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Interfacial debonding and fibre pull-out stresses 
Part II A new model based on the fracture mechanics approach 
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An improved analysis has been developed for the interfacial debond stress in a fibre pull-out 
model based on the concept of fracture mechanics where the debonded region is considered 
as an interfacial crack and its extension is dependent on a fracture energy criterion being 
satisfied. By evaluating the partial debond stress, c~c~ against debond length /, during 
progressive debonding, instability conditions are derived where the maximum debond stress, 
~ ,  is determined for different embedded fibre length, L. Comparisons between theory and 
experimental fibre pullout results on several composite systems show that the present model 
gives excellent prediction of the maximum debond stress, c~, for the whole range of 
L including even the very short L, whereas the previous Gao-Mai-Cotterell model, also 
developed on the basis of a fracture mechanics approach, always overestimates c~ for short 
L and gives a finite value for L = O. The initial frictional pull-out stress, o-if, after complete 
debonding predicted by the present model is basically the same as the Gao-Mai-Cotterell 
model and agrees well with experiments. The implications of stress distributions in the 
constituents for different composite systems are discussed on the basis of the proposed 
debond criterion. 

1. Introduction 
Two typical theories ofinterfacial debonding and fibre 
pull-out (Gao et al. [2] and Hsueh [3, 4] which have 
been developed on the basis of fracture mechanics and 
the shear strength criterion, respectively) were crit- 
ically compared [1] with experimental results of 
several composite systems. It is shown that the 
Gao-Mai  Cotterell model [2] predicts the trend of 
maximum debond stress, cy*, very well for long em- 
bedded length, L, but it always overestimates cy* for 
very short L, particularly for epoxy-based matrix com- 
posites which display more pronounced instability for 
short L than ceramic-based matrix composites. An 
explanation for the inadequacy of the model for cy* is 
that it originally assumes a progressive stable debond 
crack propagation at a constant frictionless debond 
stress, Cyo, along an infinitely long L. Further, the 
stresses and hence the associated elastic strain energy 
in the constituents at the bonded region have not been 
considered in the debond analysis of the model. Also 
neglected is the shear strain energy in the matrix which 
is an important contribution to the total strain energy 
[5]. In contrast, Hsueh's model [3, 4] gives good 
predictions of cy* for short L but it often needs adjust- 
ment to the bond (shear) strength to fit the experi- 
mental results for long L. This appears to arise mainly 
from an underestimate of the frictionless debond 
stress, cy o, due to an inappropriately defined stress 
condition at the boundary of the bonded and 
debonded regions. Therefore, the effect of matrix axial 
stress existing at the debonded (but frictionally con- 
nected) region is completely neglected. With respect to 

the initial frictional pull-out stress, %,, after complete 
debonding, the agreement between the two theories 
and experiments is excellent over the whole range of L 
for all composite systems studied, suggesting that the 
solutions for ~f, proposed by the two models are 
essentially identical. 

The present study describes an improved interfacial 
debonding and fibre pull-out model developed on the 
basis of a fracture mechanics approach where a pre- 
debonded interface is treated as a crack propagating 
along the fibre length with a constant interfacial frac- 
ture energy. In the light of the critical comparison 
between theories and experimental results as sum- 
marized above, omissions and assumptions con- 
sidered to be inadequate in the previous theories are 
now properly included in the new model. The fibre is 
assumed to have a precisely cylindrical shape, so that 
the effects of surface roughness do not arise. The 
fibre-matrix interface is either perfectly bonded or 
totally debonded (but being held together by non- 
uniform friction due to interracial pressure which 
arises from matrix shrinkage and Poisson contraction 
of the fibre subjected to tension). The approximate 
analysis given in the present model leads to relatively 
simple closed-form formulae for all basic results, al- 
though some of the non-dimensional coefficients turn 
out to be rather lengthy expressions. 

2. Analysis 
2.1. Basic gove rn ing  e q u a t i o n s  
Following the earlier approach, a simple shear lag 
model is considered as shown in Fig. l, where a fibre 
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Figure 1 A schematic illustration of the partially debonded fibre in 
a fibre pull-out model. 

(of radius a) is embedded at the centre of a coaxial 
cylindrical shell of matrix (of an outer radius b) with a 
volume ratio of the fibre to the matrix 7 = a2/ 
( b  2 - a 2 ) .  L is the total embedded fibre length with a 
partial debond region of length, l, from the free fibre- 
end. In the single-fibre pull-out experiments, the mat- 
rix is fixed at one end (z = L) and a tensile stress, o, is 
applied to the other end (z = 0) of the embedded fibre. 
Shear lag analysis for other boundary conditions with 
restrained matrix top and fixed matrix and fibre bot- 
tom ends are given elsewhere [6]. The external stress, 
~, is represented by cy o, o p, o* and oft for frictionless 
(initial) debond stress, partial debond stress, max- 
imum debond stress and initial frictional pull-out 
stress after complete debonding, respectively, at differ- 
ent stages of the fibre pull-out process. 

A set of cylindrical coordinates (r, 0, z) is selected so 
that the z-axis corresponds to the axis of the fibre. The 
mode of deformation is axisymmetric and thus the 
stress components (o r, o% o =, ~r=) and the displace- 
ment components (u r, u ~) are all independent of 0. The 
remaining stress and displacement components are all 
zero. For perfectly elastic and isotropic fibre and 
matrix, the general relation between strains and 
stresses can be written as 

~(r ,z)  = ~u~/~z 

= ( I / E f ) { g ~ ( r , z )  -- vf[o[(r,z) + of~ z)]} 

(1) 

31 56 

~?(r, z) : u[/r 

: (1/Ef){~~ z) -- vfE.~(r, z) + o~(r, z)] } 
(2) 

for the fibre (i.e. 0 ~< r 4 a), and 

~ ( r , z )  = ~ u ~ / ~ z  

=- ( 1 / E m ) { O ~ ( r , z )  - Vm[O~n(r,z ) 

+ ~Om(r, z)]} (3) 

e~m(r, z) = Wm/r 

-- (I/Em){OOm(r,z)- Vm[~rm(r,z) 

+ cry(r, z)]} (4) 

