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A digital image-based model of the microstructure of cement paste, coupled with exact 
transport algorithms, is used to study the diffusivity of Portland cement paste. The principal 
variables considered are water: cement ratio, degree of cement hydration and capillary 
porosity. Computational methods are described and diffusivity results are presented, which are 
found to agree with the available experimental measurements within experimental error. Model 
cement pastes prepared with different water: cement ratios, and having different degrees of 
hydration, are found to have diffusivities that lie on a single master curve when plotted as a 
function of capillary porosity. Concepts from percolation theory are used to explain 
quantitatively the dependence of diffusivity on capillary porosity. The effect of silica fume 
addition on diffusivity is also examined. 

1. Introduction 
The transport properties of porous materials have 
been a subject of scientific interest for many years, and 
have become the focus of much attention in the last 
10-20 years, primarily due to work carried out in the 
oil-well logging and exploration community on por- 
ous sedimentary rocks. There the interest has been in 
predicting transport coefficients based on microstruc- 
rural parameters of the pore space. These transport 
coefficients include the electrical conductivity of the 
pore space [1], the diffusivity of the pore space (which 
is related to the conductivity through an Einstein 
relation [2, 3], and the fluid permeability [4]. 

Cement-based materials are porous materials 
whose transport coefficients are of interest, but for 
different reasons than for rocks. The focus of interest 
in rocks has been fluid permeability, which is not 
unreasonable as oil is a fluid that must be pumped 
through and out of the porous rocks in which it is 
found. In cement-based materials, the transport of 
dissolved chemical species through the pore space is of 
more significance, for the following reasons. Firstly, 
most of the physicochemical processes that degrade 
cement-based materials and ultimately determine ser- 
vice life depend on a supply of ionic species from 
external sources [5]. The rate at which these species 
can move through the pore structure largely deter- 
mines the rate at which degradation proceeds. Ex- 
amples include chloride ions attacking reinforcing 
steel in concrete, and sulphate ions reacting with 
aluminate phases in concrete to produce crack-caus- 
ing internal expansive pressures [6]. Secondly, there 
has been much recent interest in using cement-based 
materials to contain low- and intermediate-level 
radioactive and also toxic waste [7]. The transport 
coefficients of these materials are the key factors that 
will determine their effectiveness as barriers. 

Although both fluid permeability and ionic diffus- 
ivity are important transport coefficients for cement- 
based materials, this paper focuses on the diffusivity. A 
digital image-based growth model of the developing 
microstructure of cement paste during hydration is 
coupled with two algorithms for computing the con- 
ductance of random conductor networks, in order to 
carry out the computations to be described below. 
Preliminary accounts of some of this work have 
appeared previously [8, 9]. 

2. Digital image-based microstructural 
model 

2.1. Cement hydration 
The microstructure of cement paste is known to be 
complex [10]. This is not surprising, as cement paste is 
formed from a disordered aqueous suspension of ir- 
regularly shaped cement particles, which undergo ran- 
dom growth due to hydration reactions. Since the 
original cement particles have a wide size distribution 
and an average size of 15-20 I-tm [11], the complex 
microstructure of cement paste extends over many 
length scales, from small fractions of a micrometre to 
tens of micrometres. 

Neglecting chemical details (which admittedly is an 
over simplification) the reactive growth process that 
cement particles undergo to produce cement paste can 
be thought of in the following simple way [12]. The 
solid cement particles supply calcium ions to the 
surrounding water through dissolution of surface 
layers. These ions then react with silica-rich surfaces of 
cement particles to form solid reaction products (sur- 
face products) covering the cement particles, or spon- 
taneously nucleate in the pore space to form crystals 
(pore products), which can then grow further by accre- 
tion. In cement paste, the main surface product, 
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calcium silicate hydrate, is denoted C-S-H,  and the 
main pore product, calcium hydroxide, is denoted CH, 
where the usual cement chemistry shorthand notation 
is C = CaO, S = S i O 2 ,  H = H20, A = A 1 2 0 3 ,  and 
F = Fe20 3. 

The reason that cement hydration can produce a 
rigid solid from a viscous suspension of cement par- 
ticles in water is that the hydration reaction products 
have a larger volume than the solid reactants. As the 
hydration process is nearly a constant total volume 
process, the reaction products can fill in the initially 
water-filled pore space, eventually forming a rigid 
solid backbone capable of bearing mechanical loads. 
It is convenient to define the following volume ratios. 
13 s is the ratio of the volume of surface products 
produced to the volume of cement reacted; and [3p is 
the analogous ratio for the pore products. The total 
volume expansion factor is defined as [3 T = ~s + [3p. 
Typical ranges for these parameters, for various 
types of Portland cements, are 1.6 < [3s < 1.9, and 
0.4 < [3p < 0.7 [13]. These parameters include the 
reaction of tricalcium silicate (C3S), dicalcium silicate 
(C2S), and the less abundant aluminate phases. The 
very small amount of ferrite phases present in cement 
was ignored in [13]. Somewhat surprisingly, for a 
variety of cements, the value of ~T is fairly constant, 
around 2.3 +_ 0.1 [-13]. In the simulation model to be 
described next, [3 s is taken to be 1.7, and [3p is taken to 
be 0.61, so that 13a-= 2.31. These particular values 
are those realized in the hydration of pure C3S 
cement [14]. 

