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Fracture surface energy determination in {1 1 0} 
planes in silicon by the double torsion method 
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Department of Materials Science and Engineering, State University of New York at 
Stony Brook, Stony Brook, New York 11794-2275, USA 

The fracture surface energy of {1 1 0} planes of silicon were determined by the double torsion 
method on thin samples. Elastic anisotropy was taken into account in the calculations. The 
determined value of 1.81 J m -2 compared well with other data in the literature. 

1. I n t r o d u c t i o n  
The Griffith theory attributes brittle failure to pre- 
existing flaws in materials. It predicts that the fracture 
strength of a brittle material is directly proportional to 
the square root of Young's modulus and fracture 
surface energy, and the fracture strength is inversely 
proportional to the depth of flaws. Therefore, the 
strength prediction calls for a knowledge of fracture 
surface energy. It is known that silicon cleaves along 
{1 1 1} planes. Gilman [1] determined the cleavage 
surface energy using double cantilever beam (DCB) 
specimens. Pre-cracking of the samples was difficult 
and he obtained few valid data. Jaccodine [2] carefully 
used his set-up with DCB specimens in the dead 
weight mode and was able to obtain data for { 1 1 1 } 
planes for silicon. St John [3] used tapered DCB 
specimens and determined the fracture surface energies 
for { 1 1 1 } planes. None of these experiments measured 
the fracture surface energies for other planes. Also, the 
production of precursor cracks was a major problem 
in all the above cases. Messmer [4] carried out fracture 
surface energy measurements on silicon using edge 
cracked specimens. He was able to produce controlled 
precursor cracks using the spark discharge technique. 
He was also able to measure the fracture surface 
energy on {1 1 0} type planes. Chen and Leipold [5] 
measured the toughness values for different orien- 
tations of Knoop indented silicon. Because the cleavage 
plane of silicon is { 1 1 1 }, the fracture plane was dif- 
ferent from {1 1 1} the cracks branched out to {1 1 1} 
planes. It seemed to be advisable to use some other 
specimen configuration, such as double torsion (DT) 
specimens. DT specimens can be well characterized 
and it makes use of compressive loading. Specimen 
preparation is easy. The compressive loading feature 
cuts down the set-up time and can easily accommodate 
an environmental chamber. 

The DT specimen configuration was first proposed 
by Outwater and Jerry [6] and Evans [7, 8] detailed its 
useful features. So far, the DT technique has been 
used only once in the measurement of the fracture 
surface energy of boron carbide by Hollenburg and 
Walter [9]. Our experiments used single crystal silicon 

wafers, and the DT equations were modified to take 
into account the elastic anisotropy. 

2. Theory 
Lekhtinski [10] treated the case of torsion for a rec- 
tangular orthotropic bar. We modified his expressions 
to include elastic anisotropy. 

The DT specimen configuration is shown in Fig. 1. 
The length l is along the z-axis, the width a is along 
the x-axis, and the thickness b is along the y-axis. 
Assuming the rectangular bar was subjected to torsion 
about the x - y  plane, the torsion equation was written 
as  

020 020 20 (1) a 4 4 ~  + a55 @2 - 

where 0 is the angle of twist, aijs are the elastic con- 
stan(s of an elastic body and 0 is the stress function. 
Equation 1 can be written as 

1 020 1 020 _ 20 (2) 
G23 0 x  2 + GI 3 @2 

where 1/G23 is equal to a44, 1/G13 is equal to a55 where 
G13 and G23 a r e  the shear modulii in anisotropic 
medium. Equation 2 can be put into the following 
form. 

020 020 20G (3) 
0x--  + - 

where x = xl, y = yI(G23/G13) 1/2 and G = 2G13G23 / 
(Gl3 + G23). 