<#,(r, z) = Ou~/~r 

= [2(1 -t- V m ) / E m ] T ~ ( r  , Z) (5) 

for the matrix (i.e. a ~< r ~< b), where E and v are 
Young's modulus and Poisson's ratio respectively. 
The subscripts f and m refer to fibre and matrix and 
the superscripts are coordinate directions. In 
Equation 5 for the matrix shear strain, the radial 
displacement gradient with respect to the z-direction 
is neglected as compared with the axial displacement 
gradient with respect to the r-direction. Further, as- 
suming to a first approximation that a plane normal 
to the z-direction remains plane in plane strain de- 
formation, the axial stress in the matrix may be taken 
as the average of the matrix stresses in the r-direction 
[2], i.e. 

o~(z) = [2/(b 2 - aZ)]  o ~ ( r , z ) r d r  (6) 

This assumption is considered appropriate for the 
model cylindrical composite having a fibre embedded 
in a relatively large matrix as in a practical fibre pull- 
out experiment. It is expected in reality, that the 
variation of the axial matrix stress with regard to the 
radial direction is substantial only near the fibre free 
end (or near the debond crack tip for partial de- 
bonding) where all stress components are concen- 
trated, but it diminishes with distance away from this 
region. In fact, with this assumption; several investig- 
ators [7, 8] have successfully presented Lame solu- 
tions to predict the matrix axial deformation which 
compare favourably with results from an accurate 
numerical analysis. Even in a more exact thermo- 
mechanics model proposed recently by McCartney 
[9], an average value has been introduced for the axial 
matrix stress which is necessary to satisfy the remain- 
ing equilibrium equations and boundary conditions. 
Therefore, the mechanical equilibrium condition be- 
tween the external applied stress and the internal 
stress distribution requires that 

o = g~(z) + (1/y)o~(z) (7) 

The internal stress is transferred from the fibre to the 
surrounding matrix through the interfacial shear 
stress ~]'Z(z). Equilibrium between these stresses is de- 
scribed by 

do~(z) 2 
- ~7(z) (8) 

dz a 



2.2. Solution for the stress components in the 
bonded region (/~< z~< L) 

The. solutions for the axial and shear stresses in the 
constituents are obtained with given boundary condi- 
tions in Appendix 1 as 

debond stress for long embedded length. These para- 
meters are related to the interracial properties as 

= 2 pk/a (18) 

6 = - qo/mk (19) 

= f[ (Az /A1)(S  + (s ,]sinh[Atl /Z(L - z)] - ( A z / A 1 ) ( s s i n h [ A l l / 2 ( l -  z)] ' (  
(S~(Z) (az/Ax)cy 

sinh[A11/2(L - 1)] 

"~1(r, z) 

f . [ (Az/A,)(S  + (s ,]s inh[Alt /2(L - z)] - (A2/A1)(S s i n h [ A l ' / 2 ( l -  z)]'~ 
CY~(Z) Y s inh[Al l /2 (L  - l)] 

+ y(1 + A2/At)(S 

1/2 = yA1 [( b2 - r2)/2r] 

X f[(Az/A1)(S + o l ] c o s h [ A l l / 2 ( L  -- Z)] - - ( A 2 / A 1 ) ( S c o s h [ A , t / 2 ( I -  z ) ] )  

_ a A11/2 f[(A2/A1)(S ~[Z(z) 
2 

s inh[Al l /2 (L  -- 1)] 

+ %]cosh[A11/Z(L - z)] - (A2/A1)(scosh[A11/2(l - z ) ] )  

s i n h [ A 1 1 / 2 ( L -  /)] 

(9) 

(10) 

(11) 

(12) 

where 

2lot(1 -- 2kvf) + y(1 - 2kVm) ] 
A1 = (1 + Vm) [2yb 2 ln(b/a) - a 2] (13) 

- 7(1 - 2kvm) 
A2/A1 

o~(1 -- 2kvf) 4- y(1 - 2kvm) 

- ?  
~,~ (14) 

k = (~vf 4- yVm)/[~(1 - v f )  4- 1 4- V m 4- 2y] and 
= E m / E  f which is the Young's modulus ratio of the 

matrix to the fibre. (s t is defined as the crack tip 
debond stress acting at the boundary between bonded 
and debonded regions z -- I. 

2.3. Solution for the stress components in the 
debonded region (0 ~< z ~</) 

In the debonded region (0 ~< z ~< I), frictional slip oc- 
curs at the interface where the stress transfer is gover- 
ned by the Coulomb friction law. Assuming a constant 
coefficient of friction, l.t, along the debonded interface, 
it follows that 

~[~(z) = - I~[qo + q*(z)] (15) 

where qo is the residual clamping stress (compressive) 
caused by the matrix shrinkage and differential ther- 
mal contraction (or expansion) of the constituents 
occurring during fabrication of the composite and 
q*(z) is the additional radial stress at the interface 
arising from Poisson contraction of the fibre which is 
subjected to tension as given in Equation Ah. Further, 
Gao et aI. [2] provides the solution for the axial 
stresses in the fibre and the matrix at the debonded 
region as 

(s~(z) = (s - c0(6 - ~)[exp(Xz) - 1] (16) 

(s~(z) = 7m(6 - (s) [exp(Xz) - 1] (17) 

where L is the reciprocal length giving the effective 
frictional shear stress transfer and 6 is the asymptotic 

where m = 0~vf/ (0(vf  4- '~Vrn ). Combining Equations 16 
and 17 with Equations 8 and A3, solutions for the 
shear stresses in the matrix and at the interface are 
obtained 

z~(r, z) = [7km(b z - r2)/2r] (~ - (s) exp(Xz) 

(20) 

"~[Z(z) = (aXm/2)(6 - (s) exp(Xz) (21) 

2.4. Fibre-matrix debond criterion and 
solution for the external applied stress 

To derive an interracial debond criterion the concept 
of fracture mechanics is used such that the differential 
elastic strain energy stored in the constituents with 
respect to the incremental debond length is equated to 
the interracial fracture toughness, Gic (or specific work 
of fracture of the interface) [2], i.e. 