2.2. Microstructural  model 
In the last decade, a number of random growth or 
aggregation models have been developed. These mo- 
dels, which employ very simple random growth rules, 
have been shown to produce complex aggregated 
structures, often with fractal morphology. Two ex- 
amples are the diffusion-limited aggregation (DLA) 
[15] and Eden models [16]. In the light of these 
models, it is not unreasonable to suggest that the 
complex microstructue of cement paste might be 
simulated using a few relatively simple growth rules, 
which are repeated many times. The model used in this 
paper represents a realization of this approach. 

The model operates on square or cubic arrays of 
pixels, typically of edge length equal to 500 pixels in 
2D, and 100 pixels in 3D, where each pixel is assigned 
to a single phase, such as pore space or cement. 
Initially, a specified number of cement particles 
( ~ 2000 in 3D) are randomly placed in the unit cell 
such that no two particles overlap, simulating the 
mixing process. Periodic boundary conditions are 
used to eliminate any artificial edge effects at the cell 
walls. The particles may be from any size distribution, 
within the resolution limits of the unit cell (1-100 
pixels). Model particle shapes, like circles in 2D or 
spheres in 3D, may be used, but since the model is 
based on a digital image representation of the cement 
particles, digitized micrographs of actual particle 
shapes can also be used as a starting point in 2D. 
All the simulations described in this paper are 3D 
simulations. 

The model operates by the iteration of cycles. Each 
cycle consists of three steps: dissolution, diffusion, 
and reaction. Fig. 1 describes the growth process 
schematically. 

In the dissolution step, any cement pixels in contact 
with a water-filled pore-space pixel attempt to take a 
step in a random direction. The pixels whose step 
lands them in the pore space dissolve, and each such 
pixel turns into a random diffuser. The pixels whose 
random step would land them in a solid phase are not 
allowed to move, and so remain at their original 
location, undissolved. The number of pixels that dis- 
solve are counted, and the correct number of extra 
diffusing pixels are added at random locations within 
the pore system, replacing pore space pixels, to ac- 
count for the correct amount of surface and pore 
product formation. More precisely, if n pixels dissolve 
from off the cement surfaces, 13pn pore product and 
([3s- 1)n extra surface product-diffusing pixels are 
added to the system at random locations in the pore 
space, in order to achieve the correct volume of 
hydration products arising from the reaction of 
the n dissolved cement pixels. 

During the diffusion/reaction steps, the dissolved 
pixels move by executing random walks throughout 
the pore space. Surface-product pixels continue to 
move in this random fashion until they encounter a 
cement surface, at which point they react and attach to 
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Figure 1 Schematic diagram of cement paste microstructural development algorithm. 
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this surface. Once surface products are present, dif- 
fusing surface-product pixels can react and attach to 
these surfaces as well. For any given step taken by a 
diffusing pore-product pixel, however, there is a non- 
zero probability that it can nucleate at its present 
location. This probability decreases exponentially as 
the number of diffusing pore-product pixels decreases 
[17]. After a pore-product cluster has been nucleated, 
other diffusing pore-product pixels can aggregate on to 
the cluster upon contact. When all diffusing pixels 
have reacted or nucleated, the cycle is complete, and 
the next cycle begins with a new dissolution step. 
Microstructural development is complete when all 
cement pixels have reacted, or when all remaining 
cement pixels are covered by surface product, and 
therefore are no longer available for dissolution. In 
3-d simulations, usually up to 90% of the original 
cement can be hydrated using these simple rules. 

The degree of hydration achieved after any com- 
pleted cycle is determined from analysis of the micro- 
structure. Degree of hydration, ~, is defined as the 
fraction of the original cement that has been reacted, 
so that ~ equals 0 when the cement particles are first 
mixed with water, and attains a value of unity when 
hydration is complete. Another parameter that is eas- 
ily calculated in the model is the water:cement (w/c) 
ratio, which is the weight ratio of water to cement in 
the initial cement-water mixture, a parameter often 
quoted in the cement literature. If f is the solid volume 
fraction, and 1 - f i s  the water volume fraction, then 
the water:cement ratio is given by 

w 1 - f  
- ( 1 )  

c 3.2f 

where 3.2 is the specific gravity of portland cement. 
The original porosity of a cement/water mixture, de- 
fined as the volume fraction of pore space, is then also 
equal to f 

3. Percolat ion properties of the 
pore space 

As cement hydration progresses, the pore space is 
gradually being filled because the factor [~T is greater 
than one. The connectivity of the pore space as a 
function of hydration is a percolation problem. In this 
paper the term 'pore space' refers to capillary pore 
space, the water-filled space between the cement par- 
ticles and their reaction products that is left over 
from the original cement-water mixture. There are 
micropores in the C-S H surface product material, 
which form continuous pathways called 'gel pores'. 
However, transport properties are dominated by the 
much larger capillary pores as long as they percolate, 
i.e. form a continuous pathway. If the capillary pores 
close off, however, then transport must be dominated 
by the much smaller C-S-H gel micropores. There is 
no sharp size cut-off between capillary and gel pores. 
The capillary pores are considered to have a size 
ranging from hundreds of micrometres down to tens 
of nanometres, with the upper end of the C-S-H gel 
pore-size distribution overlapping the lower end 
of the capillary pore size range [11]. 

