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SPATIAL ORDERING OF DEFECTS BY LASER IRRADIATION 

F. Kh. Mirzoev, V. Ya. Panchenko, and L. A. Shelepin 

A closed mathematical model is constructed for the kinetics of processes in 
laser-irradiated crystals, including a system of nonlinear equations for the 
temperature and strain fields and for the point-defect density. Two types 
of instability are considered: diffusion-strain and recombination-strain. 
Criteria for their onset are obtained. Formation of a periodic structure of 
point defects in a thin film is analyzed. 

i. INTRODUCTION 

Laser irradiation is a very effective method of endowing various materials with new 
properties of importance for many applications in microtechnology and optoelectronics. Thus, 
lasers can be used to produce films equipped with a superstructure and having electronic 
and optical properties that are not observed in homogeneous materials. Most timely in this 
connection is the development of a consistent description of the kinetic processes induced 
by laser action. 

We construct in the present paper a closed mathematical model for processes in crystals 
at temperatures below the melting point. The model includes a system of nonlinear equations 
for the temperature field, for the strain field, and for the density of the point defects 
(vacancies, interstices, substitutional atoms). Such a system of equations is quite compli- 
cated. A significant amount of information can be obtained, however, by merely investigat- 
ing the stability of this system. Onset, from a uniform distribution of point defects in 
a solid, of spatially inhomogeneous states is the result of the development of various 
instabilities produced by laser irradiation. We consider here two types of instability: 
diffusion-strain and recombination-strain. We discuss their mechanism and criteria for their 
realization. 

The diffusion mechanism is used to investigate the formation of a periodic structure 
of point defects in thin films. A specific analysis is carried out of an experiment in which 
the film is produced by deposition from the gas phase while a focused cw CO 2 laser acts on the 
substrate. When the defect density exceeds a certain critical value, the spatially uniform 
distribution becomes unstable and goes over into an inhomogeneous state comprising an ordered 
array of point defects in the form of concentric rings with parameters that depend on the 
film properties and on the laser-radiation intensity. We have investigated the nonlinear 
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stationary regime of diffusion-strain instability, which becomes stabilized by allowance 
for the anharmonicity of the elastic continuum. 

2. MATHEMATICAL MODEL OF DEFECT KINETICS UNDER LASER IRRADIATION 

Many experimental and theoretical papers have been published by now on the defect kinetics 
under laser irradiation of solids. A large number of interesting results have been obtained 
(see, e.g., [i]). At the same time, it is possible to formulate a closed system of equations 
that make up a mathematical model for the processes accompanying laser irradiation. It is 
known that defects generated by laser irradiation produce in a crystal a noticeable strain 
due to the difference between the values of the covalent radii of the defect and of the matrix 
atoms. In the presence of strain, the defects are subject to additional drift flows that 
influence substantially the kinetics of the formation of the spatial distribution of point 
defects. Assume that at the initial instant t = 0 there are produced in the crystal mobile 
point defects, such as vacancies and interstitial atoms. The basic processes that control 
the variation of the density of the point defects are diffusion, drift motion, mutual anni- 
hilation, and finally absorption by the drains. With these processes taken into account, 
the equations for the point-defect density can be written in the form 

on a 

= -- d iv ja  - l i a n a ,  Ot - 7ninv 

J a : - Dagrad na + Vna, 

( i )  

(2) 

where n a (a = i or v, with i and v corresponding to interstices and vacancies, respectively) 
is the density of the point defects, #aare the reciprocal times for trapping of defects of 
type a by drains, and 7 is the recombination rate. Expression (2) determines the defect 
flux; its first term describes diffusion with a coefficient D a = D0aexp(-gma/T) (D0a is pre- 
exponential factor, ema is the defect migration energy, and T is the temperature in energy 
units), the second term takes into account the defect drift (v = (D/T)F is drift velocity) 
due to application of a force F = -grad Uin t by the inhomogeneous strain field, Uin t is the 
energy of interaction of one defect with the strain field: Uin t = K~ a div U, K is the mod- 
ulus of isotropic compression, ~a is the activation volume for the formation of a defect 
of type a, and U is the displacement vector. According to [2] we have ~a=A~Na where 

is the volume of the matrix atom, N a is the density of the matrix atoms, and A~ a is the 
change of the crystal volume due to formation of one defect in it [2]. For example, for 
a vacancy or a small-radius impurity we have ~v < 0, while for interstices or large-radius 
impurities we have ~v > 0. It is taken into account in the derivation of (I) that the es- 
cape of defects to the surface can be neglected compared with the escape to internal drains. 