BUt 
G,~ = (1/2ha) 81 (22) 

where U, is the sum of the elastic strain energy stored 
in the bonded region (Ub, for l ~< z ~< L) and debon- 
ded region (Ud, for 0 ~< z <~ l) which can be obtained 
by integrating the stress components acting in the 
constituents over the volume of respective regions 

U~ = U b + U d 

;L C~ s [-(Sm(Z)2 = L ~ n r o r a z  + L E • 

2(1 + Vm)l;m(r , Z) 2 ] 
+ Em ~ nrdrdz 

+ f ] f ~ ( s f ( z ) 2 n r d r d z  + f ] f f  k Em 

2(1 + Vm)l;m(r , Z) 2 ] 
4- Em ~ nrdrdz (23) 

It has been pointed out [10] that Piggott [5] in- 
correctly derived a debond criterion by equating the 
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total elastic strain energy (for fibre axial and matrix 
shear deformation in the bonded region) directly to 
the interracial fracture energy, which is certainly not 
an appropriate fracture mechanics approach. Later, 
Penn and Lee [11] correctly took the energy balance 
equation in a differential form, though using the stress 
equations given by Piggott [-5]. 

Substituting the solutions for the three major stress 
components determined in the bonded and debonded 
regions as given in Equations 9-11, 16, 17 and 20 into 
Equation 22, a debond criterion is derived as 

2xa Gic = B c r  2 4- C ( 6  - (7)0- 4- D ( 6  - (7)2 

(24) 

where the coefficients B, C and D are complex func- 
tions of material properties of the constituents and 
geometric factors including the radii of the consti- 
tuents a and b, and the debond length, l, relative to the 
total embedded fibre length, L. Further details are 
given in Appendix 2. Therefore, rearrangement of 
Equation 24 gives the final solution for the external 
applied stress, ~, as 

(Y 
I 2zcaGic C e - 4BD ]ljz 

= B - C + D + 4 ( B  - C + D) 2 (~2 

2D - C 
+ 6 (25) 

2 ( B  - C + D) 

As mentioned earlier, the external stress ~, in Equa- 
tion 25 represents the frictionless (initial) debond 
stress, Cro, partial debond stress, (7~, maximum de- 
bond stress, (7~, and initial frictional pull-out stress, 
c~fr, after complete debonding at different stages of the 
fibre pull-out process depending on the instantaneous 
debond length, l. 

The partial debond stress, ~],  during progressive 
debonding may be Written as a function of the debond 
length, l, and the crack tip debond stress, (7~, of Equa- 
tion A7 which is the axial fibre stress acting at the 
boundary between bonded and debonded regions 
z = I. Thus 

cofexp(M)-  I] 
(7~, = ( 7 ~ + ( 6 - ( 7 l )  

1 + co [exp( ;L l )  - 1] 

c h + (6 - (7l)[1 - e x p ( -  kl)] (26) 

Once the partial debond stress, c~, has been deter- 
mined using Equation 25, c h can be obtained by 
evali~ating Equation 26 with respect to the debond 
length, l, for a given embedded fibre length, L. There- 
fore, the frictionless (initial) debond stress, Cyo, is deter- 
mined for an infinitesimal debond length (i.e. l-~ 0) 
and the maximum debond stress, cy*, determined at 
load instability [1, 12] of the partial debond stress, Cd p. 
Further, the solution for the initial frictional pull-out 
stress, % ,  after complete debonding can be obtained 
when the debond length, l, reaches the embedded 
length, L, and the crack tip debond stress, cr l, is zero. 
Thus 

~ 6 [ e x p ( X L ) -  1] 
(Tfr 

1 + co[exp(~L) - 1] 

61-1 - e x p ( -  ~,L)] (27) 

31 58 

It is worth noting here that the solution for the partial 
debond stress, cy,~, of Equation 26 is similar to those 
obtained in the Gao-Mai-Cotterell  [2] or Hsueh's 
model [4] in which Ga p is composed of two compon-. 
ents: a crack tip debond stress, %, and a friction stress 
component. The second component is directly propor- 
tional to ( 6 -  oh) and is also controlled by 2~ (or 
coefficient of friction at the interface, p). However, 
there is an obvious difference in the crack tip debond 
stress, a~, which is not only a function of the interracial 
fracture toughness, Gio, but is also dependent on the 
debond length, l, relative to the total embedded fibre 
length, L, in this new model. In contrast, in Gao et al.'s 
model [2], c h is invariant with l or L and it depends 
only on Gic, while in Hsueh's model [3, 4] it is con- 
trolled by the shear bond strength, rb, at the interface 
(instead of Gic) and is constant for a given remaining 
bond length regardless of whether there is partial 
debonding or not. Therefore, in the previous two 
theories, the crack tip debond stress, (7t, is considered 
to be equal to the frictionless (initial) debond stress, 
Cyo, for an identical remaining bond length. Further 
details on the differences between % and c~ 0 will be 
discussed in Section 4. Apart from the partial debond 
stress, (7~, the post-debond frictional pull-out stress, 
(Tfr, obtained in the present analysis is basically ident- 
ical to those obtained in previous models if co ~ 1 (i.e. 
b >> a) which is common in practical fibre pull-out 
experiments. 

3. Results 
Single-fibre pull-out tests were performed on com- 
posite systems of (both untreated and electrolytically 
oxidized) carbon fibre-epoxy matrix (a = 0.003 mm 
and b = 1.0 ram) and (both uncoated and release- 
agent coated) stainless steel wire-epoxy matrix 
(a = 0.275 mm and b = 6.5 ram). Published data for 
a (both untreated and acid treated) SiC fibre-borosilicate 
glass matrix composite (a = 0.071 mm and 
b = 2.8 ram) [13] are also used to compare with theor- 
etical predictions. In Part I of this paper [1], the 
interfacial properties for these composite systems were 
determined by evaluating experimental results with 
regard to the asymptotic debond stress, 6, and the 
reciprocal friction length, ~, and are summarized 
along with other material constants in Table I. 
Although slight improvement in the interracial bond 
strength is observed for some electrolytically oxidized 
carbon fibres, for simplicity they are treated in the 
same data group as the untreated fibres with identical 
properties in Table I. Using these properties, specific 
results of the partial debond stress, cy ], are calculated 
as a function of debond length, l, with respect to total 
embedded fibre length, L, from which instability 
Conditions are identified. The maximum debond stres- 
ses, (7~', determined at instability are compared with 
experimental results. At these maximum debond stres- 
ses, (7*, the corresponding stress distributions in the 
constituents are calculated for different L to show 
deformations in the composites during the fibre pull- 
out process. The implications of the stress distribu- 
tions for different composite systems on the debond 