Since the microstructural model is represented as 
a digital image, there is an underlying lattice in the 
structure of the model. Therefore all the computa- 
tional techniques developed for lattice percolation 
problems can be carried over to analyse digitized 
continuum structures like the cement paste model. 
For instance, the fraction of the pore space that is part 
of the percolating cluster is easily determined using a 
'burning algorithm' 1-18]. 

Recent work using the microstructural model [13] 
has shown that the capillary pore space of cement 
paste does have a percolation threshold, at a capillary 
porosity qb of about 18%, or qb c = 0.18. This thresh- 
old qb c is independent of the initial porosity or 
water:cement ratio [13]. Also, the C-S-H surface 
product phase itself has a percolation threshold, and 
changes from discontinuous to continuous at a vol- 
ume fraction of about 17%. The close agreement of 
the two thresholds with a conjecture by Scher and 
Zallen [19, 20] as to the value of a 'universal' con- 
tinuum percolation threshold of 16% in 3D has been 
noted and discussed [13]. For typical w/c ratios, the 
C-S-H phase percolates quite early in the hydration 
process, and is continuous simultaneously with the 
capillary pore space. 

The percolation theory-based description of the 
dependence of diffusivity on cement paste microstruc- 
ture will be discussed more fully in section 6. 

4. Computat iona l  methods 
4.1. Problem definition 
The problem being considered is that of a completely 
water-saturated porous hardened cement paste. A 
concentration gradient of dissolved ions exists across 
the sample, so that there is a net diffusive flow of ions 
through the water-saturated pore space. A steady state 
in regard to any adsorption~lesorption phenomena is 
assumed to have been established, so that the net flow 
is truly diffusive, and independent of time [-3]. Under 
these conditions, the Nernst-Einstein relation con- 
nects the electrical conductivity of the material with its 
diffusivity [2, 3]. Fig. 2 illustrates the physical content 
of this relation. If D o is the diffusivity of the ions being 
considered in free water, and cr o is the conductivity of 
the solution in the pore space, then the result of the 
Nernst-Einstein relation is that 

Figure 2 Schematic diagram of the physical content of the 
Nernst-Einstein relation relating the diffusivity and electrical con- 
ductivity of a porous material. 
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where D and ~ are the measured diffusivity and 
electrical conductivity of the fluid-saturated material. 
Diffusion coefficients can be measured experimentally 
by the application of a concentration gradient, - Vc, 
and electrical conductivities by the application of a 
potential gradient, - V V. The quantity D/Do is also 
sometimes called the diffusibility [3], or the relative 
diffusivity [8]. The latter term is used in this paper. 

4.2. Random conductor network 
The computational approach taken in this paper is to 
exploit the relationship given in Equation 2, by 
converting the digital-image model into a random 
conductor network, and then computing the conduct- 
ivity using one of two conductivity algorithms that 
were developed for simple lattice problems. 

The method of converting the digital-image model 
into a conductor network is as follows, and is illustra- 
ted schematically in Fig. 3, which shows the resulting 
conductor network superimposed on an original ran- 
dom 2D image. After a digital image cement paste 
model is generated, a 1 pixel-thick electrode is 'glued' 
on opposing faces of the unit cube. A network of nodes 
is created, with one node at the centre of each pixel. 
Conductors with conductance Eq are then set up 
which connect the nodes in nearest-neighbour pixels i 
and j, which themselves have conductivities c h and cyj, 
respectively. The conductance E~j is defined as the 
series combination of E~ and Zj 

1 
Z,j - 1/2, + 1/Zj (3) 

where E~ is the conductance of one half of pixel i. This 
means that E i = ~i d2/(0.5d) = 2 c~id, where d is the 
edge length of one pixel. If pixels i and j are both 
capillary pore space pixels, for example, then c h = cyj 
= l, so that Zij = d. If either pixel i or pixel j is a 

cement or pore-product pixel, then Zij = 0, since 
either ~z or c~j is zero. 

