the component concentrations in the mixture are of the same order 
the analysis is different from the case when the chemical reactions distort the distribu- 
tion functions. It is to be expected, however, from physical considerations and from a 
comparison of the results obtained here with calculations in the approximation of "weak" 
deviation from equilibrium [20, 74, 77], that the main conclusions of this section remain 
unchanged. 
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4. Analytic Model of Gas-Discharge CO Laser 

The high efficiency and the large radiation power in the stationary regime distinguish 
the gas-discharge CO laser, in analogy with the C02 laser, from among the remaining gas 
lasers operating in the IR band. Many studies have by now been devoted to both the experi- 
mental and the theoretical study of the properties of this laser (see, e.g., the reviews 
[31, 52-55]). The important role played in the formation of the inverted population and in 
the lasing mechanism by the anharmonicity of the vibrations of the CO molecule has been 
elucidated [2, 94]. For a correct theoretical description of the kinetic processes in an 
active laser medium with allowance for this anharmonicity, an analysis of the populations of 
more vibrational levels is necessary. Such an analysis was carried out by now on the basis 
of the numerical solution of a system of a considerable number (from 20 to 80) of nonlinear 
population-balance equations. Despite the high accuracy, this approach has also signifi- 
cant shortcomings: it is very cumbersome and lacks physical clarity. It is precisely for 
these reasons that a number of features of the operation of CO lasers (dealing, e.g., with 
the thermal regime) have not yet been made clear, no quantitative interpretation was pro- 
posed for the experimental results, and the question of optimizing the laser parameters has 
not been investigated. 

In the present section we theoretically investigate, on the basis of the analytic 
theory developed in Chap. I, the vibrational relaxation of anharmonic oscillators. We 
study also the phsyical processes that occur in a stationary electric-discharge laser based 
on a CO-He mixture, and solve the self-consistent problem of determining the properties that 
are important for lasing (the gain, the vibrational and translational temperatures, the 
populations of the vibrational levels) as functions of the discharge parameters (current 
density, electric field intensity, radius and temperature of the discharge tube, total and 
partial pressures of the gases). It is the examination of just this problem which makes it 
possible in principle to solve the problem of optimizing the laser parameter. 

In a theoretical analysis of the processes in a CO laser, the results of Chap. I on 
the determination of the distribution function and the relaxation rate of the vibrational 
energy in a system of harmonic oscillator should be modified and account must be taken of 
the possible influence, under real operating conditions, of the diffusion of the excited 
molecules towards the walls of the discharge tube and the reabsorption of the radiation. 
Let us consider in succession the roles of these factors. 

Influence of Diffusion on the Vibrational Distribution Function. A rigorous account 
of this influence is extremely difficult and calls for solving the diffusion equation with 
boundary conditions that characterize the vibrational relaxation on the walls of the dis- 
charge tube [58]. However, since (as will be shown by subsequent analysis) the diffusion 
plays a negligible role in the regime of greatest interest for practice, we shall take its 
role into account approximately, by adding to the kinetic-population-balance equations a 
term that describes the loss of the vibrationally excited molecules (with a single-quantum 
transition of these molecules to a lower vibrational level), with a diffusion probability 
V d D(2.4/R) 2, where D is the diffusion coefficient and R is the radius of the discharge 
tube. In the investigated CO-He mixture, taking into account the dependence of D on the gas 
temperature T and on the partial pressures of the helium and carbon monoxide PHe, PCO [95, 
96], we obtain 

8.4.i0-~T~(2.4/R)~ (3.15) 
Vd'sec-l~"~ 7pco + PHe 

Here and below T is expressed in K, the partial and total pressures in torr, and R in cm. 

If the influence of the diffusion is taken into account by the indicated method, 
analytic expressions can be obtained for the distribution function f(i) of the CO molecules 
over the vibrational levels i. For a weak deviation from equilibrium, when the vibrational-- 
vibrational exchange process that makes the largest contribution to the population is the 
exchange with the lower vibrational quantum of CO, we obtain for f(i), following the calcu- 
lations of [19], 

i--I 

/(i)~/(O)exp[- i - ~  @i(i i) H Wj+a, (3.16) 
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where the factors Pj+, take into account the influence of the vibrational-translational 
energy exchange and of the single-quantum spontaneous radiative transitions and of diffu- 
sion: 

r~Ol i p 
~Fj+I ~ %~j+l,j--- j+l, jexp (EI/T I- EI/T ) (3.17) 

Ol 
Qj+I -~" Pj+I ,  J -{- AJ+I,  J ~-  I 'd 

For a strong deviation from equilibrium, when the most substantial of the VV processes 
are the resonant ones, we obtain for the distribution function with allowance for diffusion, 
by the same procedure as in Sec. 1 of Chap. I, 

E 1 . A E  . . l i -'- 

l l-.~ Rio T6~rv ~vTi  , ~  4 . . . .  2o . . . .  i n =  :- oq 
/ 
/ . L, hE i'~] I - -AEi lE1 . i .  _ _ , ~  
[ x t ' - -  s-7~-~ )J 7 ~ ]  , n . ~ % , ~  . .  ( 3 . 1 8 5 )  

We h a v e  i n t r o d u c e d  h e r e  t h e  n o t a t i o n  V~ = V d T 6 ~ v / 1 2 Q t o A E .  I n  c o n t r a s t  t o  ( 1 . 1 0 ) ,  i n  ( 3 . 1 8 a )  
we t o o k  a d d i t i o n a l l y  i n t o  a c c o u n t  t h e  f a c t o r  e x p { - - ( i / n * ) I / 2 } .  By w r i t i n g  down ( 3 . 1 8 a )  w i t h  
this factor, we eliminate the discontinuity of function f(i) and of its derivative df/di 
from (i. I0) and (1.20), and ensure a better agreement between (3.18) and the exact numerical 
calculations. The factor C in (3.18b), just as before, is determined in this case from the 
condition that (3.18a) and (3.18b) be equal at the point n*. 

Allowance for Reabsorption of the Radiation. Simple estimates show that for practi- 
cally all the realizable CO-laser operating regimes, the reabsorption of the radiation due 
to the vibrational--rotational transitions between the upper (i ~"~ 5) levels is absent. For 
this reason, we can use Eqs. (3.16)-(3.18) to calculate the distribution function over these 
levels with allowance for the radiative transitions under these conditions. It follows from 
the estimates, however, that at a tube radius and a partial carbon monoxide pressure such 
that PCO R ~ 1 torr'cm, reabsorption of the radiation can take place for transitions between 
lower states, and can influence (at least in the case of weak deviations from equilibrium) 
the relaxation rate of the vibrational energy of the system. We shall take this reabsorp- 
tion into account by using the method of Holste%n and Biberman [97, 98], which was developed 
for the calculation of the degree of reabsorption of radiation of an individual line. 

In the presence of many spectral lines of the vibrational--rotational transitions 
(i, j)§ -- i, j • i), j = i, 2, 3, ..., the radiative decay of the level i can be deter- 
mined by summing, with allowance for reabsorption, the radiation fluxes from the individual 
rotational sublevels of the vibrational state: 

" " ", " ~ i ,  j A i, ~ ~ , �9 (F~'lSj+IAI-~, j+l + z' ~-1, j-l"rS'i-1, j - l ]  h i ,  ~ ~ F~  i - x A i  i - ~ N ~ .  (3.19) 
2 

Here nij are the populations of the individual rotational states j of the vibrational level 
i; Ni, total population of this level; Ai. ,j �9 probabilities of the spontaneous tad• 

.. i-I t3-+l i 
rive transitions (i, j)§ -- i, j q-i); Ai,i_1. to~q nrobability of the spontaneous radia- 
tive vibrational transition i§ -- i, multipliers #i,j ~_+1 dragging factors and describe thee 

I-- ~_A ' 

degree of reabsorption of an individual vibrational--rotational line; and Fi, i-~, analogous 
factor for the entire vibrational band i§ -- I. In the absence of reabsorption we have 
Fi.,J = 1 and the presence of reabsorption Fi,j < i. 
l-*,j• : Fi, i-I ' l-l,J +I 

We calculate now the dragging factor Fi, i-,, which is needed for the analysis of the 
vibrational relaxation, assuming Doppler broadening and the absence of overlap of individual 
vibrational-rotational lines. For this case and for a cylindrical geometry, the factors 
F i, J are given by [97-99] i-*, j _+* 

i , j  " t at R a i - l , j + l ~  2, (3.20) 
Fi-1, ]-1 1.6/[Bal ' -~,  j_~ 1 / u ~s ~, J lI l  (~{~i:l,  j+l) ] at  ~{Xi-i, s+i > 2. 
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Fig. 14. Dependence of the 
dragging factor F~o on the 
parameter RNo at different gas 
temperatures T. 