The equation for the material-displacement vector is [3] 

a 2U K ' K 
Ot 2 =C~AU+ (C~-C~)grad (divU) + -=-- Z ~agradn a -  - -  gradT (3)  

P a=i,v P 

where C~ and C t are the longitudinal and transverse speeds of sound and p is the density 
of the medium. The third term in the right-hand side of this equation describes concentra- 
tion stresses introduced into the medium by the defects, and the last term describe the ther- 
mal stress due to the inhomogeneous temperature field (a T is the volume expansion coefficient). 

The equation for the temperature field in the medium can be written in the form 

OT 0 Ona 
C --Ot + ~rKT --0t (div U) + a=i,vX Oa - - 0 t  = KAT + QT (4 )  

where K is the thermal conductivity, C is the heat capacity per unit volume, and 0 a are ki- 
netic coefficients representing the total heat transferred by the diffusion of the point 
defects and released from a unit volume that captures a point defect. In order of magnitude 
we have @a mefa [2], where era is the energy to produce a defect of type a. In the deriva- 
tion of (4) we neglect the heat released upon recombination. QT describes the source of the 
heat released upon absorption of the laser energy: QT = (l -R)KoI(r,t) , where R is the reflec- 
tivity of the crystal, K the coefficient of optical absorption, and l(r, t) the radiation 
intensity. 
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Equations (1)-(4) constitute a closed system and describe completely the kinetics of 
point defects when a solid is heated by a laser. To make practical use of the foregoing 
mathematical model we must specify the characteristics of the external irradiation, as well 
as the properties and the parameters of the sample subject to the laser action. 

3. INSTABILITIES IN IRRADIATED CRYSTALS 

The physical mechanism that produces the instabilities is the onset in the medium, by 
fluctuation, of inhomogeneous strain or temperature fields. For example, elastic interaction 
of the strain field with the defects produces a force that causes thermal motion of the de- 
fects and heat transport, and accordingly leads to additional modulations of the defect density 
and of the temperature. The resultant inhomogeneous distributions of the defects and of 
the temperature serve in turn as sources of a force that deforms the elastic continuum and 
enhances the initial strain fluctuations. The resultant positive feedback leads to diffu- 
sion instability in the system. 

Diffusion-strain instability was analyzed in [4] on the basis of a simplified mathe- 
matical model that takes no account of the heat-conduction equation and of the thermoelastic 
stresses. It turns out that when the vacancy density exceeds a certain critical value n, = 
T/K~ 2 the sign of the effective diffusion of the point defects is reversed, and directed 
flows of vacancies and of interstitial atoms are produced in the compression and tension 
regions, respectively. The range of values of the wave vectors of the critical fluctuations 
was determined. Thus, in contrast to the case of low density of the point defects, when 
diffusion takes place from their higher-density region to the lower-density one, after 
n, is reached a channel is opened for the formation of seeds of pores which is connectedwith 
the rising diffusion of the point defects in the inhomogeneous strain field. 

We consider below the feasibility, in principle, of realizing, in the bulk of an irrad- 
iated massive crystal, an instability due to the influence of the strain field on the recom- 
bination and defect-drain processes. The elastic field of stresses alters the probabilities 
of these processes. If E is the energy barrier for recombination of one defect, then if a 
strain field e = div U is produced in the medium via fluctuations, the barrier is lowered, 
at the proper sign of the amplitude by an amount K~am div U, where ~am is the activation vol- 
ume of the recombination process. A change of E causes a change of the recombination rates 
(y and 8a)" This leads to an additional change of the point-defect density. The result is 
the appearance of forces Fa~gradn a that enhance the initial strain fluctuations, and positive 
feedback is produced. This instability mechanism takes place at low-temperature irradiation, 
when the processes that lead to diffusion of point defects are insignificant, while the dy- 
namics of the change of the point-defect density is determined mainly by recombination and 
absorption by drains, the role of which can be assumed by grain boundaries, impurities, etc. 
To facilitate the analysis we neglect formation of point defect + impurity complexes and 
the change of the impurity density by irradiation. 