The surface-product (C-S-H) pixels are taken to 
have a small non-zero conductivity, because of the 

Figure 3 Schematic diagram of the digital image to random con- 
ductor network mapping used to compute the electrical conductiv- 
ity of the cement paste model. Conductances of the different types of 
bonds are given in the text. 
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surface product's continuous gel micropores. The dif- 
fusivity results were all obtained using C~c_s_ H 
= 0.0025, which was based on experimental data 

from chloride ion diffusivity measurements I-3, 213. 
Assigning a bulk conductivity to the C-S -H  phase is 
an approximation, since these pores are so small that 
the flow of diffusing ions or the movement of charged 
particles in them probably differs greatly from bulk 
processes 1'-33, and thus depends on the ion considered. 
For example, it is known that caesium (Cs § ion 
diffusivities are systematically smaller than chloride 
ion diffusivities measured in the same material [3], 
so a different value for ~ c - s - n  would be needed to 
describe caesium-ion diffusion. A conductor connec- 
ting a C - S - H  pixel node to a capillary pore-space 
node is then given a conductance of  d/200.5, in accord- 
ance with Equation 3. The electrodes are considered 
to have infinite conductivity, which results in the value 
of Eli being 2c~d when pixel i is on the electrode, and 
pixel j has finite conductivity G~. 

Figure 3 shows the five different values of conduct- 
ances used. No connection indicates a zero conduct- 
ance. The thin dashed lines are 0.0025d, the thin solid 
lines are d/200.5, and the thick solid lines have con- 
ductances d. The zig-zag line denotes a conductor-  
electrode connection, having a conductance of either 
2d or 2 (0.0025)d, for a capillary or a C - S - H  pixel 
connected to the electrode, respectively. 

4.3. Conductance algorithms 
Once the conductor network is built, its effective 
conductance is computed using one of two efficient 
methods. If the average connectivity of the nodes is 
small enough, around 1.5 bonds per node on average, 
then the Fogelh01m algorithm can be used. This al- 
gorithm was first written in LISP by Fogelholm [22] 
for 2D problems, and was recently extended to three- 
and higher-dimensional problems using a program 
written in C [23]. This algorithm systematically re- 
duces the network down to two nodes, with the 
conductance of the last remaining conductor being the 
equivalent conductance of the entire network. It is 
very efficient, partly because the equivalent conductiv- 
ity is obtained without having to solve for the electric 
potential at every point. However, the speed of the 
algorithm decreases extraordinarily with the average 
number of connections per node. In Reference 23, 
the problem considered was the computation of the 
conductivity close to the percolation threshold, 
Pc = 0.249, where p is the fraction of bonds remaining, 
for bond percolation 1,18-] on the simple cubic lattice. 
However we have found that the algorithm becomes 
unacceptably slow for p > 0.29 for the same problem 
solved on a 1003 cubic lattice. 

The Fogelholm algorithm is still useful for the 
cement paste problem, since there are many ranges of 
porosity which yield an effective p in the right range. 
However, most of the results reported in this paper 
were obtained using a second algorithm, a conjugate 
gradient relaxation algorithm [24]. 

The conjugate gradient relaxation algorithm essen- 
tially solves the complete electrical problem of the 



voltage distribution in a random material across 
which a potential difference is applied. The output of 
the algorithm is the voltage at every node, from which 
the total current and thus equivalent conductance is 
calculated. The input is an initial voltage distribution, 
usually taken to be 1 and 0 at the two electrodes, and 
linearly interpolated at nodes in between. The voltages 
are then cyclically updated until Kirchoff's laws are 
satisfied at each node within some preset finite pre- 
cision [24]. At low porosities, the conjugate gradient 
algorithm is slower than the Fogelholm algorithm, as 
it gives all the voltage information as well as the 
equivalent conductance, but it can handle any degree 
of connectivity and eventually becomes the faster 
algorithm, as the Fogelholm algorithm's speed de- 
creases much more rapidly with increasing porosity. 
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Figure 5 Logarithm (base 10) of the relative diffusivity, D/Do, 
against degree of hydration, ~, for (D) simulation and (O) experi- 
ment for a 0.45 w/c cement paste. 

5. D i f f u s i v i t y  r e s u l t s  
5.1. P la in  c e m e n t  paste resu l ts  
We have simulated the relative diffusivity D/D o for 0.4, 
0.45, 0.5, and 0.6 w/c ratio cement pastes, as a function 
of degree of hydration, ~. The results, obtained using 
1003 pixel unit cells, are plotted in Figs 4-7, along with 
reported experimental data [3, 21, 25]. It should be 
noted that the total computer time used for all the 
results described in this paper was on the order of 
100 h on a single processor, Convex C120 mini-super- 
computer. All simulations were run using 32-bit pre- 
cision real numbers, with no significant difference 
between 32- and 64-bit precision runs. 

In Figs 4-7, the open squares are simulation results 
and the filled circles the experimental results. One 
intial cement-particle packing was used at each w/c 
ratio to generate the simulation results. The fairly 
small (at most 10-20%) variation between different 
initial cement-particle packings is less than the ex- 
pected error in the experimental results, so that it was 
not worth averaging over several configurations. 
There is reasonably good agreement between simu- 
lations and experiment. 