Here ~i,j is the absorption coefficient in the center of the line on the transition 
l-l,j-i 

(i, j)-~(i -- i, j -- i). If N i < Ni-~ , then 

i,j [ B i ] ~2 B~ Ai, i_l.2V~_l, (3 .21)  
a~-l, j-1 = ] exp -- - 7 -  ] (] -- t) ai-1, ~, ai-1, ~ = 8n T A~ 

where  X i s  t he  r a d i a t i o n  w a v e l e n g t h  ( in  cm); Bi ,  r o t a t i o n a l  c o n s t a n t  ( i n  ~ Av, a b s o r p t i o n  
l i n e  w i d t h  ( i n  cm-X). The d r a g g i n g  f a c t o r s  and t h e  a b s o r p t i o n  c o e f f i c i e n t s  f o r  t h e  P b ranch  
l i n e s  a r e  w r i t t e n  i n  a n a l o g y  w i t h  (3 .20)  and ( 3 . 2 1 ) .  To c a r r y  o u t  t h e  summation i n  ( 3 . 1 9 ) ,  
we n e g l e c t  the  weak dependence  o f  t h e  l o g a r i t h m i c  f a c t o r  i n  (3 .20)  on j ,  and use  f o r  i t  
t h e  v a l u e  j ~ T/r c o r r e s p o n d i n g  to t h e  maximum a b s o r p t i o n  c o e f f i c i e n t .  Nex t ,  summing 
(3 .19)  a p p r o x i m a t e l y  w i t h  a l l o w a n c e  f o r  (3 .20)  and ( 3 . 2 1 ) ,  we o b t a i n  

F~ , i - l~  t exp -.-T]rl(]r 1 + t) -- exp T ] r , ( ] R 2  + t) ~- - -  [ ~ l n ( R a 4 - 1 , ~ )  --  0.5]'/, • 
-- -- -- Rai-1' ~ (3.22) 

__ 1 2--BT.---J- i ] R x ) -  exp ( - -  2Bi '~ 

where JRI, iRa and jp~, jpi are the solutions of the equations 

Rai-l,~(]-t-t) e x p [ - - ~ ] ( ]  ~- 1)] 2and Rai-1 i ]exp[ - -  Bi = , - - T - j ( i  - l ) j  = 2. (3.23) 

On the other hand, if the product ~i,i_~R is such that (3.23) has no solution, then 
we must put in (3.23) JR~ = JR2, jpl = jp2 and F i,l_~. = i, i.e., there is no reabsorption 
in this case. For a Lorentz line shape, the summation in (3.19) must be carried out 
numerically [99]. 

The values of the factor F~o calculated from (3.19)-(3.23) as functions of the dis- 
charge-tube radius R and of the population No of the ground vibrational level of the CO 
molecules, for different gas particles, are shown in Fig. 14. It is seen that at NoR 
I0 ~7 cm -2 and T ~ 100~ the reabsorption of the radiation can be appreciable and in some 
cases can influence the relaxation of vibrational energy of the system. 

Effect of Diffusion and Reabsorption of the Radiation on the Vibrational-Energy Relaxa- 
tion Rate. The change of the distribution function on account of diffusion and reabsorption 
leads in turn to a change in the relaxation rate of the vibrational energy of anharmonic 
oscillators. In analogy with Sec. 2 of Chap. I, we calculate f(0), the vibrational energy 
margin E per molecule, and the relaxation rates due to the VT processes, to diffusion, and 
to radiative decay. Retaining in (1.26) after summation (in the case of weak deviation from 
equilibrium) or integration (in the case of strong deviation from equilibrium) the most 
essential terms that contribute to their relaxation, we get in place of 

/ (0) = t --  exp (--E~]T1), 

e = (e)o --  V ~ d [n** lnn** -- n* lnn* -- n** -4- n* + 6v~], 

"%W = o - -  PI~176 ~ In ~ [exp (6vrn**) - -  exp (6vwn*)], 

(1.38)-(1.41) 

(3.24) 

(3.25) 

(3.26) 
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e ( e )~ [ ( n**\ n * ( l  @~)lnn* n** (l --n**/k) @ n* (l n*/k)] ( 3 . 2 7 )  .rR = ~ -- A~oV~ n** I - - - ~ - ) l n n * *  . . . .  , 

e/~ar~Vaexp(--EI/TI),  k=--EI/2AE. (3.28) 

Here (~)o, (e/TVT)o, and (E/TR)o are the values of these quantities in accordance with Eqs. 
(1.38)-(1.41), but with C determined by matching together (3.18a) and (3.18b). 

We note that allowance for the diffusion and for the radiative transitions does not 
reduce merely to consideration of the terms e/T R and ~/T d. Spontaneous decay of the levels 
and diffusion can change the value of n** and, as follows from (3.26), affect the rate of 
the VT processes. The value of n** is determined from the condition that (3.18b) vanish: 

exp (6vTn**) = exp (6VTn*) 4- Q,o" t2AE6VT 
S PloT6vv (1 -- n*/2k) (n* 4- 1) / (n*) 

kAlo %~ao.UVT[~'(n*)--~'(n**)]+(VaSvT/P,o) [(1 ~* ] l n n * - - ( t -  n**] n**]  --  z~ / - ~ - - / l n  . ( 3 . 2 9 )  

It can be seen from (3.28) and (3.29), however, that in the case of a strong deviation 
from equilibrium, which usually takes place in the operating regimes of the CO laser, the 
diffusion and the radiative decay of the levels, and consequently also the reabsorption, 
exert no influence on the margin of the vibrational energy. 

Energy Balance and Gas Heating. One of the main problems in the theoretical analysis 
of the processes that take place in the active medium of a CO laser is to find the vibra- 
tional distribution function and the gas temperature. To calculate f(i) from Eqs. (3.16) 
or (3.18), it is necessary to determine first of all the vibrational temperature T: from the 
balance equation for the reserve of the vibrational quanta e. This equation is connected 
with T, by formula (3.25). In the stationary case this equation takes the form 

= e/%'r 4- e/TR 4- e/T,z, ( 3 . 3 0 )  

where ~ is the quantum flux (per molecule) into the vibrational system on account of the 
excitation of the CO vibrations by the electrons. To calculate this flux we must know, 
besides the excitation cross section, also the free-electron velocity distribution func- 
tions, the electron density, and the connection of this density with the current density. 
Since these factors are not known sufficiently accurately, a more reliable method is, in 
our opinion, to find 0 from the total energy input into the discharge. Calculations [i00] 
show that in typical CO--He laser mixtures, the electron-energy loss in the discharge, due 
mainly to excitation of the CO vibrations, amounts to 70-90% of the total loss. For this 
reason it can be assumed with good accuracy that on the discharge-tube axis 

~ 0.8 ~J .2.3 = 4.3.1019--2-P--~J, ( 3 . 3 1 )  
10-TkE~Nco Pco N 

where ~ is the field intensity of the discharge (in V/cm); J, average current density (in 
A/cm~); and N, total particle density (in cm-S). 