The corresponding kinetic equations are 

dn v 

= g - 7n in  v - ~vnv , 
dt 

dn i ( 5 ) 
= g - 7nin v -/3in i 

dt 

where g is the rate of generation of point defects by irradiation and is assumed constant, 
~v and ~i are the rates of absorption by the drains, and y is the rate of mutual recombina- 
tion. The kinetic coefficients y, ~v,i are given by 

7 = 4~R o Dv, ~v,i = Wv,iPs Dv,i ( 6 ) 

Ev, i  
where Dv, i=D~ , i exp ( - - - -~  - - - )  are the diffusion coefficients, Ev, i are the migration energies, 

Ps is the drain density, qv i are the preference factors (~.>I, ~i- I<I, ~v=l ), and R 0 is 
, 1 

the radius of the mutual recombination of the point defects. 
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Mutual recombination of point defects and their absorption by drains are accompanied 
by a lattice deformation whose size is given by 

div U = n i f / im + nv~2vm + ninv~2imf~vm ( 7 ) 

Here ~vm, ~im are the activation recombination volumes for vacancies and interstitial atoms, 
respectively (~vm < 0, aim > 0) [2]. 

The system (5)-(7) is nonlinear. The nonlinearity is due to mutual recombination 
of the defects and to absorption ~v,i by drains, processes that depend on the strain in the 
medium. These are in fact the terms that lead to instability of the stationary state in 
the system. 

The stationary nonequilibrium densities (n~, n~) satisfy the following relations: 

o + #v(%) o g = 7(%)n  ~ n i n v , 

0 0  
g = 7(eo) n v n i + 3i(eo) n ~ , 

O ~ v m +  o + o o 
eo = nv ni f~im ni nv ~2vm ~2im 

where 
E v - Ktflvmle o 

70 = 7(e o) = 4TrRoDov exp (- 
T 

Ev, i ~ Kl~2v, im/e o 
= ~v,iPsDov, i r ( -  T ) 

), #~ : #v,i(%) 

o 
Let us show that in the system described by Eqs. (5)-(7) the stationary state (nv, i, e 0) is 
unstable. Assume that local fluctuations take place in the system and lead to perturbations 
6nv, i and 6~ in a certain region 

= n  ~  + e = e o + S e ,  15nv, i l < n ~  I ~ e l ~ e  o nv,i  V,I ~nv, i '  V,l' ' 

7(e) = 7 o + r~e, 3v,i(e) = 3~ + Bv,i ~, r = 87/8%, 

Bv, i = O3v,i/Oe o 

Substituting these expressions in (5)-(7) and linearizing with respect to small perturbations 
of the form ~nv,i~expXt , we obtain the following equation for the instability growth rate 

) 2 + a ~ , + b : O ,  

a : 70 (%~ + ni0) +Do+ 3i~ + ~= (rnO + Bi)n0_ ~, (rn0 + Bv) n o, 

0 0 o 0 _ ~22n ? (rn o + Bi)] _ b = [%n ~ 3o _ nlnv(rni + Bv ) ] [7on v + 3i 

- [%n  ~ + n : n  ~ ( r n ~  By)] [%n  ~ - ~Z,n ~ (rn~ + B i ) ] ,  

__ O 
f~l =s + n~ s ftim-nvf2imf2vm 

The system becomes unstable if a < 0. It follows hence that the necessary condition for 
instability is a sufficiently rapid growth of the coefficients ~ and Sv as g increases. In 
fact, the onset of a strain field in the medium can stimulate the recombination of point 
defects by lowering the energy barrier. This change causes an exponential growth [see Eqs. 
(6)] of the recombination ,coefficients and hence an additional growth of the stress field 
in the medium. The result is a positive-feedback mechanism that leads to instability in 
the system. 
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Consider a system in which the density of the interstitial atoms and the lattice defor- 
mation that they produce is small. Then, neglecting in Eqs. (5)-(7) the mutual recombination 
of the defects (~ ~ 0) and the strain associated with the interstices (~im = 0), we have: 

2 0 2 0 
Kgvm n v K~vmn v 

1) exp ( -  ) 
X = ~ (  T T 

Therefore X > 0,  if n~>n,:T/K~m. At typical values of the constants K = 5.1011 dyn/cm 2, 
~vm = 10-2a cm3, and T = 300~ we obtain for the critical vacancy density the estimate n, 
1019 cm -3, which is smaller by several orders than the atom density in the matrix; this 
attests to feasibility of realizing this instability mechanism. 