In Figs 6 and 7, however, there is one experimental 
data point that is significantly different (by a factor of 
2 or 3).from the simulation results. The experimental 
data points did not have a measured degree of hydra- 
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Figure 4 Logarithm (base 10) of the relative diffusivity, D/Do, 
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tion, as only their ages were recorded. Consequently 
the degree of hydration was estimated as follows. The 
28-day-old samples measured in Reference 3 were 
assigned ~ = 0.7, the 60-day-old samples measured in 
Reference 21 were assigned ~ = 0.8, and the 180-day-. 
old samples measured in Reference 25 were assigned cz 
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= 0.9. These values of ~ were not picked to give the 
best agreement with simulation, but rather were based 
on data presented in Reference 11. This correlation 
between ~ and age was assumed to be independent of 
w/c ratio. However, it is known that higher w/c ratio 
cement pastes can hydrate faster than lower w/c ratio 
pastes [26], so that the apparent disagreement in Figs 
6 and 7 could just be due to an incorrectly assigned 
degree of hydration. In all fairness, it should be stated 
that this caveat also applies to the points that agreed 
well with the simulation results. 

5 . 2 .  S i l i c a  f u m e  r e s u l t s  

Condensed silica fume (a small, 0.2-0.4 lam, highly 
reactive, almost pure amorphous silica material) is 
being increasingly used as a mineral admixture in 
concrete where a low chloride diffusivity is desired 
[27]. Its effect on transport properties in concrete or 
mortar is probably partly due to modification of 
the sand-cement paste interfacial zone [10, 28], and 
partly to modification of bulk cement paste micro- 
structure [13]. Bentz and Garboczi [13] showed how 
the incorporation of silica fume into the cement paste 
could be simulated. The silica fume reacts with the CH 
phase to produce more (pozzolanic or secondary) 
C-S-H, which has a larger volume than the original 
CH and silica fume combined. Therefore, using silica 
fume tends to further reduce the capillary porosity of a 
cement paste relative to that of a plain paste. 

The incorporation of silica fume has been simulated 
at two different water-to-solid (w/s) ratios, 0.6 and 0.4, 
where w/s ratio is defined similarly to w/c ratio in 
Equation 1, but with the weight of cement replaced by 
weight of cement plus silica fume. Cement (10 and 
20 wt %) has been replaced by silica fume, which keeps 
the w/s ratio constant, permitting a fair comparison 
with plain cement paste at an equivalent w/c ratio 
[13]. Silica fume has a lower specific gravity than 
cement; so that the fraction of solid volume initially 
taken up by the silica fume is greater thani ts  fraction 
by weight. 

Fig. 8 shows the simulated diffusivity results for 0, 
10 and 20% replacement of the cement by silica fume, 
for w/s = 0.60. The 0% data are the same as shown in 

Fig. 7, connected with straight-line segments to facilit- 
ate comparison with the silica fume results, which do 
not lie at exactly the same degrees of hydration. Both 
the 10 and 20% results lie below the 0% diffusivities, 
which is as expected since the reaction of silica fume 
with CH reduces the capillary porosity. However, it is 
a little surprising that the 10% silica fume pastes have 
a lower diffusivity at all degrees of hydration past 0.2 
than the 20% silica fume results. This result can be 
easily explained by studying Fig. 9. In this Figure, 
capillary porosity against weight percentage silica 
fume, taken as a percentage of total original solid 
weight, is plotted for various degrees of hydration, 
using relationships developed in Reference 13, for w/s 
= 0.60. The r = 0.2 curve shows that the capillary 

porosity is almost identical for 10 and 20% silica fume 
replacement, which is the reason that the two diffus- 
ivities in Fig. 8 at r = 0.12 are almost identical. For 

> 0.2, though, the capillary porosity is always smal- 
ler for the 10% than for the 20% silica fume pastes. 
Physically, this is because there is a trade-off when 
replacing cement with silica fume. Less cement means 
that there will be less CH produced to react with the 
silica fume. At small silica fume fractions, there is more 
than enough CH to react with all the silica fume, but 
as cement content decreases and silica fume content 
ificreases, there comes a point when there is too much 
silica fume to react with the CH produced, and part of 
the silica fume begins to act as an inert f.i'er which 
cannot fill pore space as effectively as reactive cement 
[13]. This is the physical explanation for the minima 
in the plots shown in Fig. 9. It should also be noted 
that the greatest differences in diffusivity between the 
10 and 20% results are at intermediate degrees of 
hydration, 0.4 < a < 0.6, where the greatest differ- 
ences in capillary porosity are also found in Fig. 9. 

This explanation suffices for the w/s = 0.60 data, as 
the capillary pore space always remains continuous, 
so that the relative diffusivity is always dominated by 
the capillary pore space. Differences in capillary por- 
osity are then directly and easily related to differences 
in relative diffusivity. However, the w/s = 0.40 results 
are somewhat different, because the capillary porosity 
falls below qb c = 0.18. 
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Figure 8 Logarithm (base 10) of the relative diffusivity, D/Do, 
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against degree of hydration ~, for an 0.4 w/s (water to solid) cement 
paste, in which (I)  10 and (�9 of the cement has been 
replaced by condensed silica fume. ( ) 0% silica fume. 