An extremely important parameter that determines the operation of the CO laser is the 
gas temperature T. To calculate it we must add to (3.30) also the heat-conducting equation. 
For a heat-source Bessel distribution function and for a linear dependence of the thermal 
conductivity coefficient % = Io + %,T on T, this equation was solved in [i01], and we can 
write for the temperature at the center of the tube 

T ~T] --~o ~ (3.32) 

(To is the tube-wall temperature). 

It is assumed in (3.32) that the gas heating is due to vibrational--translational ex- 
change. For the thermal conductivity we can use the following values: 

{2 .6 .10  -~ 4- 3.5. t0-~T at p•o/Pco ~ 10, 
E, W/era" deg = ~ ( 3 . 3 3 )  

�9 3.4. t0 -~ 4- 3.8. lO-~f at PHe/Pco ~ 30. 
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Fig. 15. Vibrational distribution of function f(i) of CO in the 

CO + He mixture at a total pressure p = 3 torr. i, I') PHe/PCO = 
11.5; 2, 2') PHe/PCO= 30.8, dashed -- experiment [102], solid 
curves -- calculation of the present paper. 

Fig. 16. Dependence of the vibrational (T,) and gas (T) tempera- 
ture on the discharge current J in the mixture CO--He--02 (1:10:0.07). 
i, I', 3, 3' -- total pressure p = 4 torr; 2, 2', 4, 4' -- i0 torr; 
light circles -- experiment at p = i0 torr, dark-- p = 4 torr [i04]. 
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Fig. 17. Maximum gain for dif- 
ferent vibrational levels in the 
mixture CO-He--O2 (1:30:0.07) at 
a total pressure p = 4 torr, at 
a tube voltage 7 kV, and at a 
discharge current J = 15 mA. 
Circles -- experiment [103], solid 
line -- present calculation. 

Calculation and Comparison with Experimental Data. To find T~ and T at different 
values of the pump and of the pressure, Eqs. (3.30) and (3.32) with account taken of (3.24)- 
(3.28), (3.31), and (3.33), were solved simultaneously. The following values were used in 
the calculation for the probabilities and the parameters 6VV and 6VT: 

O~o, sec -1 = 230 V-T •  6vv  = 5 .58 /V-T ,  6VT = 2 . 0 8 / V - T ,  

plCO-Ue V ~ exp o ,sec "1 -- 350 (--  ~3.09"I04/T)  PHe. ( 3 . 3 4 )  

The quantity • in (3.34) takes into account the contribution of the long-range forces 
to the exchange probability (see Chap. I). From an analysis of the experimental and calcu- 
lated probabilities [83], we found that in the temperature interval T = 100-700 K the value 
of x can be determined from the formula 

• : I + 2 . 6 . t 0 :  (1 . t6  + i . 6 . t 0  -~ T)3/T "'5. (3.35) 
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TABLE 1 

5,9 a r n - I  t2,9 cm- I  System 
T,, K T, K az~ t0, "~' a t t , t 0 ,  

Expt. [102] 2400 149 --1,475.10 -2 7,82.10 -a C O - - H e ,  p = 3 t o r r ,  
Theory 2350 181 - - t , 2 6 . t 0  -~ 3, 07"10-s PIte/Pco = 11,5, ~/N = 

= 2,7.10-I~ V .cmZ, R 
= 1,5cm, J --  29 mA 

1t 9 2~,9 System Y,, K T, K c~t0'l 0, c m - '  =27 , t0 ,  era-* 

Expt. [102] 2450 t32 7,37-10 -a i ,C6.10 -3 C O - - H e ,  p = 3  torr, 
Theory 2397 t47 4,08.10 -a 1, 6"t0-a Ptle/Pco ---- 30,8, ~/N  = 

= 1,4.t0-6V.cm~-, R = 
t,5cn% J = 2 9  mA 

T, K amax,cm -* System T, K =max,era -L System 

2,2 . t0-a  3,5.10-a Expt. 
O031 

Theory 

t40 

t40 5 ,9 . t0-a  

CO : He : O.z 
(1 : t0 : 0,07) 
U = 7 k V , J =  7 mA 
p = 4tor~,g = 1 cm 
L = 85 cm 

t50 

t50 6,1.10-a 

CO : He : 02 (i : 30: 
:0,07) p = 6 torr , 
R = t  cm,  U = 
= 6 k V ,  l = 15mA, 
L = 8 3  cm 

Note. U is the voltage on the discharge tube and L is the 
length of the tube. 

The results of the simultaneous solution of Eqs. (3.30) and (3.32) are shown in Figs. 
15-17 and in Table i, which show also the experimental values of the measured quantities. 
As seen from Fig. 15, the calculated distribution function agrees well with the experi- 
mental curve in a large range of vibrational levels. The calculated vibrational and gas 
temperatures, as well as the gain for individual lines, also agree with experiment (see 
Table I). Unfortunately, the current--voltage characteristic was not published in [104]. 
When account is taken of the dependence of ~/N on the current density, one can expect an 
even better agreement between the calculated plot of the temperature T, in Fig. 16 and the 
experimental data. 

Figure 17 shows the calculated gain ~ for different vibrational levels and its experi- 
mental value [103] for the mixture CO--He-O2 (1:30:0.07). 

We note that the solution of (3.30) and (3.32) can be simplified and represented in 
simple analytic form, by considering the most interesting case of a strong deviation from 
equilibrium. As already indicated, estimates show that in this regime we can neglect in 
(3.30) the quantities E/TR and E/T d. Substituting in (3.30) the explicit value of r 
(see (1.34)) and solving it with respect to TI with account taken of (3.31) and (3.34), we 
obtain 

In the regime of strong deviation from equilibrium, the gain ~ is largest for the 
levels i i>I n*, for it is precisely here that the effective vibrational temperature of the 
neighboring levels becomes large. Recognizing that for the indicated group of equations. . 
their populations are determined by the first term in (3.18b) we can obtain for a~,3-~ ' 1 - - 1 ~ J  

the simple expression 

Bi] . i exp ( - -  2Bi Bi ] 
- -  --~--j(j-- t ) ]  ( 3 . 3 7 )  

T h e  d a s h - - d o t  l i n e s  i n  F i g s .  1 6  a n d  1 7  s h o w  T ,  T t ,  a n d  ama  x ,  c a l c u l a t e d  f r o m  E q s .  
(3.32), (3.36), and (3.37) under the condition that 85% of the energy goes over from the 
vibrational to the translational degree of freedom. In this case Jopt, which gives the 
maximum gain at a specified vibrational temperature, was calculated from the equation [52] 
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T ( t  f 3B~) 
Sopt m--* l /  ' 16i 2 7' " ( 3 . 3 8 )  

We note in conclusion that for a comprehensive theoretical analysis of the VT pro- 
cesses in a CO laser it is necessary to know the densities of the various impurities pro- 
duced in the discharge (O atoms, CN molecules, etc.) as well as the probabilities of the 
vibrational transitions induced in CO by these impurities [105, 106]. In a number of cases 
the influence of these impurities can be quite substantial. However, if the presence of 
the impurity leads only to an increase of the probability Pi, i-I for the VT processes, 
then, as follows from Chap. i and from Eqs. (1.38)-(1.41), their influence on the operation 
of the CO laser can be insignificant and reduces mainly to a possible change of the param- 
eter ~/N and to a shortening of the gently sloping plateau of the distribution function 
f(i) in the region i > n* (i.e., to a decrease of n**). In all other respects the vibra- 
tional relaxation does not change and is determined by the probability Q1o. It is pre- 
cisely for this reason that the results obtained here agree well with experiment. 