T A B L E I Mechanical properties of constituents and interfacial properties for different fibre composites 

Composite system Fibre surface condition Properties of fibre and matrix 

Ef E m Vf V m 

(GPa) (GPa) 

Interracial properties 

Gic g qo Zmax 
(Jm -2) (MPa) (ram) 

Carbon fibre-epoxy matrix Untreated and oxidized 230 3.0 

Steel wire-epoxy matrix Uncoated 179 2.98 
Release-agent coated 179 2.98 

SiC fibre-glass matrix Untreated 400 70 
Acid treated 400 70 

0.2 0.4 37.7 1.25 - 9.97 0.145 

0.3 0.35 1316 0.48 - 8.85 12.0 
0.3 0.35 34.7 0.22 - 7.28 6.95 

0.17 0.2 0.964 0.048 - 64.5 0.505 
0.17 0.2 2.40 0.078 - 72.3 0.485 

criterion proposed in the present analysis are dis- 
cussed. 

3.1. Part ial  d e b o n d  stress, cry, and  i ns tab i l i t y  
of  d e b o n d  process  

The partial debond stress, ~,~, calculated based on 
Equations 25 or 26 are plotted against debond length, 
l, as shown in Figs 2 and 3, respectively, for carbon 
fibre-epoxy matrix and untreated SiC fibre-glass 
matrix composites. These two composite systems are 
considered to be typical of those with fibre-matrix 
interface that are either chemical or frictional in 
nature. In general, for a given total embedded fibre 
length, L, as debond length, l, increases the friction 
stress component increases steadily, the increase being 
non-uniform due to Poisson contraction of the fibre in 
the debonded region. However, the crack tip debond 
stress, c h, decreases towards zero depending on L. The 
instability criterion developed by the authors [12] 
requires that the derivative of the partial debond stress 
with respect to the remaining bond length ( L -  l) is 
equal to or less than zero. This means that the debond 
process becomes unstable if ( L -  l) is smaller than 
Zma X (shown in Fig. 2) where the maximum debond 
stress, c~*, is obtained. Further, if the total embedded 
fibre length, L, is even smaller than z .... (e.g. 

4 

b2 

~\ /L=O.lmm ,'~ .'" 
1 ~ \~ /  ," ~ ,-'" ~ 

t ) r  .." ~ . . . . . . .  -'" 

0 0.1 0.2 0.3 0.4 0.5 
I (ram) 

Figure 2 Plots of partial debond stress, c~,~, as a function ofdebond 
length, l, calculated based on Equation 25 or 26 at different 
embedded fibre length, L, for carbon fibre-epoxy matrix 
composites: ( - - )  partial debond stress, cr,~, ( - - - )  crack tip debond 
stress, or j; (---) friction stress component.  

2 

v 

I 

0 
0 

Zmax 

~ O m ~ n  
~ , ~ ' " "  //-=30mm 1 

10 20 30 40 50 
/ (mm) 

Figure 3 Plots of partial debond stress, o~, as a function of debond 
length, l, calculated based on Equation 25 or 26 at different 
embedded fibre lengths for untreated SiC fibr~borosilicate glass 
matrix composites. Symbols as in Fig. 2. 

L = 0.1 mm in Fig. 2), the debond process is unstable 
from the beginning without any partial debonding. In 
this case, ~* is determined simply when the debond 
crack initiates (which is the frictionless initial debond 
stress, ~o). In other words, the contribution of friction 
stress component to (y* becomes increasingly import- 
ant as L increases. The importance of friction at the 
debonded region, which in turn determines the stabil- 
ity of the debond process, is also very much dependent 
on the nature of bonding at the interface (which can be 
expressed by the interracial fracture toughness, Gic, or 
shear bond strength, "Cb, compared to the frictional 
shear stress). For example, the contribution of friction 
stress component to cy~ is merely 20% at L = 0.5 mm 
for the carbon fibre-epo:@ matrix composite in Fig. 2 
(which is typical of good chemical bonding at the 
fibre-matrix interface), while it is more than 95% at 
L = 50 mm for the untreated SiC fibre-glass matrix 
composite in Fig. 3 (which is typical of principally 
frictional bonding at the interface). This interracial 
property-dependent debonding process is reflected by 
the amount of load drop (i.e. from the maximum 
debond stress, ~*, to a lower value corresponding to 
the initial frictional pull-out at L = l) in Figs 2 and 3 
which resembles the load drop frequently observed in 
pull-out stress versus displacement curves in the ex- 
periments. Therefore, in Part I of this paper [1] three 
different interfacial debond processes were identified 
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in terms of the maximum bond length, Zmax, below 
which the debond process becomes unstable. It fol- 
lows that, depending on the debond length, t, relative 
to the total embedded fibre length L, o ]  is classified 
into the frictionless (initial) debond stress cy o at 1 = 0, 
the maximum debond stress o~ at I = L - Zm, x (or 1 
= 0 if L < zm,0, and the initial frictional pull-out 

stress, ~rr, after complete debonding at l =  L. Zma x 
values for different composite systems determined in 
the present analysis are given in Table I which are 
comparable to those obtained by using Hsueh's model 
as reported in Part I of this paper [1]. It should be 
reiterated here that the original Gao-Mai-Cotterell  
model [2] predicts progressive stable debonding be- 
cause cya p always increases with I at the same rate as the 
friction stress component. Therefore, ~* is obtained 
always at the moment of complete debonding when I 
= L and the model is not able to evaluate the instabil- 

ity condition during progressive debonding. 

tions by the Gao et  al. model [2] (based on Equation 9 
in Reference 1). Because the solutions for the post- 
debond frictional pull-out stress obtained in the pre- 
sent analysis are basically the same as the previous 
model [2] which shows excellent agreement with ex- 
perimental results for all composite systems com- 
pared, the specific results are not presented here. Very 
good agreement is obtained between the present ana- 
lysis and the experimental results over the whole range 
of L and for all composites studied. A major improve- 
ment of the present analysis over the previous model is 
its capability of accurate prediction for small L where 
the Gao et al.'s model always overestimates and gives 
a finite value at L = 0 due to the assumed constant 
crack tip debond stress, ch (or frictionless initial 
debond stress, o o, in this case). This is particularly 
true for epoxy-based matrix composites (Fig. 4a and 
b) having good chemical bonding at the interface. 