Fig. 10 shows the diffusivity results for a w/s ratio of 
0.40. Again, the 10% silica fume pastes hav~ about the 
same diffusivity as the 20% silica fume pastes at the 
lowest degrees of hydration. The 0% silica fume data 
is from Fig. 4. For  intermediate degrees of hydration, 
the 10% results are systematically lower. Fig. 11 
shows the capillary porosity plotted as a function of 
silica fume weight fraction for the 0.4 w/s ratio pastes, 
which explains the intermediate degree of hydration 
results of Fig. 10, in the same way as Fig. 9 explained 
the results of Fig. 8. For  degrees of hydration greater 
than 0.6, however, the 10 and 20% silica fume results 
converge to the value D/Do = 0.0025 (loglo(0.0025) = 
- 2.6), and are systematically above the plain cement 

paste results. This is because if there is enough silica 
fume to convert basically all the CH to secondary 
C S H, at high degees of hydration where there is 
very little unreacted cement or capillary pore space 
left, the cement paste will consist almost entirely of 
C-S-H.  The C - S - H  phase has been modelled as 
having a relative diffusivity of 0.0025, so that the bulk 
value of relative diffusivity for the paste will be the 
same. For lesser amounts of silica fume replacement, 
so that not all the CH is reacted, the minimum value of 
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Figure 11 Capillary porosity against percentage of total original 
solids, by weight, of silica fume mixed with the original cement, at 
w/s = 0.4, for various degrees of hydration; D, 0.2; O, 0.4; ~, 0.6; 
•, 0.8. 

DID o will vary continuously between 0.001, the min- 
imum for plain cement paste (to be derived in Section 
6.3), and 0.0025, the value obtained for complete 
reaction of cement and CH. 

The above results imply that silica fume replace- 
ment of cement can reduce the diffusivity of bulk 
cement paste by reducing the capillary porosity, but at 
low porosities and high degrees of hydration, silica 
fume replacement can actually increase diffusivity by 
replacing impervious CH with microporous C-S-H.  
Silica fume in concrete could also reduce the diffus- 
ivity by reducing the porosity of the sand-cement 
paste interfacial zone, if transport through the 
concrete were dominated by pathways connecting 
through the interfacial zone regions. 

An additional possibility not considered in this 
work is that silica fume modifies the microstructure of 
the C - S - H  gel phase, changing its effective diffusivity 
relative to the C - S - H  in plain paste. Reductions in the 
C/S ratio of the C-S-H,  from 1.7 to 1.4, have been 
observed in cements containing pozzolanic admix- 
tures like silica fume [29, 30], as well as an increase in 
the polymerization of the C - S - H  gel phase [31]. 
These structural changes could mean that a different 
effective bulk diffusivity should be assigned to the 
C S-H phase in cement pastes containing silica fume. 
An additional difficulty exists when comparing equal 
age specimens of silica fume-modified cement paste, as 
is usually done, in that silica fume may accelerate the 
hydration process [31], so that specimens of the same 
age, but with different amounts of silica fume, may 
have different degrees of hydration. Thus the presence 
of silica fume may modify the relationship between age 
and degree of hydration used above. 

6. C e m e n t  p a s t e  d i f f u s i v i t y  d e p e n d e n c e  
on  p o r e  s t r u c t u r e  

6.1.  C a p i l l a r y  p o r o s i t y  c o n t r i b u t i o n  

Since the microstructural model gives a detailed 
quantitative picture of the cement paste pore structure 
at any degree of hydration, it can be used to determine 
the dependence of diffusivity on pore structure in a 
fundamental way. 

Of the two phases that contribute to the diffusivity, 
the capillary pore space and the C - S - H  gel phase, the 
capillary pore space is first considered. The capillary 
pore space percolation threshold occurs when the 
capillary porosity is 18%, expressed as a percentage of 
total volume. For  porosities well above this threshold, 
the diffusivity should be dominated by the capillary 
pore space, since its conductivity is so much higher (by 
a factor of 400) than the C-S-H,  although the C - S - H  
contribution is still not totally negligible. To separate 
the contibutions of the two phases, the diffusivity was 
computed with ac -s -H = 0 [8]. The diffusivity of 
course then tends towards 0 as the capillary porosity 
approaches the percolation threshold of 18%. In 
Fig. 12, the logarithm of diffusivity is plotted against 
the logarithm of the quantity (qb - 0.18), where (~ is the 
capillary porosity. From percolation theory, it is ex- 
pected that such a plot will result in a straight line with 
a slope of about t = 2 [-22] as ~ approaches ~c = 0.18, 

2 0 8 9  



- 1 . 4  

-1.8 

"~ -2.2 

- 2 . 6  
._> 
_~ - 3 . 0  

v - 3 . 4  

0 

" - 3 . 8  

-4.2 
-2.4 

i i i i i I I 

f /  
I ~ 1  I I I I I 

-2.2 -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 
Log (~-0.18) 