CHAPTER IV 

VIBRATIONAL RELAXATION AND LASERS OPERATING ON iNTRAMOLECULAR 

VIBRATIONAL TRANSITIONS IN LIQUIDS AND IN MOLECULAR CRYSTALS 

The principles of vibrational relaxation in liquids and molecular crystals are con- 
sidered, the influence of collective interactions on the intramolecular vibrational transi- 
tions is analyzed. The possibilities are investigated of using liquids and molecular crys- 
tals as active media for lasers operating on vibrational transitions, as well as the possi- 
bility of stimulating laser-chemical reactions in the liquid phase. The results of this 
chapter are based on [i07-110]. 

i. Calculation of the Probabilities of Intramolecular Vibrational 

Transitions Induced by Collective Interaction of Molecules 

To assess the possibilities of using liquids in laser chemistry, as well as liquids 
in molecular crystals for the development of IR lasers based on vibrational transitions of 
the molecules, it is necessary to analyze the vibrational kinetics in these media and pri- 
marily to estimate the characteristic times for the vibrational--translational and vibra- 
tional-vibrational energy exchange. The difficulties encountered here are due to the need 
of taking into account the collective interactions. Owing to the important role of these 
interactions, vibrational relaxation in liquids, and especially in molecular crystals, can 
differ substantially from relaxation in a gas. We turn, therefore, to a quantitative es- 
timate of the contribution of the collective interactions to the probabilities of the vibra- 
tional processes. 

For a clear description of the collective effects we shall consider, following [41, 
% 

43], the interactions of a molecule with a number N of partner molecules disposed on the 
surface of a spherical cell with radius a. The action on a molecule located at the center 
of the cell will be described by a sum of Lennard-Jones potentials. If the molecule is 
deflected by a distance R ~a, then after expanding the total potential of the interaction 
V in powers of R/a we have 

V = ~ A ~ ( R / a )  ~, i = 0 , 2 , 4  . . . . .  (4.1) 

where the expansion coefficient A i is given by 

2 U+Io)~ [ 5.9, (i + 4)~ ] A ~ - ~  1 (4.2) 
' 5 9! (i  + i ) !  2 . 3 !  (~ ~ iO)! ' 

= (alro) s, a a = M N / 4 ~ p .  

Here r and r0 are the constants in the Lennard-Jones potential for a substance with an in- 
dividual-molecule mass M and a density 0. From now on, following [43], we shall assume that 

= 12. 
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In (4.1), the term with i = 0 determines the binding energy. The terms of the first 
(i = 2) and next (i >/ 4) approximations describe the intermolecular vibrations and their 
interaction with the intramolecular ones. Let us calculate for this interaction, in general 
form, the probabilities of the intramolecular vibrational transitions in a polyatomic mole- 
cule. First, however, for the sake of clarity, we solve in a purely classical approximation 
the problem of finding the probability of vibrational--translational energy exchange. 

We represent the quantity R in (4.1) in the form R = R c + bx, where R c is the coordi- 
nate of the mass center Of the molecule, while x and b are the intramolecular coordinate of 
the oscillator and the direction cosine. The equations of motion for the mass center and 
for the intramolecular oscillator, with allowance for (4.1) and for the fact that Rc ~ x, 
are of the form 

M/~.= aV(R ,.) 2 (~E)" (4.3) 0R~ ~ -- ff + i) A~+----L~ 

o v  (R , x) (4.4) 
M ~  + M~ (2~v)~x = F (t) Oz 

2 @-)~ ~-- b ( n + t ) - - -  7 -  n = t ,  3 , 5 , . . .  

Here M, and ~ are, respectively, the reduced mass of the intramolecular oscillator and fre- 
quency, and F(t) is the force due to the collective effects and acting on this oscillator. 

It follows from (4'3) that in the first-order approximation (n = i) the molecule exe- 
cutes harmonic oscillations about the center of the cell with a frequency 9~h = (1/27)- 
#2A2/a2M. We note, however, that this result is to a certain degree illustrative in char- 
acter, for actually the spectrum of the frequencies of the intermolecular vibrations is 
continuous and lies in the range 0 ~ 9ph ~ ~D, where 9D is the Debye frequency, equal, 
according to [43], to the quantity 

. 1041/18 (I 5~) (4.5) 
~, se~ "I = V2 ~h= ~ ~T~ -- 

The expressions (4.1), (4.3), and (4.4) are also illustrative, since they do not take 
into account the deviations from the equilibrium positions of all the molecules. If these 
deviations are taken into account, then in accordance with the theory of Crystal-lattice 
vibrations and the theory of phonon interactions [Iii] we should have in place of the ex- 
pansion (4.1) and the expressions in the right-hand sides of (4.3) and (4.4) an expansion 
in the product Rc,Rca...Rcn of the independent deviations from equilibrium. 

Despite the foregoing limitations, however, the considered approach to the solution of 
the problem of calculating the intramolecular vibrational transitions is quite useful, since 
it provides a clear physical picture of the phenomenon, and makes it possible to estimate 
quantitatively the intermolecular potential, the expansion coefficients Ai, the force F(t) 
acting on the intramolecular oscillator, and in final analysis, when account is taken of 
the indicated singularities of the Vph spectrum and of the expansion of the potential, it 
makes it possible to calculate the transition probability. 

To find this probability, we shall assume that at the initial instant of time the in- 
tramolecular oscillator is at rest: xlt=o =0, xlt=o = 0. Next, an external periodic 
force F(t) begins to act on the oscillator so that after a time t the oscillator acquires 
an energy 

Ag~= (J/1/2)[J "2 -~ (2~v)~x~]. 

The change A~/t of the vibrational energy per unit time as a function of F(t) can be 
calculated by integrating Eq. (4.4) with the indicated initial conditions [59]: 

t 
A~ I ~ 2 

t -- 23ll ~ ~ F ( ~ ) e x p ( - - 2 ~ i v ~ ) d ~  . (4.6) 
o 

An explicit F(~) dependence should be obtained in this case by substituting in (4.4) 
the values Rci(t ) obtained from the solutions (4.3). For the sake of clarity we confine 
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ourselves in the expansion (4.1) to the first three terms. This is equivalent to retaining 
the first two terms in the right-hand sides of (4.4).* 

In this case the periodic force F(t), that acts on the intramolecular oscillator and 
causes the change of its energy, takes the form 

~h.l~ o o o . R,.,Ilc. P'~.3 s,,  (2~x'ph t) si,~ (2~v,mfl) sin (2~v,t,3t). F( t )  = ,.,. , ,  (4 .7)  

The amplitudes R~i of the intermolecular oscillations can be easily determined from 
energy considerations and from the assumption that the energy of these oscillations is at 
equilibrium and corresponds to a temperature of the medium T: 

B~i~ = i / /cT/i2n%'~.~Jl). (4 .8)  

If the product of the three sine functions in (4.7) is represented in the form of a 
sum of sine functions I/~{sin[2~(Vph~ + Vpha -- Vph3)t]+ sin[2~(vpha + vph3 -- ~phx)t] + 
sin[2~(Vph~ + Vph~ + ~ph~)t] --sin[2~(Vph: + ~pha + Vph~)t]}, then after substituting (4.7) 
in (4.6), we easily see that as t-~= and under the condition v > VD ~ Vphi a nonzero value 
of A g can be due only to harmonics of the force F(t) with frequencies (Vph: + Vph~ --Vph~), 
(Vph~ + Vph~ -- Vph:), (Vph~ + Vph~ -- Vph=), (Vph~ + Vpha + Vph~). Standard integration in 
(4.6) and the condition t-~ o yield in t~is case a delta function in the differences between 
these frequencies and the intramolecular frequency v. Taking this into account, as well as 
relation (4.8), we obtain for the probability Po~ of the excitation (and to the deactivation 
probability p~o, which is equal to it in the classical case) of the vibrational level i of 
the intramolecular oscillator per unit 

3 

where 5[...] is a delta function. 