3.2. Comparison of maximum debond stress, 
cy~, between theories and experiments 

The maximum debond stress, o r,  determined at in- 
stability of the partial debond stress, o~, are compared 
with experimental results for three composite systems 
as shown in Fig. 4. Also superimposed are the predic- 

2 

0 0 
(a) 

�9 0 � 9  �9 0 .-. 

J I , I , l , i 

0.1 O.Z 0.3 0.4 0.5 
L (ram) 

3.3. Stress distributions in the constituents 
The stress distributions in the constituents calculated 
along the z-direction by using Equations 9, 10 and 12 
in the bonded region (l ~< z ~< L) and Equations 16, 17 
and 21 in the debonded region (0 ~< z ~ l) are shown 
in Figs 5 and 6 for the carbon fibre-epoxy matrix and 
untreated SiC fibre--glass matrix composites. The ex- 
ternal stress applied to the free fibre-end for each 
embedded fibre length is the maximum debond stress, 
c~', given in Fig. 4. For this reason, the stress distribu- 
tions are shown only at the bonded region for the 
carbon fibre-epoxy matrix composite with 
L = 0.1 mm in Fig. 5. For the carbon fibre-epoxy 
matrix composites, the stress gradients for all these 
stress distributions increase (or decrease in the case of 
the axial matrix stress shown in Fig. 5b) rapidly from 
the matrix bottom (i.e. L -  z = 0) to the boundary 

Figure 4 Comparisons between experimental results and 
theoretical predictions of maximum debond stress, o% as a function 
of embed4ed fibre length L for (a) (O) untreated and (O) oxidized 
carbon fibrempoxy matrix composites, (b) (O) uncoated and (O) 
release-agent coated steel wirempoxy matrix composites and (c) (O) 
untreatecl and (@) acid treated SiC fibre-glass matrix composites. 
Predictions: ( ) present analysis; ( - - - )  Gao et aL [2]. 
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Figure 5 Distributions of (a) fibre axial stress, ~f, (b) matrix axial 
stress, cy~, and (c) interfacial shear stress, "r~ "z, along the fibre length 
( L -  z) for carbon fibre-epoxy matrix composite at maximum 
debond stress, o*: (---) L=0 .1mm;  (- -) L=0.3mm;  ( ) 
L = 0.5 mm. 

be tween  b o n d e d  a n d  d e b o n d e d  regions  (i.e. at  the 
d e b o n d  crack tip, L - z = Zmax), a n d  become  a lmos t  
c o n s t a n t  at  the d e b o n d e d  region.  T h e  same observa-  
t ion  holds  for the u n t r e a t e d  SiC f ibre-g lass  ma t r ix  
compos i t e s  (Fig. 6), a l t h o u g h  the stress d i s t r i bu t i ons  
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Figure 6 Distributions of (a) fibre axial stress, (J~, (b) matrix axial 
stress, (~,  and (c) interfacial shear stress, -c~ z, along the fibre length 
for untreated SiC fibre-borosilicate glass matrix composites at 
maximum debond stress, o*: (---) L = 10 ram; ( - - - )  L = 30 ram; 
( - - )  L = 50 mm. 

in the b o n d e d  regions  are ra ther  unc lea r  due  to the 
very smal l  Zma x va lue  relat ive to the a l lowable  e m b e d -  
ded fibre length,  L. The  high level of stress c o n c e n t r a -  

t ion  n e a r  the d e b o n d  crack t ip (or n e a r  the  free 
fibre-end if L < Zm,x), par t icular ly the interracial shear 
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stress, is a direct reflection of the imminent unstable 
debond crack propagation as the applied fibre stresses 
are cy~. It is interesting to note that for both systems 
if L >/z . . . .  the stress distributions of the axial fibre 
and interracial shear stresses (Figs 5a, c, 6a and c) are 
almost identical independent of L, especially in the 
debonded region. However, this observation does not 
apply to the matrix axial stress (Figs 5b and 6b). This 
seems to be attributed to the assumption that average 
values are taken for the matrix axial stress with respect 
to the radial direction as in Equation 6. Unlike the 
axial stresses in the fibre and matrix, the interracial 
shear stress distributions are discontinuous at the 
boundary between bonded and debonded regions. In 
the debonded region, the interfacial (frictional) shear 
stress decreases toward zero near the fibre free end due 
to the Poisson contraction of the fibre in the radial 
direction. If embedded fibre length, L, is further in- 
creased, c~* shown in Fig. 4 would increase to a critical 
(plateau) value, 6, such that the induced radial (tensile) 
stress at the interface compensates completely the 
residual clamping (compressive) stress arising from 
matrix shrinkage (i.e. qo + q*(z) = 0 in Equation 15) 
and the corresponding interfacial (frictional) shear 90 
stress equals zero. Under this circumstance, complete 
separation of the frictionally bonded interface between 
the fibre and matrix occurs at the free surface (z = 0) 
and extends along the debonded interface. a .  

The maximum interfacial shear stresses obtained at 
the end of the bonded region (L - z = Zmax) are found "~ 
to vary depending on the composite systems and ~ 80 
embedded fibre length, L, while the interfacial (fric- ~."2 

I . a  

tional) shear stress at the discontinuity is almost con- 
stant for a given composite system independent of L 
(Figs 5c and 6c). This is expected because two distinct 
assumptions were made for the respective regions, 
namely perfect interfacial bonding (Equation A3) in 
the bonded region and frictional slipping according to 
Coulomb friction law (Equation 15) in the debonded 
region. The stress difference at the discontinuity for 
the carbon fibre-epoxy matrix composite (approxim- 
ately 95% the maximum value, Fig. 5c) is slightly 2S 
larger than the untreated SiC fibre-glass matrix com- 
posite (about 82% of the maximum value, Fig. 6c) 
probably due to the difference in the nature of bonding 
at the interface (i.e. strong chemical bonding for the o n 

former and mechanical bonding for the latter). Both 
fibre composites show a significant stress gradient in 
the bonded region near the debond crack tip. In fact, a ~ 20 
singular stress field has been reported previously [14, ~ 
15] based on elastic stress analysis. In a study of the 
microbond model of Kevlar fibre-epoxy matrix sys- 
tem using a finite element analysis [14], it is shown 
that the interfacial shear stress distribution converges 
asymptotically to an infinite value near (i.e. approxim- 
ately 10 ~tm from) the loading point (which corres- 15 

0 
ponds to the free fibre-end in the present model), (b) 
depending on the specimen shape and dimensions. A 
similar conclusion has also been reached for a fibre 
pull-out model of a glass rod-polyurethane matrix 
system using both analytical and numerical methods 
[ 15-1. In reality, of course, the critical interfacial shear 
stress must have a finite value at debonding. 