Figure 12 Plot oflogxo (D/Do) against loglo (~ - ~Pc), where ~ is the 
capillary porosity, and ~c = 0.18 is the approximate percolation 
threshold for the capillary pore space [13]. The solid curve is a best- 
fit straight line, and the simulation data points were obtained using 
the Fogelholm algorithm [21]. No C-S-H contribution to 
transport. 

since the diffusivity is expected to scale as (~ - 0.18) t 
in this region [18]. This scaling is expected from the 
concept of the universality of critical transport expo- 
nents [18]. A very good straight line is indeed found, 
with the correct slope of about 2.0. The complete 
equation of the line is 

D 
- 1.8 (qb - 0.18) 2 (4) 

Do 

based on a least-squares fit. Even though this func- 
tional form is required to hold only for qb near qbc, it is 
known usually to hold farther away as well [32], so 
that Equation 4 is adopted to characterize the connec- 
ted fraction of the capillary pore space's contribution 
to diffusivity for all 0.18 < qb < 0.60. Fig. 12 demon- 
strates that this functional form does indeed hold 
rather far away from qb c = 0.18. 

6.2. C - S - H  c o n t r i b u t i o n  
When the capillary porosity falls below 18%, then the 
diffusivity will be controlled by transport through 
C - S - H  gel pores. However, there is still some capillary 
por.e space left, in the form of isolated clusters. The 
physical picture of the dominant diffusive flow path- 
ways in this regime consists of isolated capillary pore 
clusters linked together by C - S - H  gel pore pathways. 
Although the C - S - H  phase is itself continuous, path- 
ways that also include the much more conductive 
capillary pores should be more important to the total 
diffusivity. This physical picture is similar to that 
proposed by Atkinson and Nickerson [3]. Capillary 
porosity, qb, will still be an appropriate variable in this 
regime, with the diffusivity continuing to decrease 
with ~. For  ~ < 0.18, then, the diffusivi.ty is fitted with 
an Archie's law [33] form, aq~", with a and m con- 
stants, but modified by having a cut-off value Rmi,, 
where Rmi n is the value of the relative diffusivity when 
the capillary porosity is zero. For sandstone rocks, for 
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which Archie's law was defined, the critical value of 
the porosity is approximately zero, so that the trans- 
port properties and q~ approach zero simultaneously 
[33]. (Archie's law is really of the same functional form 
as Equation 3, ( ~ -  ~c) m, but for sandstone rocks, 
~bc ~ 0. Atkinson and Nickerson [3], when demon- 
strating that Archie's law did not apply to cement  
paste, did not know that q~c = 0.18, rather than 0.0, for 
cement paste.) However, a zero capillary porosity 
cement paste would be composed of C-S-H,  CH, and 
unreacted cement, which will have a non-zero relative 
diffusivi ty Rmi n because of the connected gel pores of 
the C - S - H  phase. The value of Rmi n is not a fitting 
parameter, but can be calculated using composite 
theory and the known value of d~c-s-H, as described in 
Section 6.3. 

If we consider the pure capillary pore-space diffus- 
ivity above qb = 0.18, and the C-S-H/capil lary pore- 
space pathways for all values of d~, to be roughly in 
parallel, then a reasonable functional form for the 
relative diffusivity as a function of capillary porosity, 
which is well justified physically, is 

D 
- 0.001 + aqb 2 + H(qb - 0.18) 

Do 

x 1.8 x (qb - 0.18) 2 (5) 

where H is a function such that H(x) = 1 for x > 0, 
H(x) = 0 for x < 0, the exponent m of the Archie's law 
term is assumed to be 2 because of the universality of 
exponents mentioned above [18], and a is a parameter 
to be fitted to data points having q~ < 0.18. After this 
fit is carried out, Equation 5 becomes 

D 
- 0.001 + 0.07qb 2 + H ( ,  - 0.18) 

Do 

x 1.8 x (qb- 0.18) 2 (6) 

Fig. 13 shows Equation 6 plotted along with all the 
simulation data points from Figs 4-7. Equation 6 
gives a reasonably good description of the relative 
diffusivity D/Do over the capillary porosity range 
0 < qb < 0.6. Equation 6 must break down at some 
point for d~ > 0.6, as it does not give the correct qb ~ 1 
limit of DID o = 1. 
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Figure 13 Logarithm (base 10) of the relative diffusivity D/D o 
against capillary porosity for all plain cement paste simulation data 
points. The solid line is given by Equation 6. 