To obtain the total probability P~o it is necessary to integrate (4.9) over the spec- 
trum of the frequencies of the intermolecular oscillations 0 ~ ~phi ~ VD with spectral 
density D(Vphi): 

v O  ~ D  ~ D  

Pio = I D (~p,l) d%.1 I D (%. ~) d~p., i D (%.~) p,0 (%.1, %.  ~ph3) d % .  3" 

0 0 0 

The i n t e g r a t i o n  o p e r a t i o n  can be e a s i l y  c a r r i e d  ou t  by assuming  t h a t  t h e  o s c i l l a t i o n s  
2 . 3 have a Debye s p e c t r u m  D(vphi )  = 3Vphl/VD. In  t h i s  c a s e  a v e r a g i n g  ove r  t h e  spec t rum r e d u c e a  

to a calculation of the integral 

WD VD WD 
I 

I d 'ph l  I dvph~i 6[ ' - - (7"~-~Vphl~--"Phz ' -~-"Ph3)]d 'ph~=-2-(3VD-- ' )~"  (4.10) 
0 0 0 

Taking (4 .9 )  and (4 .10)  i n t o  a c c o u n t ,  we o b t a i n  u l t i m a t e l y  f o r  t h e  p r o b a b i l i t y  P~o 

Sa~M1 va2 J \ 8n2Mv~a 2 ] 2 ~  

A p r o b a b i l i t y  P,o a n a l o g o u s  to (4 .11)  was c a l c u l a t e d  q u a n t u m - m e c h a n i c a l l y  i n  [43] ,  bu t  
an incorrect dependence of P~o on v and v D was obtained because of an inaccurate integration 
over the phonon spectrum. 

In the integration in (4.10) it was assumed that 3v D > v. If this condition is not 
satisfied, then we obtain for the probability Pxo = 0. This situation can be easily ex- 
plainedphysically from energy considerations and means that at 3VD < v a vibrational transi- 

*Strictly speaking, it is necessary to retain in the right-hand side of (4.3) also the term 
with n = 3. However, neglect of terms of order higher than n = 1 (i.e., the assumption that 
there is no interaction between the different molecular oscillations) does not lead to a 
substantial error in the calculation of the transition probability, since it means that 
after substituting Rci(t) in the right-hand side of (4.4) we neglect in it terms of the same 
order of magnitude. This circumstance, while substantially simplifying the analysis, does 
not change the order of magnitude of the calculated probability. 
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tion induced by a periodic force with maximum harmonic frequency 3VD < ~ is impossible, 
since this frequency is lower than the frequency of the intramolecular oscillations. In 
this case, to obtain a nonzero probability P:o it is necessary to retain in the sum of the 
rSght-hand side of (4.4) terms of higher order of smallness with a value of n such that the 
condition n~D > ~. 

Thus, expression (4.11) determines for the particular case 3v2 < 9 the probability of 
deactivation (or excitation) of intramolecular oscillations with participation of three 
phonons. 

We turn now to a quantum-mechanical calculation, in general form, of the probabilities 
inside the molecular vibrational transitions in a polyatomic molecule, induced by collective 
interaction of the type (4.1). We consider the transition of one vibrational-mode quantum 
with frequency ~ into m quanta of another mode of frequency v2 with participation of n 
phonons. 

Recognizing that R = R c + b,x, + b2x2, where R c is the coordinate of the mass center 
of the molecule, x,, x2 and b~, b2 are the intramolecular coordinates and the direction 
cosines, we represent (4.1) in the form of a series in powers of Rc, x~, x=. For simplicity 
we use in the calculation of the matrix elements the wave functions of harmonic oscillators 
(for both the in=ermolecular and the intramolecular oscillations).* In this case, from 
among the anharmonic terms in (4.1), the one responsible for the considered transition will 

be (n+m+i)! ~ m An+m+IBcblxi(b2xs). However as already indicated, this expression is symbolic 1~! m !  a n + m + l  

in character, since it does not reflect the actual deviation of all the molecules from the 
equilibrium positions. 

In the general theory of phonon interaction, R n is replaced by a product of n dis- 
placements Rc,Rc2...Rcn[lll]. Taking this into account and using ordinary perturbation theory, 
we have 

- -  n !  nl.! a n + m + l  X ( 4 . 1 2  ) 

tL 

.i=1 

Expression (4.12) is the probability in the intramolecular modes v~ and o2 in the mole- 
cule that there will take place the transition 1 § 0 and 0 § m, and the transitions v~ § vj -+ 1 

�9 . O m �9 will take place between n phonons. To obtain the overall probab111ty Q,o of an intramolec- 
ular transition with participation of n phonons it is necessary to sum (4.12) over all pos- 
sible 9j -~ 9j + 1 transitions with account taken of the Boltzmann distribution of the phonons 
over the vibrational levels (with a temperature equal to the temperature T of the medium). 
Recognizing that 

I <v I J%+l+v- t>I + = vl <I I R++lO > I s = vl <o IRaqi I> 5 
we have for the deactivation of the phonons 

~[<v[Bcilv-- I>]2 [I -- exp (-- hv0h JkT)] exp (-- vhv,, i/kT) (4'13a) 
V=I 

= I <t I Roll o> I s [t - e x p  ( -  hVph JkT)l-~exp (-- hv.. dkT), 
and for the excitation of the phonons 

[ <vIRc!; v -~ i> ] s [i -- exp (-h~phU~T)] exp(-- uhvp, i/kY) = ] <01/~c~ 11> [ = [i -- exp (-- hvph~//cT)] -~. (4.13b) 
v=0 

The right-hand sides of (4.13a) and (4.13b) simplify at high temperatures kT > h~ D 
hVphi and become equal. If account is taken here of the explicit form of the matrix ele- 
ment for the transition i~0 (or 0§ then we obtain in the right-hand sides of (4.13a) and 
(4.13b) the value 

*This approximation is analogous to the assumption used above in the classical problem, 
that the intermolecular oscillations are independent and harmonic. As indicated in the 
preceding footnote, this approximation does not change the order of magnitude of the calcu- 
lated probability. 
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kT _ ]~ kT kT 
l<ilRc~[0>l~ h~phi -l<01Rc~[i> -~Vph~ 8~2M~h (4.14) 

If we integrate, with account taken of (4.14), the expression (4.12) over the spectrum 
of the phonon frequencies with the Debye distribution function D(~phi) = 3Vphi/VDa 3 (0 
~phi ~ ~D), then we obtain ultimately for the probability Q~ of the process that proceeds 
in the exothermal direction (v: -- my2 > 0) 

q l 0 ,  sec-: = ::~.h--~D 2M:v:a~ k ~ )  k 8a~Mv~2 n ~ 7 ( n -  1)! m! �9 ( 4 . 1 5 )  

Here M~ and Ma are the masses of the oscillators for the normal vibrations v: and v2. The 
number n of phonons participating in the vibrational transition is an integer in the inter- 
val 

vl-- m~2 <n ~< ~i-- m~2 + 2 (4.16) 
~D YD 

and  s a t i s f i e s  t h e  c o n d i t i o n  n + m + 1 = i ( i  i s  a n  e v e n  n u m b e r ) .  The p r o b a b i l i t y  Q ~  o f  
the inverse process is determined from the detailed balancing principle: Qoxm~ = Qxo~ 
exp[--(hv~ -- mhv2)/kT]. 