3 1 6 2  

The functional dependence of the shear stress in the 
bonded region on L can be further studied in a plot of 
the maximum interfacial shear stresses versus L as 
shown in Fig. 7 for the carbon fibre-epoxy matrix and 
SiC fibre-glass matrix composites. The applied stress 
is ~* given in Fig. 4. It is found that if L < zm,x the 
maximum interfacial shear stress :i(m,x) increases sys- 
tematically towards a certain finite value as L de- 
creases to zero, while it gives a constant value if 
L >~ Zm,x- An almost identical result can be obtained if 
the applied stress is taken at initial debonding. The 
constant value "Ci (max> = 75.8 MPa for L ~> Zm,x 
(Fig. 7a) is slightly higher than the maximum bond 
strength in shear % = 72.7 MPa determined from the 
initial slope of the experimental maximum debond 
stress-embedded fibre length (er* - L) curves [1] for 
the carbon fibre-epoxy matrix system. This implies 
that the debond criterion proposed in the present 
fracture analysis predicts virtually the same level of 
interracial shear stress for debond crack propagation 
as for the shear strength criterion if the total embed- 
ded fibre length L is longer than Zm, ~. It should be 
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Figure 7 Plots of maximum interfacial shear stress, r~fm~x), 
determined at the fibre free end (L < zm, x) or at the debond crack 
tip (L >~ Zma,) as a function of embedded fibre length, L, when the 
external applied stress is the maximum debond stress, or*, for (a) 
carbon fibre-epoxy matrix composite, and (b) SiC fibre-glass matrix 
composite. 



mentioned here that the shear strength criterion as- 
sumes that the debond crack propagates when the 
interfacial shear stress reaches the maximum bond 
strength, %, which is a material constant. However, if 
L is shorter than Zm~x where the debond process is 
totally unstable, the present model predicts that the 
debond process is governed primarily by the energy 
criterion being satisfied and a high shear stress con- 
centration at the debond crack tip. In this case, a 
model based on a shear strength criterion cannot 
explain the observed high shear stress concentration. 
In other words, a constant interfacial fracture energy 
criterion applies and the shear stress at fracture is not 
a constant material property. It is noted that for the 
SiC fibre glass matrix composite the maximum inter- 
facial shear stress ( ~> 18.85 MPa, Fig. 7b) is higher by 
almost six times than that taken from the experi- 
mental curve (3.18 MPa [1]). This suggests that the 
present model based on a fracture mechanics ap- 
proach inherently predicts large shear stress concen- 
tration for crack propagation even for a system which 
is typical of frictional bonding at the interface. 

4. D iscuss ion  
A major improvement of the present model relative to 
the earlier Gao-Mai-Cotterell  [2] model which is also 
based on a fracture mechanics approach is that it can 
predict accurately the maximum debond stress, ~*, 
for all composite systems studied over the whole range 
of embedded fibre length, L, including the very short 
L. The Gao-Mai-Cotterell  model overestimates c~ 
for short L, giving a finite value for L = 0. This 
difference arises basically from the consideration of 
the elastic strain energy stored in the bonded region of 
the constituents as well as the matrix shear strain 
energy for fracture analysis of the debond criterion 
proposed in the present model. These strain energies 
are omitted in the previous model. Therefore, the 
present model predicts that although the frictionless 
(initial) debond stress, %,  is determined by the inter- 
facial fracture toughness, Gic, the crack tip debond 
stress, oh, acting at the boundary between bonded and 
debonded region during progressive debonding is not 
only a function of Gic but also varies with partial 
debond length, l, relative to the total embedded fibre 
length, L. This enables the evaluation of the instability 
condition (by using the  plot of the partial debond 
stress, c~], versus debond length, t) leading to unstable 
debonding at (L - / )  = Zma x where cy* is obtained. In 
the Gao-Mai-Cotterell  model [2], cy o (or ~t) is always 
constant independent of I or L, and consequently cy* is 
obtained when the debond crack reaches the embed- 
ded fibre end (i.e. l =  L) where the frictional stress 
component is the maximum. Consequently, instability 
condition cannot be evaluated. 

In the present model, for a given bond length, the 
crack tip debond stress, %, is different from the fric- 
tionless (initial) debond stress, cy o. In contrast, in the 
Gao-Mai-Cotterell  [2] and Hsueh [3.4] models, % is 
assumed constant for an identical bond length inde- 
pendent of partial debond length, l, and is thus equal 
to % as mentioned before. This difference is schemat- 

cr crm(O)=O 

o 0 O'm(0)=0 

L~= Le-I 

k I 
[a) (b) 

Figure  8 Schematic drawings of the fibre pull-out model for (a) 
initial debonding, and (b) progressive debonding showing the axial 
stresses in the fibre, ~ ,  and matrix, c~n, on the surface and on the 
plane of debond crack tip for an identical bond length. 