6.3. Zero porosity diffusivity derivation 
The cut-off value of the plain cement paste relative 
diffusivity at 4) = 0 of 0.001 is justified by the use of a 
recent equation that gives a percolation theory-based 
description of the effective conductivity of a two- 
component composite [34]. For  plain cement paste 
with no silica fume, at 4) -- 0 the two components are 
C-S-H,  with DID o = 0.0025, and the combination of 
CH and any unreacted cement, with DID o assumed to 
be zero for this phase. The equation to be solved 
for the effective relative diffusivity, Din~Do, for the 
composite is 

A X  2 + Bx - xLx n = 0 (7) 

where A oc ( 1 -  vc)/vc, vr = 0.16 is the percolation 
threshold in terms of volume fraction v for C S H, 
which in this case is the high conductivity phase, 
x = (DIn/Do) 1/~, t = 2 is the universal critical exponent 
for conduction/diffusion percolation problems in 
three dimensions [23], x L = 0 is the conductivity 
of the low-conductivity phase, x H = (~c-s_n) 1/t 
= (0.0025) l/t, and B = xn(1 - v - Av) + xL(Av + v 
-- A). Since x L = 0, Equation 7 becomes 

Om 
- ( - - B / A ) '  = ( - B / A ) :  

Do 

(~c-s-H(1 - -  V - -  A v )  2 

= A2 (8) 

For w/c ratios less than 0.41, it is theoretically possible 
to achieve zero capillary porosity for degrees of hydra- 
tion < 1. Using the C S-H volume expansion factor 
13 s, the CH volume expansion factor 13p, and Equation 
1, which relates w/c ratio and initial cement and water 
volume fractions, it is possible to show that the vol- 
ume fractions of C - S - H  and (CH + unreacted 
cement) at 4) = 0 are given in terms of w/c ratio by 

3.2[~w/c 
UC_S_ H = 

(1 + 3.2w/c) (13 r - 1) 

13 r - 1 + 3.2 ([~p - 1)w/c 
/)CH+ . . . . .  t -- (1 + 3.2w/c)(~T - -  1) (9) 

Using Equations 8 and 9, and 13 s -- 1.7 and 13p = 0.61, 
we find that D,,/D o = Rmi  n equals 0.0012 for a w/c 
ratio 0.4, 0.00098 for w/c = 0.35, and 0.0008 for w/c 
= 0.3, thus justifying the choice of 0.001 as a reason- 

able approximation for any w/c ratio less than 0.41, 
when no silica fume is present. With silica fume pre- 
sent, a more reasonable value of the cut-off value is 
0.001 < Rmi n < 0.0025,. depending on the amount of 
silica fume replacement, as discussed in section 5.2 
above. 

7. Conclusions 
In order to understand the dependence of diffusivity 
on the microstructure of a porous material like Port- 
land cement paste, there must first be quantitative 
understanding of microstructure, as well as methods 
for calculating the diffusivity for a given microstruc- 
ture. Both these goals have been achieved by using a 
random growth model for generation of the micro- 
structure of the cement paste, and by using exact 

algorithms applied to the underlying digital-image 
lattice of the model to calculate the diffusivity for a 
given microstructure. It should be emphasized that the 
quantitative representation of the microstructure was 
achieved by basing the model on a digital image, and 
that the transport algorithms used were only applic- 
able to a lattice structure, as used here. The results 
obtained are summarized below. 

1. The ionic diffusivity of cement paste can be 
calculated with algorithms applied to the digital 
image-based microstructural model, with calculated 
values of steady-state chloride ion diffusivities in reas- 
onable agreement with experimental data. The calcu- 
lation techniques are equally applicable to actual as to 
model microstructures. 

2. The chloride diffusivity of plain Portland cement 
paste can be expressed as a function of capillary 
porosity only, with the functional form being 
D/D o = 0.001 + 0.074) 2 + H(4) - 0.18) 1.8 (4) - 0.18) 2, 
where H ( x ) = 0  for x < 0 ,  and 1 for x > 0 .  This 
relationship is dominated by the percolation proper- 
ties of the capillary pore space above the critical 
capillary porosity 4)c = 0.18, where the capillary pore 
space becomes disconnected, and by simple Archie's 
law-type power-law behaviour below 4)o where the 
pathways through C - S - H  gel pores dominate the 
transport. The above functional form must break 
down at porosities somewhat higher than 0.6, as it 
does not give the correct 4) = 1 limit. 

3. The physical picture of diffusive transport in 
cement paste is as follows. Above 4) = 4)c, transport is 
mainly through continuous capillary pores, with a 
smaller amount of flow through pathways of capillary 
pores linked by C S-H gel pores. Below 4)c, the 
dominant pathways are now made up of isolated 
capillary pore clusters linked together by C - S - H  gel- 
pore connections, which determine the flow rate [-3]. 

4. The minimum value of D/D o for chloride ions 
diffusing through plain Portland cement paste has 
been predicted to be about 0.001, obtained when the 
capillary porosity is zero. With silica fume present, the 
cut-off value becomes 0.0025. 

5. For  low w/s ratios, when sufficient silica fume is 
present to react with most of the CH produced, and 
when the capillary porosity is much less than 
4)c = 0.18, so that the diffusivity is controlled by the 
C - S - H  phase, the addition of silica fume can increase 
the relative diffusivity by consuming CH (D/D o = 0), 
and replacing it with C - S - H  (D/D o = 0.0025). 
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