The recombination-strain instability phenomenon must be taken into account in the analy- 
sis of the mechanism and in the estimate of the criterion for material failures due to increase 
of elastic stresses in a medium, with an aim at a more reliable prediction of the behavior 
of various construction materials and of tools on their basis, operating when exposed to 
laser emission and to other high-intensity radiation. 

4. FORMATION OF PERIODIC ANNULAR DEFECT STRUCTURES IN FILMS 

We investigate in this section the mechanism and the conditions for the onset of periodic 
structures of defects in thin films. Consider a crystal film of thickness h, deposited on 
a disk-shaped dielectric substrate. The substrate is heated by a focused cw CO 2 laser (Fig. 
i). We assume that the absorption coefficient is so high that the substrate becomes optically 
transparent. The temperature field produced on the substrate surface by the laser emission 
is assumed to be stationary and bell-shaped. Let the film contain defects of density n(r, 
t). Since the film is weakly bound to the substrate, it can undergo flexural deformation. 
The initial homogeneous distribution of the defects is then disturbed, diffusion and drift 
fluxes are produced, and some of the defects are absorbed by drains. Equation (i) takes in 
this case the form 

0n a D a ~2 a Kh 
-' = div [D a grad n a + grad ( a r e ) ]  - ~ana (8) 

at 2T . 

where the second term in the square brackets describes the defect drift due to the influence 
of the field of the inhomogeneous flexural strain $(r, t), r = (x, y) is the radius vector 
A r = 82/ax 2 + a2/ay ~, and $ is the flexural deformation of the film and is indicative of 
the shift, along the z axis, of points located on the neutral plane (z = 0). Assuming that 
the surface energy of the film bordering on the vacuum is much higher than the surface energy 
of the substrate bordering on the vacuum, the film can be regarded as free, and to describe 
dynamics of the field of the flexural deformation in the film we can use in place of (3) 
the following equation [3]: 

~'~ = -- D~AZr ~ - D~fl a A~ ha at--- Y ~3 + hOTAr~ + a t _  an (9) 

Fig. i. 

.r 

Experimental setup: i) substrate, 2) film, 3) 
vacuum, 4) laser beam. 
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where p is the film density, D~:E0h3/12(l- a 2) is the flexural rigidity, E is Young's modulus, 
o is the Poisson coefficient, and o T is the stress along the film and is due to the axisymmet- 
ric temperature gradient produced on the substrate surface by the laser radiation: OT = (i-o)" 

KaT(T-T~) [3], a T is the film's thermal-expansion coefficient, T~ is the surface temperature 
as r § ~, and o t takes into account the stress that clamps the film to the substrate. It is 
due to the differences between the film and substrate lattice parameters. The last term 
of (9) determines the concentration stresses due to the differencebetween the covalent radii 
of the defects and of the matrix atoms. Accordingly to [5] we have for o n the expression 

On=K ~ ~ana 
a = i , v  

The summation here is over all the point defects that produce the strain. The foregoing 
set of equations is closed and nonlinear. The nonlinearity is due to the terms that describe 
the interaction of the defects with the flexural-deformation field and depend in turn on 
the defect density. Note that it is precisely this term which leads to the onset of instabil- 
ity of the uniform distribution of the defects. 

a) Investigation of Stability in a Film with One Type of Defect. If only one type of 
defect is present (small-radius impurities or vacancies), Eqs. (8) and (9) take the form: 

an DKIf2vlhn 
- -  = div  (D grad  n A t )  - fin + g, 

a t  2 T  

a2~ 
2 ~2 + ha T A~ + o t - KIf~vln -- = - D~AZr ~ - D~ fla Ar  hp ~t= ( io) 

To investigate the stability of the system (i0) to small perturbations, we put 

n(r, t) = n o + an(r, t ) ,  ~(r, t) = ~o + a~(r, t) 