ically illustrated in Fig. 8 showing the axial stresses in 
the constituents on the external surface as well as on 
the plane corresponding to the debond crack tip for a 
given bond length (i.e. L 1 = L2 - l). For the model in 
Fig. 8a, the external applied stress is the initial debond 
stress, ~o, and there is a stress-free condition for the 
matrix top surface. However, during progressive 
debonding for the identical bond length (Fig. 8b), 
there will be a substantial stress acting on the plane of 
the crack tip inside the matrix which gives rise to a 
high corresponding fibre stress, %. In Fig. 9, predicted 
% and ~t values for the situations shown in Fig. 8a 
and b, respectively, are plotted as a function of bond 
length for the SiC fibre-glass matrix composite. In 
order to show clearly the difference, the debond 
lengths are assumed to be the same as the bond length 
(i.e. L 2 = 2l) for the calculation of %. Also super- 
imposed is the result of % predicted based on the 
Gao-Mai-Cotterell  model [2]. It can be noted that % 
is substantially larger than (Y0 even when there is small 
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Figure 9 Comparisons of ( - - )  the frictionless (initial) debond 
stress, c%, and ( - - )  the crack tip debond stress, %, as a function of 
the bond length, L 1 or (L 2 -- /)  (see Fig. 8) for SiC fibre-glass matrix 
composite. Debond length, l, for calculation of ~t is the same as the 
bond length L 2 - l. Also superimposed is the frictionless (initial) 
debond stress, % (---), calculated using the Gao et al. [2] model. 
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debond length and the difference increases as debond 
length increases. Both ~z and cy o calculated based on 
the present model are even larger than ~0 predicted by 
the Gao-Mai-Cotterell  model [2]. It is also found 
that the difference is larger for the ceramic matrix 
composite than for epoxy-based matrix systems, sug- 
gesting that the difference arises mainly from contri- 
bution of stresses in the debonded region. 

The evaluation of whether the interfacial debonding 
in a single-fibre pull-out model is fracture energy- 
governed or shear strength-governed, is of great inter- 
est among researchers. Leung and Li [16] have 
suggested that if there is a large transition zone at the 
debond crack tip when the material nearby breaks 
down (e.g. large-scale yielding of matrix material), the 
singularity of stress field is significantly impaired. 
Under this circumstance, the shear strength-based ap- 
proach is more appropriate than the fracture energy- 
based approach, and vice versa. Leung and Li [16] 
proposed that it is possible to evaluate which ap- 
proach is more appropriate by using a unified form of 
an approximate equation which is the ratio of or* to 

O'fr as 

G *  [ ( y 2  __ y ) ] l / 2  __ c o s h - 1  y1/2 
- 1 + ( 2 8 )  

Gfr I3L 

where 

13 = (1 + Vm)(b .2 - aZ)log(b*/a)J  (29) 

Equation 29 is essentially the same as Equation 5b in 
[1] except the effective matrix radius, b*, (where all the 
axial and shear deformation is concentrated near the 
fibre [17]) in place of the matrix outermost radius, b. 
Using Equation 28 in conjunction with experimental 
fibre pull-out results for different fibre radii or differ- 
ent fibre volume fractions, Leung and Li [t61 argued 
that if Y is constant with respect to 13, debonding is 
shear strength-governed and Yis equal to the ratio of 
shear bond strength to the frictional shear strength 
(rb/Zf) based on an approximate shear strength ap- 
proach [18]. For the shear strength approach to be 
valid, (%/z0 must be small (i.e. close to unity). In 
contrast, if Y varies with 13 the debonding is governed 
by a single fracture parameter, Gic and Y can be 
determined according to an approximate equation 
taken from Gao et al. [2] 

Y ~ 0.5 + (0.25 + X) 1/2 (30) 

where 

X = aEf Cio ~2/x2 (31) 

Practical application of the foregoing argument is 
limited by the usually large scatter obtained for the 
fibre pull-out experimental results. Another important 
criticism of Equations 28-31 is the oversimplification 
of the original solutions for or* and Gfr to fit into a 
unified equation, particularly the assumption of con- 
stant frictional shear strength, zf, independent of L 
without taking into account the effect of Poisson 
contraction in the debonded region. 
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The conditions for validity of the two different 
approaches are very complicated and there is no clear 
evidence reported hitherto. Therefore, it seems that 
one cannot judge the validity of one approach by a 
single parameter such as fibre radius even if the other 
properties are known. Particularly, because the inter- 
facial properties such as the interracial fracture tough- 
ness, G~c, or the shear bond strength, 1Sb, residual 
clamping stress, qo, the coefficient of friction at the 
interface, g, and even the interfacial frictional shear 
strength, zf, are extremely hard to determine inde- 
pendently with any accuracy in experiments, these 
properties are always varied to make the theoretical 
predictions fit the experimental data. Therefore, argu- 
ment of good or poor agreement of maximum debond 
stress, cr*, and the initial frictional pull-out stress, crfr, 
between theory and experimental results cannot give 
any indication that one approach is more appropriate 
than the other. Moreover, due to the difficulties in 
obtaining the actual stress field at the interface, one 
cannot ascertain how much the stress distributions 
predicted by using a model resemble the reality. In 
fact, the energy release rate for an incremental debond 
crack propagation based on a fracture mechanics ap- 
proach is again insensitive to the local shear stress 
distribution at the interface of zero thickness. Gen- 
erally speaking, a fracture mechanics approach deals 
with a more fundamental problem of microscopic 
material behaviour for a given loading configuration 
than a shear strength-based approach. For example, 
the condition for unstable debonding for a given com- 
posite with L < Zma x or (L -- l) < zm, x can be better 
explained in terms of fracture mechanics concepts 
where the total energy stored in the system exceeds the 
energy required for debonding the whole of the re- 
maining bonded interface. However, although a shear 
strength-based approach also provides a mathemat- 
ical solution for z . . . .  it cannot explain the physical 
significance of instability of the debond process; be- 
cause it assumes that debond crack propagation oc- 
curs when the interfacial shear stress exceeds the shear 
bond strength, %, regardless of whether the sub- 
sequent debond process is stable or unstable. Because 
of these latter two comments, the authors believe that 
a model based on the fracture mechanics approach is 
physically more appealing than one based on the 
shear strength criterion. 