Expression (4.15) is quite general and, besides the VV' process, it can describe also 
other relaxation channels. Thus, at m = i, ~ = va, M~ = Ma and b~ = b~ = 1/3 we obtain 
from (4.15), taking (4.2) and (4.16) into account, an expression for the probability of the 
resonant VV process 

Q~, sec" = 2A.  10- '  [ ~ j  (1 --  ~/4.4) VD" ( 4 . 1 7 )  

In analogy with (4.17), it is also easy to write down expressions for the probabilities 
of single-quantum exchange (both resonant and nonresonant) between highly excited states. 
These probabilities were calculated for an anharmonic osciilator by a somewhat different 
method in [47]. At m = 0, expression (4.15) is the probability P~o of the VT transition 
i+0 with participation of n phonons: ~ 

(,,+,),fA.+,l' , s,v 
P:o, sec-I (~-I)! Lh-NT-o j ~ L  ~D/ 8n2Mw~a2 VD" (4.18) 

In the particular case n = 3, Eq. (4.18) coincides with expression (4.11) calculated 
in the classical approximation. 

Inasmuch as in a liquid the particles have besides collective motion also a disordered 
motion, an important influence can be exerted on the vibrational relaxation also by ordinary 
binary collisions which cause this random motion. To assess the contribution of the binary 
collisions to the probability of the vibrational transitions, we can use the usual Hertz-- 
Schwarz--Slawsky procedure to estimate these probabilities. 

Table 2 lists for certain liquids the probabilities P~o and Q~o calculated from ex- 
(pcoll ocoll~ and from the usual Herzfeld--Schwarz--Slawsky formulas pressions (4.17), (4.18) - Io ' -io - 

o in b in (P:o , Qio )" The calculation was performed for a normal oscillation with the lowest fre- 
quency for the given molecule, for it is precisely this normal oscillation which determines 
on the whole the character of the VT processes. The table also lists the experimental 
values of pexp taken from [41, 45] It is seen that at room temperatures the experimental I0 ' 
probabilities agree better with the theoretical ones, calculated under the assumption of 
binary collisions. The conclusion that the binary collisions play a predominant role for 
the VT processes in weakly associated liquids was drawn earlier in [41, 45]. It is clear, 
however, that owing to the different dependences of pcoll and pbin on the frequency v~ of 10 ~ 0  
the intramolecular oscillations and on the temperature T, it cannot be generalized to a wide 
range of temperatures and to all liquids. With decreasing T and at low frequencies v~ < 3v D 
the principal role for the VT process can be played by collective effects, when the intra- 
molecular oscillation decays into only three phonons. 

An important conclusion of the calculations of the times of the vibrational relaxation 
is also the fact that in liquids, just as in single-component molecular gases, the VT and 
VV processes have different times, with TVV % i/Q~o < TVT ~ i/P:o. This makes it possible 
to apply certain results of vibrational kinetics in a gas to a liquid and, in particular, 
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TABLE 2 

o 

C~H~ 303 
CS2 298 
CCh 293 
C4HaO 276 
CHCIa 300 
CH,zCI~ 300 
C~Hs N 303 
C4H~NH 303 

o ' 7  

12 
u;9 
6,51 

i6,5 
3,3 
8,55 

I i , 2  

16,95 

4,10 
3,7i 
2,90 
4,94 
3,t5 
5,60 
2,21 
5,63 

3 1,9 "106 
5 1,3"t0 ~ 
3 2,2"10 s 
5 4,94"102 
3 5,3"109 
3 5,2'10 s 
7 
5 7,30.102 

.7 

1 , 2 . 1 0  ~ 

2,4.109 
4,9.109 
7,6.107 
4,5.101' 
1,5-101( 
8,5.t0 ~ 
.q,,~).,107 

3,7 8 
3,53 12 
7,95 89 
O, 72 653 ,5 
i ,5 i9 

- -  7 

- -  0 , 5  

i ,3 
2,8 
1,3 
0,79 

i i  

2,3 
2,4 
0,84 

1,4 
2 
0,9 
1,7 
1,2 
t,8 
1,2 
1,9 

Note. N is the number of phonons participating in the VT pro- 
cess; in the calculation of pb~n, Qb~n the parameter of the 
potential of the intermolecular interaction ~exp(-~r) was 
assumed to be ~ = 5 ~_i the frequencies of the binary colli- 
sions Z bin were calculated by linear extrapolation of the 
values of these frequencies for gases into the region of 
larger (corresponding to a liquid) particle densities. 

to describe the degree of excitation of various types of intramolecular oscillations in 
a liquid by means of vibrational temperature, so owing to the smallness of zVV there will 
be established within each vibrational mode a quasistationary distribution (a Boltzmann 
distribution for the harmonic model). 

Besides the VT and VV processes, an important role for the vibrational modes of the 
polyatomic molecule can be played also by VV' processes, i.e., by energy exchange between 
the different modes. In many cases (this is confirmed by a calculation with account taken 
already of only binary collisions and by experiment [112]) the times of these processes for 
liquids are shorter than the time of the vibrational--translational relaxation mode with the 
lowest oscillation frequency, and the relaxation of the vibrational energy of the molecules 
is characterized by only one time of this VT process, which is usually measured for a liquid 
by an acoustic method [45]. However, to use liquids as the active media for lasers operat- 
ing on vibrational transitions, a more favorable (although not essential) situation is 
one in which the energy relaxation from some vibrational mode (or group of modes) proceeds 
more slowly than from the other modes, and consequently on the whole the relaxation of the" 
vibrational energy is characterized not by one but by several times. The presence of 
several vibrational-relaxation times in a number of liquids is indicated by experiments per- 
formed by the acoustic method [45, 46]. 

All the presented results, and particularly Eqs. (4.1)-(4.18), concerning the influence 
of collective interaction on the vibrational relaxation in liquids, are fully applicable 
to molecular crystals. The decisive role in the vibrational relaxation for crystals is 
played by collective interactions, while the binary interactions are inessential. 

By way of illustration, we present below the probabilities of certain vibrational pro- 
cesses, calculated from Eqs. (4.2)-(4.18) at T = 170~ for the molecular crystal C02: 

T. K ~10 w] 0 Q' (3~1,2) Q' ( ~  2) 

Molecular- t70 2.8.10 s l . l . lO  a 9.6.107 12 i . t . lO  a 2.0.10 ~ 
crystal 

G a s ( p = l  arm) 300 - -  - -  - -  8.5.104 2.9-I0 ~ - -  

Values are given in units of sec - I .  

Here Q}~)", Q}:)" , Q}:)," P}:)" are the probabilities of the VV and VT processes in the sym- 
metric, deformation, and asymmetric modes, respectively, Q'(3+I, 2) is the probability of 
the VV' transition of a lower quantum of the asymmetric mode into lower quanta of the 
symmetric and deformation modes, Q'(I+2) is the probability of a VV' transition of a lower 
quantum of the symmetric mode into two lower quanta of the deformation mode. 

An important conclusion that follows from the analysis of (4.15), (4.18), and the con- 
crete calculations is that the VT processes in molecular crystals can be much slower than in 
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liquids and compressed gases, especially in cases when the crystal temperature is low and 
the lowest of the frequencies of the intramolecular oscillations greatly exceeds the Debye 
frequency ~D, so that the VT relaxation takes place with participation of a large number 
of phonons. 

2. Lasers Based in Intramolecular Vibrational Transitions in Liquids 

and in Molecular Crystals, Pumped by an Intense Electron Beam 

We consider now the possibilities of using liquids and molecular crystals as active 
media for lasers based on vibrational transitions. Recently much attention has been paid 
to the development of high-power gas lasers on vibrational--rotational transitions of mole- 
cules with high (1-20 arm) pressure of the working gas [57, 113]. An important advantage 
of such systems is the possibility, in principle, of obtaining, by simultaneous increase 
of the gas pressure and of the pump intensity, large concentrations of active molecules. 
It is clear that from this point of view it is tempting to use liquids and molecular crys- 
tals as the active laser media. 