16n(r, t) l < n o, I~e(r, t) I < ~o 
(ii) 

where n o and $0 are the average homogeneous values of n and $ while an and 65 are small in- 
crements. After substituting (ii) in the system (i0) and linearlizing the latter we arrive 
at the system of equations: 

8 DK If2 lhn o 
- -  (~n) = DA(~n) - A 2 ~  _ f lvSn ' 
at  2T 

a 2 

hp ~ (8~) = - D~ a 2 ( ~ )  + h a T a ( ~ )  -- Klnl~n 
(12) 

The coefficients D, D E , OT, P are in general variable, since they depend on the inhomogeneous 
temperature field on ~he substrate surface. If, however, it is assumed that the characteris- 
tic spatial scale over which the temperature changes substantially is much larger than the 
characteristic dimension of the diffusion zone, the coordinate dependence of the coefficients 
of the system (12) can be neglected and we can put in (12) D, D$, oT, p = const. Under these 
conditions the solution of the set (12) can be sought in the form: 

8n(r, t) = N exp ~ t )  Jo (qr), a~(r, t) = M exp (~t) Jo (qr) ( 1 3 )  

where Jo(qr) is a Bessel function of zeroorder, q is the wave vector of the perturbations, 
N and M are constants, and % is the instability growth rate. The form of the small devia- 
tions (13) suggests that we are investigating the stability of the homogeneous solution of 
the system (i0) against formation of a periodic structure of the density of defects arranged 
in the form of concentric rings. Substituting (13) in (12) and equating to zero the deter- 
minant of the resultant set of equations we obtain, taking into account the adiabaticity 
of the instability growth rate, the expression 

409 



m noK:~2 2 12_D~ 
X(q 2) = - O q 2 ( 1 - 1 2 q 2  + 1 ) - ~ ,  m -  To----T-- ' -hu'-~ 

It follows from (13) that when the condition m < 1 is met, i.e., 

(14) 

To T 
no >n,- K2~2 2 (15) 

there exists an interval of wave-vector values q~(+~ <q2 <qc(-), for which the homogeneous 
state loses stability. This gives rise to a periodic structure of defects, in the form of 
concentric rings. The wave vectors of the critical fluctuations are given by 

2 

qc (• = 

4/~l 2 
( m -  1 - ~'~'~) -+ % / ( m -  1 - ~ - ) '  D 

2~ 

�9 2 It is easily seen that ~(q2) increases in the interval q~(+) <q: <qcr and that A(q~(• =0 �9 
The dependence has therefore a maximum. At the maximum point 

qmax = - I) ,  

;~m,,x = T D (m + 1 - 2V'm) - j~ 
( 1 6 )  

Analysis of expressions (14)-(16) shows that the cause of the periodic structure of 
the defects is their drift caused by the flexural deformation, which causes X(q 2) to take 
the form of a curve with a sharp maximum (Fig. 2). Inhomogeneous fluctuations are then 
produced against the background of the homogeneous fluctuations (q m0 ) having wave vectors 
close to ~qmax and increasing at a rate ~Xmax exceeding by several orders the growth rate 
of the homogeneous fluctuations. Under these conditions there is realized in the point-de- 
fect system a periodic annular structure with a spatial characteristic determined by qmax: 
d o ~ 2=/[qima x . To analyze the suitability of the considered mechanism we make some numerical 
estimates. Assuming ~ ~ 10 -23 cm 3, K = 5"1011 dyn/cm 2, a T = i0 -s deg -z, and T = 500~ we 
get n, = 8"1018 cm -a. This density is much lower than atomic, attesting to the practical 
realizability of this approach. For the period of the resultant structure we obtain the 
estimate d o % 4"10 -a cm. 

b) Investigation of Stability in a System with Defects of Two Types. It is of interest 
to consider a situation in which the system contains two types of defect (impurity atoms 
of large and small radius, or Frenkel' pairs) with densities nj(j = i, 2). The corresponding 
system of equations is 

a.j 5n:jm 

o, - - + 2T nj - 7n, n 2 g, 
a2~ 

. h  at-- 7 = - D~A2~ - D~ ~a A~. ~a + h% Ar~ -- KIn~ In I + KIf~ 2 In= 

(17) 

where y is the rate of recombination of the vacancies and interstitial atoms. 
of impurities we have y = O, ~j = O, g = O. 