5. C o n c l u s i o n  
An improved analysis of interfacial debond and fric- 
tional pull-out stresses in a fibre pull-out model is 
developed on the basis of the concept of fracture 
mechanics. The elastic strain energies stored in the 
fibre and matrix at both bonded and debonded re- 
gions are calculated using axial and shear stress com- 
ponents in a shear lag model. The differential energy 
with respect to incremental debond length is equated 
to the interfacial fracture toughness, Gic, to derive the 
debond criterion. The partial debond stress, G~, ob- 
tained in the present analysis consists of two stress 
components, namely the crack tip debond stress, cry, at 
the bonded region and the friction stress component 



at the debonded region, ~t is not only a complex 
function of the elastic constants of the constituents, 
interfacial properties and geometry factors, but is also 
dependent on the debond length, l, relative to the total 
embedded length, L. Therefore, the present model is 
able to evaluate the instability condition where the 
maximum debond stress, o*,  is determined. This is in 
sharp contrast to the result of a previous analysis by 
Gao et al. [2] based on a similar fracture mechanics 
approach, that oz is constant and independent of I or L 
so that o* is always obtained at complete debonding. 
Comparisons between theory and experimental fibre 
pull-out results on several composite systems includ- 
ing carbon fibre-epoxy matrix, stainless steel 
wire-epoxy matrix, SiC fibre-glass matrix show that 
the present model predicts excellently the maximum 
debond stress, (y*, for all composite systems over a 
wide range of L, including even the very short L 
(whereas the previous model overestimates cy* and 
gives a finite value for L = 0). The initial frictional 
pull-out stress, of~; after complete debonding predic- 
ted by the present model is basically the same as the 
previous model, both of which agree well with experi- 
mental data. 
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Appendix  1. Stress t ransfer  in the 
bonded region (1~< z ~< L) 

When the fibre is subjected to a tensile stress, cy, the 
stress is transferred from the fibre to the matrix 
through the interracial shear stress, z~(z), such that the 
equilibrium condition can be obtained by combining 
Equations 7 and 8 as 

dry~,(z) 2"7 
- ~[=(z )  ( A 1 )  

dz a 

To satisfy the equilibrium condition between the axial 
and shear stresses in the cylindrical shell of matrix, we 
have 

~ ( z )  ~ ( r , z )  ~(r ,z)  
- -  + - -  + - 0 ( A 2 )  

~z ~r r 

Therefore, the shear stress in the matrix, ~ ( r ,  z), can 
be expressed as a function of the interfacial shear 
stress, z~(z), for the boundary conditions that the 
stresses are compatible at the interface (i.e. ~c~(a, z) 
= z~(z)) and the stress is free at the matrix cylindrical 

surface (i.e. z~(b, z) = 0) 

7(b 2 -- r 2) 
~:~(r, z) = z]'=(z) (A3) 

ar 

Combining Equations 5 and A3 for the boundary 
condition of axial displacement continuity at the bon- 
ded interface (i.e. u~(a, z ) =  u~(a, z)) and differenti- 
ation with respect to z gives 

d~Z(z) aEm[a~(b, z) - c~(a, z)] 
dz - (1 + Vm) [2Tb z ln(b/a) - a 2] (14) 

where the relations between the stress components 
and the axial strains in the constituents 8~ and 8~ are 
given in Equations 1 and 3. The condition that the 
fibre and the matrix remain in contact during de- 
formation requires continuity of tangential strain (or 
radial displacement) at the interface (i.e. e~ ) 
= sO(a, z) given in Equations 2 and 4) such that [2] 

q* = (A5) 
~(1 - v f )  + 1 + Vm + 2"/ 

where q*( = o[(a, z) = c~,(a, z)) is the radial stress at 
the interface caused by Poisson contraction of the 
fibre which is subjected to tensile stress. Gao et al. [2] 
previously obtained Equation A5 by considering a 
thin fibre (i.e. of(z) = of~ and a plane strain defor- 
mation of the matrix with a stress free cylindrical 
surface in the radial direction (i.e. O~ 
-2To,~(a,z) and ry~(b,z)= 0). Combining Equa- 

tions 1, 3, 7, A4 and A5 yields a differential equation 
for the axial fibre stress o~(z) as 

d2cy f(z) 
A 1 eye(z) = A2~ (16) dz 2 

where the coefficients A~ and A 2 are functions of the 
elastic properties and geometric factors of the consti- 
tuents and are given in Equations 13 and 14. The 
solution of of(z) is subjected to the following bound- 
ary conditions 

o~(I) = % = ( y -  (o(6 - o)[exp(Xl) - 1] 

(A7) 

eye(L) = 0 (AS) 

In Equation A7, o~ is defined as the crack tip debond 
stress at the boundary between the bonded and de- 
bonded regions at z = 1 where the axial fibre stress 
given in Equation 16 must be continuous. From the 
solution of fibre axial stress, o~(z), as given in Equa- 
tion 9, the corresponding matrix axial stress, eye(z), 
and shear stresses in the matrix, z~(z), and the inter- 
face ~'=(z) are obtained in Equations 10-12, respect- 
ively. 

Appendix  2. Coef f ic ients  B, C and D 

B = {n 2 - q)(n 2 - naA1)[1 + (A2/11)  

x(1 + 12/A~)(2  - 2coshq~ + tanhq~ 

x sinh @)]cothq~ + [2n2(A2/A~) 

x(1 + A2/A1) - n3(l + 2A2/Ax) ] 

x (1 - cosh ~)}cosechZq) - n 4 (A9) 

C = coexp(;U){;~H + [ d H / d l -  naZ/Ef] 

x[1 - e x p ( -  ~,/)]} (A10) 
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D 

where 

m2exp(2)d) {[1 - e x p ( -  ;~/)] {(~./A11/2) 

X [(H 2 q- nlA1)coshOO s i n h q )  

-OO(n2 - n ,Aa)]  + [1 - e x p ( -  ~./)] 

X I n  2 -- qb(n 2 --  nlA1)co th~]}  cosechZdO 

+ nl)v 2 + n2[1 - e x p ( -  M)] 2} (All)  

H 1 

//2 m 

/"/3 -- 

7za 2 

n 4 --  2 E  m 

and 

H = 

ch = A l l / 2 ( L  - l) (AI2) 

r~7(1 + Vm){b41n(b/a) 
2Em 

-- (3b 2 + a 2)(b 2 + a2)/4} (A13) 

7~a 2 

2Em'(~ + 3') (A14) 

~a  2 

- - - [ ( ~  + y ) ( A z / A I )  + y ]  (A15) 
Em 

- - - { ~ [ ( A z / A 1 )  2 - 1] + y (A2 /A  , +  1) 2 } 

(A16) 

(1/A, 1/2) {{(1 + A2/A1) [(n 2 - n,A1) 

• + @cosechqb) + 2nlA1] - n3} 

• - coshqb) -- (n z -- nlA1) 

x (1 - ~cothqb) -- 2nlA 1 }cosechqb (A17) 
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