Compared with gases of moderate density (~20 atmat 300~ liquids and molecular crys- 
tals have a number of obvious advantages: they have a much higher density (by approxi- 
mately two orders of magnitude) and at the same time require no special means of contain- 
ment. In addition, the widths of the vibrational bands coincide in essence with those of 
gases of moderate density (A~ ~ 5-20 cm-1), a fact of no little importance when it comes 
to amplifying the radiation. A significant advantage of molecular crystals over superdense 
gases and liquids is also (see Sec. I of the present chapter) the slower rate of the vi- 
brational-translation relaxation, which facilitates considerably the obtaining of the 
necessary values of the inverted population and of the gain. Highly important for condensed 
media is the choice of a pumping method that would make it possible to excite oscillations 
in a relatively large volume of matter and obtain the gain needed for the lasing. We shall 
show that these conditions can be realized when modern high-power electron beams are used. 

The depth of penetration ~ (in cm) of an electron beam into a substance can be esti- 
mated from Feather's known formula [114] 

5 = (0.546Ee -- 0.t6)/p,  ( 4 . 1 9 )  

where E e is the energy of the electron in the beam (in MeV), O is the density of the liquid 
in g/cm 3. At E e ~ 2 MeV, P ~ 0.9 g/cm s we have ~ ~ i cm and consequently, when beams 
with cross sections 1 • i0 cm are used, their energy can be pumped into a considerable 
volume of liquid. 

It is known that the beam energy is lost primarily to ionization. One ionization act 
consumes usually an energy E i ~ 30 eV. Nonetheless, it is possible to excite effectively 
also molecule vibrations. Indeed, for a liquid there are at least two channels of energy 
pumping into vibrational degrees of freedom: i) direct excitation of the oscillations by 
secondary ionization electrons with initial energy El/2 ~ 15 eV; 2) pumping via recombina- 
tion processes. The effectiveness of the first pumping channel is determined by the ratio 
of the cross sections for the excitation of the oscillations by the electrons to the cross 
sections for the remaining processes at secondary-electron energies from 15 eV down. The 
second pumping mechanism is produced in the following manner. After a certain cooling of 
the secondary electrons, dissociative electron recombination sets in. The resultant neu- 
tral particles then recombine to form molecules on high excited levels, ensuring by the same 
token energy pumping into the vibrational degrees of freedom. The use of a chemical atom- 
recombination reaction to produce lasers based on vibrational transitions in molecular gases 
is discussed in [115, 116]. 

We shall consider the possibility of using high-power electron beams to pump a liquid 
laser operating on vibrational transitions, using as a concrete example a beam with the 
following parameters: current density j = 500 A/cm=; electron energy in the beam Ee ~ 2 
MeV; beam pulse duration Tbeam ~ 5'10 -8 sec. These parameters are perfectly attainable 
[117] and correspond to a beam power 109 W/cm 2 and to an approximate energy 55 J/cm 2. The 
liquid chosen is carbon oxysulfite COS at a temperature 150~ (density p = 1.24 g/cm 3, 
molecular weight M = 60 a.u., specific heat c = 0.2878 cal/(g'deg), molecule concentration 
Nliq = 1.24'1022 cm-3). Calculation based on binary collisions yields for the liquid, for 
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the modes with ~I = 862 cm -I and v2 = 516 cm -I, arelaxation time T ~ 2"10 -8 sec, and for 
the mode va= 2050 cm -I, atime r ~ 2"10 -7 sec [118]. 

We estimate now the vibrational-level inverted population which can be expected when 
the oscillations are pumped with an electron beam. We consider first the recombination 
pumping mechanism. The cooling time Tcool of the secondary electrons from an energy 
El/2 ~ 15 eV to thermal energies is short and at a typical cross section for inelastic 
scattering by the molecules o i ~ l0 -17 cm 2 we have ~cool ~ (<~u> Nliq)-* ~_~ ~beam. The 
change of the volume concentration N e of these cooled electrons with time is described 
approximately by the equation dNe/dt = J -- krN~, the solution of which is 

i -- exp (-- 2 ff~t) (4.20) 
No (t) = V J /~  

i+exp(--2V~r t) ' 

where kr is the rate constant of the dissociative recombination, J is the bulk ionization 
rate by an electron beam, 

J- E i 
E~ e6 ' (4.21) 

and e is the electron charge. For the electron-beam and liquid parameters indicated above, 
we have 6 ~ 1 cm and J ~ 2.6.10 =6 cm-3"sec -*. At these ionization rates and at the typi- 
cal value kr ~ 10 -7 cm'/sec, the quasistationary value is N e = ~ =  5"10 I~ cm -3, and 
the time of establishment of the quasistationary regime is Test ~ i/2 J~r ~ 10 -I~ sec. 

Inasmuch as Tes t ~ Tbeam for the considered example, we can assume that during the 
entire time that the liquid is bombarded with fast beam electrons the recombination flux 
krN$, which ensures in final analysis the energy pumping into the vibrational degrees of 
freedom, is equal to the bulk ionization rate J. The total recombination energy flux is 
consequently EiJ/2, but it is clear that only a fraction N of this flux goes into the vi- 
brational degrees of freedom. If the molecules are produced in the course of the recombina- 
tion on vibration levels that are close to the dissociation limit with energy De, then 
nmax ~ 2De/El can be of the order of unity. In the estimates that follow we shall use the 
value n = 0.2, assuming thus that only 20% of the recombination energy flux (or 10% of the 
total flux EiJ) goes into the vibrational degrees of freedom. 

D~en the oscillations are directly excited by secondary electrons in a quasistationary 
regime, it can be assumed that the rate of energy pumping into the oscillations is nEiJ/2, 
where N is determined by the ratio of the cross section for the excitation of the oscilla- 
tions by the electrons to the total cross section for their inelastic scattering, and by 
the average value of the energy that goes over into the vibrational energy in one excitation 

act. 

To determine the populations of the individual vibrational levels it is necessary to 
know, besides the total energy flux into the oscillations of the polyatomic molecules, also 
how the various oscillation modes are excited. The most favorable for the production of in- 
verted populations is a situation in which the modes predominantly excited are those having 
a long relaxation time (this is precisely the case realized in an electrically pumped COa 
gas laser). Since, however, the relative energy pumping rates into different oscillation 
modes are unknown for most molecular systems, we shall hereafter assume them all to be equal. 
Assuming now that in e liquid of polyatomic molecules with a number of normal intramolecular 
oscillations there are two groups of modes n and k (n + k = m), which relax with different 
characteristic times T(n) < T(k), we obtain for the nonequilibrium reserve of energy Evib(n) 
and Evib(k) in each of the groups of modes in the quasistationary relaxation regime* 

n E .  k Ei 
Evib (n) = -~- N ~L Jr (n) + E$ib (n), Evib (k) = ~ N -~- rbeam ,J- E$ib (k), (4.22) 

where E@ib is the equilibrium value (at the temperature T) of Evib. 

Estimating Evib and recognizing that in each of the groups of modes n and k, owing to 
the rapid energy exchange between the modes, a quasiequilibrium Treanor relation is estab- 

*In the considered example, for the group n of modes we have T(n) < ~beam, i.e., a quasi- 
stationary relaxation regime sets in. On the other hand, for the group k of modes we have 
T(k) > Tbeam, therefore in (4.22) the expressions for Evib(n) and Evib(k) contain, re- 

spectively, the times T(n) and Tbeam. 
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lished [2], it is easy to determine the populations of the different levels. Thus, for the 
considered COS example n = 2, k = i, and the populations of the lowest levels N1(n) and 
Nx(k) of the modes with the smallest quanta ~ = 516 cm -I and ~3 = 2050 cm -I from the 
groups n and k will be, respectively, equal to 2.102o and 5.1019cm -3. The inverted popu- 
lation is produced then between the levels 001 and the level i00 from the group n = 2 of 
the rapidly relaxing modes vl and ~a, and amounts to ~4.5.10 ~9 cm -~. We note that it is 
precisely at this transition (wavelength % = 8.4 ~m) that inverted population and lasing was 
obtained for COS in the gas phase with electric pumping [119, 120]. 