To investigate the stability of this system, we use the solutions in the form (13), 
and obtain after simple transformations 

aq feq 
_ - -  4- 

~'~,2 (q2) = 2 4 
- bq, 

= o) .v+ o+~o  (I aq ( n ~  2 ~l +Dlq2 
mln~ 

12 q2 + l ) + Dzq2 ( l  
m2 n~ 
12q2+ 1 

, 

In the case 

(18) 
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X 

Fig. 2. Qualitative dependence of the instability growth 
rate on the square of the wave vector. 

m,n~ m:n  ~ 
bq = [Dkq2 (1 12q2+ 1 ) + fl, + "/n o ][Duq: (1 t2q2 + ~  ) + fl 2 + 7n ~ ] 

ml2n~ 
-- (.~nO, + D l q  2 t2q, ,+l  

n o m12 2 
- -  ) ('/n2~ + D2 q:  I: qZ + 1 

--), 

KIf2,~221 K 2 ~  
m , 2 -  T a r  , m j =  T a r  , j = l , 2 .  

w h e r e  n l  ~  n o a r e  t h e  d e n s i t i e s  s a t i s f y i n g  t h e  h o m o g e n e o u s  a n d  s t a t i o n a r y  e q u a t i o n s  

= O+ 0 0+f l ln l0 ,  g = v n l ~  2 f12n2 . g ]'n o n 2 

Let us consider a case when the parameters of both components coincide: D I = D 2 = D, 
$2 = ~, no = n~ = n o . We obtain then from (13): 

A+.,2 (q2)  = 

f _  q2 D (1 2rune 
/2q2+1 ) - fl 

- q : D  - fl - 27no ( 1 9 )  

It follows from (19) that instability sets in when 

Ta T 

n o > n ,  = 2K=I2 = 
The wave vectors of the critical fluctuations are determined in this case from the condition 
bq= = 0 . 

c) Elimination of Instability in a System of Defects. The ensuing instability of a 
homogeneous distribution of a system of point defects is eliminated by the anharmonicity 
of the elastic continuum. We confine ourselves for simplicity to a system with one type 
of defect, say, vacancies. The solution of the nonlinear system of equations (i0) can be 
represented, in the approximation in which the vacancy density and the strain field are sta- 
tionary, by a superposition of plane waves: 

n (r )  = no + Enaex p ( iqr)  
q - 

(r) = Go + Z~qexp (iqr)  
q 

(20) 

where n a, $a are the amplitudes of the unstable modes. Substituting these solutions in the 
System [10)-and solving the latter, we obtain the following expressions for the stationary 
Fourier amplitudes: 
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K1f~[hn0q2 ~_q: 
n q -  TX/3a q~ z 1 , 

~q= -+- 1 

(21) 

ho T K 2 ~ 2 n  o 
where q] =W ( 2T~ 1). Note that in the derivation of (21) we have neglected, for 

simplicity, the recombination terms in (i0) ($ E 0). Substituting (21) in (20) and summing 
over q, we obtain for n(r) and ~(r) 

n(r) ~ASl (q#), ~(r) ~ BII (qor) (22) 

where A and B are certain constants. It follows from (22) that the concentric spatial dis- 
tribution of the defects is the cause of the concentric distribution of the strain field. 
The impurity atoms themselves, piling up in the compression region, deform the film and main- 
tain thus the initial inhomogeneous fluctuations of the strain field. 

Note that the theory developed above differs from the model [6] used to analyze the 
produced periodic structures, since it takes into account in a unified manner the dynamics 
of the temperature, strain, and density fields. 

It explains qualitatively a number of experimental facts. Thus, for example, annular 
concentric flaking of the film was observed [7] in the course of laser deposition of poly- 
crystalline molybdenum films from the gas phase. According to the theory set forth here, 
this phenomenon can be interpreted in the following manner. When fluctuating flexural defor- 
mation sets in, there appear in the film periodically repeating tension and compression re- 
gions. The inhomogeneous field of the flexural strain, interacting with the vacancies pro- 
duced as the film grows, produces under certain conditions a vacancy drift directed counter 
to the diffusion in the vacancy system. In this case the compression regions attract the 
vacancies, while the tension regions repel them. Becoming localized in the compression re- 
gion, the vacancies themselves deform the film, enhancing thereby the initial fluctuations 
of the strain. The ensuing instability leads to formation, in the vacancy localization re- 
gions, of a high supersaturation sufficient for pore nuclei to appear and grow. The result 
is a periodic annular pore structure in the film. Concentric annular flaking of the film 
takes Place at the locations of the pore accumulations. Calculation using Eq. (15) shows 
that the critical density of the vacancies is usually reached in the temperature interval 
200-400~ in accord with the experimental data. 

The appearance of a vacancy drift flux in the compression region of the film produces 
a drift of site atoms in the opposite direction, and a flux, in the same direction, of inter- 
stitial atoms in the tension region (if the diffusion mechanism constitutes crowding an atom 
out of a site into an interstice). Assume that the film contains substitutional impurities 
of two types, with different diffusion activation energies satisfying the inequality 
Eal <Ea<Ea2 , where E a is the migration energy of the impurities of the lattice proper. It 
is then obvious that in the course of the diffusion the more mobile impurity atoms (with 
activation energy Ea2) will be gathered in compression regions, and the less mobile ones in 
tension regions. As a result, laser irradiation will rid the center of the film of impurities. 
It is important to emphasize here that the characteristic times needed for observation of the 
laser "cleanup" effect is only a few seconds, and sufficiently intense laser action can 
shorten this time by three or more orders. The relatively low content of impurities (mainly 
carbon and oxygen, whose concentration is not higher than 0.01%) in molybdenum films obtained 
by laser deposition from the gas phase [7], can apparently be explained within the framework 
of the mechanism described here. It must also be emphasized that purification by the mechan- 
ism proposed in the present paper produces no local damage in the sample in a wide range of 
irradiation conditions, so that this method is quite valuable for practical use when pure 
atomic samples are needed. 

The authors are indebted to V. I. Emel'yanov for helpful discussions of the results. 
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CORRELATED STATES IN QUANTUM ELECTRONICS (RESONANT CIRCUIT) 

V. V. Dodonov,* V. I. Man'ko, and O. V. Man'ko% 

Coherent and correlated states of a Josephson junction are constructed. Quantum 
current and voltage noises are calculated. The influence of an external current 
and of parametric buildup on the Josephson junction is discussed. The feasi- 
bility in principle of exciting correlated and coherent states in a Josephson 
junction is suggested. 

The feasibility of using a Josephson junction (simulated by a quantum resonant circuit) 
to generate squeezed electromagnetic radiation was considered in [I]. 

Our purpose here is, by using the analogy between a Josephson junction and a quantum 
resonant circuit, to demonstrate the possible existence of a new Josephson-junction state - 
a correlated state - and to suggest the theoretical feasibility of exciting a correlated 
state by a parametric action that can lead effectively to a temporal variation of, say, the 
critical current of the junction. 

We carry out the analysis within the context of the Hamiltonian [2] 

I~ Q2 hi C h ^ 
= - -  + -- ( 1 - c o s ~ o ) -  - -  l(t)~o. (i) 

2C 2e 2e 

Here C is the capacitance and I C the critica5 current of the junction, e the electron charge, 
h Planck's constant, Q the charge operator, ~ the phase operator, and I(t) the external cur- 
rent fed to the junction. The problem is investigated here in the region of small values 

of the phase ~ , when the term(l-cqs~) in the Hamiltonian (i) can be replaced by the quad- 

ratic expression ~__2 ; conditions for this have been discussed in [3]. The Hamiltonian (i) 

is thus reduced to2the Hamiltonian of a quantum resonant circuit 

1~I c ~2 h 
2C 2e 2 2e I ( t )~ .  ( 2 )  

*Moscow Physicotechnical Institute, Dolgoprudnyi. 
tNuclear Research Institute, Academy of Sciences of the USSR, Moscow. 

High-Energy Electron Laboratory. Translated from Preprint No. 89 of the Lebedev Physics 
Institute, Academy of Sciences of the USSR, Moscow, 1989. 

0270-2010/89/1005-0413512.50 �9 1989 Plenum Pub%ishing Corporation 413 