Assuming for the line width and for the probability of a spontaneous radiative transi- 
tion the typical values i0 cm -I and i sec -I, we find that for the indicated transition the 
gain is ~ ~ 4.5'10 -2 cm -I, i.e., quite sufficient for lasing. We note also that at these 
values the time of development of lasing Tgen ~ 40(~c) -I ~ 3.3.10 -8 sec [121] (c is the 
speed of light) remains less than the duration ~beam of the pump pulse. 

An important factor that influences the operation of a liquid laser (as, incidentally, 
also that of an electron-beam-controlled gas laser) is the heating of the medium. In a 
liquid, however, owing to the substantially larger capacity per unit volume, this heating 
may be small even at considerable energy inputs. Thus, in the case considered here the 
maximum heating of the liquid upon absorption of the energy of one pulse of the electron 
beam (~75 J/cm 3) is only about 50 ~ . 

From the particle flux to the upper laser vibration level with energy h~min(k) we can 
also roughly estimate the expended power Wra d and energy Era d in one radiation pulse 

H~ad ~: V r a d  k Ei 
Vmm(k ) m q~ -J '  Erad~Zradrbeam" 

For the considered example Wra d ~ 2"107 W/cm 3 and Era d ~ i J/cm s. These estimates 
show that if liquid lasers based on vibrational transitions are eventually developed, they 
can successfully compete with respect to their energy characteristics with modern elec- 
troionization lasers [57, 113]. To be sure, when the pumping is by an electron beam, owing 
to the predominant loss of beam energy to ionization, the efficiency of such liquid lasers 
is small compared with electroionization gas lasers. However, to increase this efficiency 
and by the same token improve additionally the energy characteristics of the laser, it is 
possible apparently by using an excitation that combines an electron beam with an external 
electric field that heats the secondary electrons. Thus, simple estimates show that at a 
cross section for excitation of oscillations by electrons of the order of 10 -18 cm a in the 
region of superthermal energies 1-3 eV, the concentration of the secondary electrons N e 
(in our example, about 5"i016 cm -3) is sufficient to obtain a concentration of vibrationally 
excited molecules of ~5"i021 cm -3. Analogous calculations yield for liquid CS2 at 195~ 
an inverted population on the order of 6"102~ cm -3, while for furan C4H~O it yields a value 
on the order of i0 ~9 cm -3. 

It is clear that with decreasing temperature, owing to the growth of the time of vi- 
brational relaxation, the efficiency of liquid lasers will increase. From this point of 
view it is of interest to use molecular crystals as active laser media. In molecular 
crystals, unlike in liquids, all the collective interactions are significant. As seen from 
the estimates presented for the probabilities, the rates of the VT processes in collective 
interactions are usually lower than in binary processes. Particularly small values of pcoll io 
take place for molecular crystals with ~min/~D > 3, and consequently the intramolecular vi- 
brational excitations decay into five or more Debye quanta. For these cases, a resonant or 
near-resonant collective W process, which calls for participation of only two Debye quanta 
(see (4.17)), proceeds much more rapidly, i.e., the relation TVV ~ TVT between the charac- 
teristic times of the VV and VT processes remains satisfied. In such molecular crystals, 
just as in one-component gases and liquids, a quasistationary distribution will be estab- 
lished within the modes. 

The indicated circumstance was used in [48] to find the distribution in a system of 
anharmonic oscillators. The energy exchange between the different modes (the VV' process) 
in molecular crystals can proceed at different rates, but it is clear that for multiquantum 
exchange with a considerable energy defect, which calls for several Debye modes to partici- 
pate in the process, these rates can be relatively low, so that on the whole the vibrational 
relaxation will be characterized by several relaxation times. Thus, the use of molecular 
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crystals as the active media for lasers based on vibrational transitions between levels of 
different intramolecular modes is promising and will make it possible in principle to obtain 
large inverted populations and gains. 

It is quite interesting to use for this purpose solid carbon monoxide, since the spec- 
troscopic parameters and the cross sections for excitation of oscillations by electron im- 
pact are well known for C02. Pumping, just as for liquids, can be effected by powerful 
electron beams. Estimates made for a beam with the parameters given above and using the 
probabilities cited on p. 48, have shown that at the end of the action of the pump pulse 
the inversion on the vibrational transition 00~176 amounts to 2"10 ~9 cm -3, corresponding 
to a stored energy 0.4 J/cm 3. 

3. Laser-Chemical Reactions in the Liquid Phase 

In addition to the problem of producing liquid lasers, it is undoubtedly of interest 
to stimulate, in liquids, chemical reactions by using IR laser radiation for selective heat- 
ing of the oscillations. So far, the investigations were limited to the gas phase [21, 25, 
27, 63, 67]. We discuss here briefly the question of stimulating chemical reactions in the 
liquid phase. It is known [25, 27, 67] that when energy is dissipated from a mode as a 
result of a VT or a VV' process with probability P:o, it is necessary to provide by laser 
radiation an optical-pumping probability W,o ~ P~o to obtain a mode vibrational tempera- 
ture equal to the characteristic temperature of this vibration. In this case, taking into 
account the connection between the pumping density J and the probability W,o, we have 

J~l.5.to-nv3radAVPio/qA~o, 
where  J i s i n  W/cm2; Vra d and 5v a r e  the  f r e q u e n c y  o f  the  a b s o r b e d  r a d i a t i o n  and the  wid th  
o f  the  a b s o r p t i o n  l i n e  ( i n  cm-1) ,  r e s p e c t i v e l y ;  q i s  the  f r a c t i o n  o f  m o l e c u l e s  p a r t i c i p a t i n g  
in  the  a b s o r p t i o n ,  and t h e  r a d i a t i v e  and c o l l i s i o n a l  p r o b a b i l i t i e s  Alo and Pl0 a r e  e x p r e s s e d  
in sec -~ . 

At typical values P1o = i0 ~ sec -I, A1o ~ i0 sea -I, q ~ 0.15, A~ ~i0 cm -I, ~rad 
103 cm -I (the emission frequency of aCO2 laser), we obtain J ~ 108 W/cm 2, and the vibra- 
tional temperature of the mode is ~I400~ On the other hand, to obtaina vibrational tem- 
perature smaller by a factor 2.3 (~610~ the power needed is on the order i0' W/cm 2. 
These powers, while appreciably higher than in the case of stimulation of laser-chemical 
reactions in gases of low (i-I00 tort) pressures, are nonetheless easily attainable for 
modern pulse IR lasers. An important feature of laser-chemical reactions in the liquid 
phase is also their local character, due to the high concentration of the radiation-absorb- 
ing molecules. Thus, in the indicated example, the cross section for the absorption of 
radiation amounts to ~2"I0 .9 cm=, which at a liquid-molecule density on the order of i022 
cm -s corresponds to a radiation penetration depth 6 ~ 5"10 -~ cm. Using radiation with a 
frequency that is a multiple of the oscillation frequency, for which the absorption cross 
section is considerably smaller (by an approximate factor I02 and more) than for the 
resonant frequency, the volume in which the reaction takes place can be substantially in- 
creased. We notearecentlypublishedand interesting communication [64] concerning the first 
experiments on the realization of biochemical reactions in the liquid phase under the action 
of IR laser radiation. To be sure, the employed radiation powers were low, but they ap- 
parently offer evidence either of anomalously low probabilities of deactivation of the ex- 
citation energy, or of a thermal character of the biochemical processes in this experiment. 

On the whole, the results obtained in the present chapter point to the possibility 
of effecting laser-chemical reactions in liquids and to the promise offered by using liquids 
and molecular crystals as active media for lasers based on intramolecular vibrational 
transitions. 

In conclusion, I am sincerely grateful to my guidance chairmen L. A. Shelepin and B. F. 
Gordiets for constant interest and help with the work. 
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