The solution to Equation 3 was given by 

l 3 t/2 

k= 1,3,5 

(cosh 
1 /cosh l / - |  cosh knx  x 7zkwb) / - - f -  (4) 

2t / j  

where l is the width, b is the thickness of the bar, 
w = (G13/G:3) 1/2 and k is a constant. The above 
equation is equivalent to the equations of Timoshenko 
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Figure 1 Test ing  conf igura t ion  of  the double  tors ion D T  specimen.  
w = 2.54 • 10 -2m,  W m = 4.67 x 10-3m,  d = 0.96 • 10 3m, 
and  l = 7.62 • 10 2m. 

and Goodier [11] for the torsion of the isotropic rec- 
tangular beam. Torque, M, is given by 

a b 

M = 2 ~ dx dy (5) 
-- i  

= OGl3lb3fl(qS) (6) 

where 

and 

; t 
d~ - bw - b \ -~3 /  (7) 

32~b 2 ~, 1 ( 2r krc) 
]~(q~) - -  ~4 ~-~ 1 - - -  tanh 

k=1,3,5 7~ 

From the above we have 

M =- 0G23 7 k=1,3,5]r ~ 1 - -  ~ - ~ l x ~ 3 1 3 J  

(8) 
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We note that 

1 1 1 T~ 4 

1 - ~ +  ~ +  ~ +  . . . .  96 (10) 

Also, we assumed that, for a very narrow rectangle 
(a condition that fitted our case) 

krt b (G23) '/2 
tanh -~- 7 \~13J = 1 (11) 

From Equations 9, 10 and 11 

L (G23N~ 1/2 
M = 1 0 G 2 3 1 3 b [ 1 - O . 6 4 b \ G 1 3 ,  ] ] ( 1 2 )  

M = 10G2313b [For a narrow rectangle] (13) 

In the case of a DT sample having crack length c, 
and fo rb  = d , l  = w/2 

M c  = ~OG23d3w (14) 

For a DT specimen, M = PWm/4 and 0 ~ 2y/Wm, 

and the angle of torsion is very small, where P is the 
applied load, W m is half the moment arm and y is the 
displacement of loading points. Thus, from Equation 
14 3( W mC  

Y = a \ ~ )  (15) 

o r  

C - y 3 ( p W 2 m C )  
P -- 4 \G23d3w] (16) 

where C is the compliance. 
Here, the axis 2 is [0 0 1] and the axis 3 is [1 1 0]. The 

transformation [13] of G is the following 

�88 -- �88 + [S44 - -  2 ( S l l  - -  S12)1 x (g11~210~220~21 

+ oql~21cq3~23 + ~12722cq3~23) (17) 

where $44, &2, Sl~ are the compliances for a crystalline 
material, ~;js are direction cosines, i , j  = 1, 2, 3. In the 
present case, 711 = - 1 ,  ~12 = 0, ~13 = 0 

0{21 = 1/2 I/2, C~22 = 

From Equations 16 and 17 

1 
G23 - -  S44 

and hence 

1/21/2 , c~23 = 0 (18) 

(19) 

3 PW2mcS44 y - 
4 d3w 

and 
3 2 c Wn~ S 4 4 

C - 4 d 3w (20) 

Now, c~ l = (Pl2/2d)(dC/dc) where fr is the strain 
energy release rate, d is the thickness of the sample and 
c is the crack length. To obtain a relation between fr 
and KI in the elastic anisotropic case, the Sih-Paris- 
Irwin relations [13] was used. Wachtman [14] made 
detailed calculations using different combinations of 
fracture planes and directions. In the present case, the 
fracture was (1 1 0)[1 1 0] type and of mode I in nature. 
The Sih-Paris-Irwin relation was cast into the form 

� 8 4  1 + +  )]1J22 
[ 1 (  2 11+q,J2 

• ~ 1 + 2Sn + 2Sn 

(21) 
where f#~ is the strain energy release rate, /s is the 
stress intensity factor and S , ,  $12 and $44 are com- 
pliances of silicon. Metzger and Kessler [15] reported 
the stiffness values of silicon as C44 is equal to 7.9 x 
1010Nm 2, Cll is equal to 16.48 • 101~ and 
Cj2 is equal to 6.35 x 10 l~ N m 2. The transformation 
relations are given by 

- -  C12 
&2 = (22) 

( C l l  - -  C 1 2 ) ( C l l - { -  2C,2) 

C11 + C12 
$11 = (23) 

( C l l  - -  C12) (C11  -[- 2C12) 

1 
$44 - (24) 

C44 
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From above 

% = 6.66K 2 x 10 12m2N-1 (25) 

3 p2 W~$44 
% = ~ d4 w (26) 

In Equation 25, K~ the stress intensity factor is in 
MN m 3/2. Equations 25 and 26 are general as long as 
the crack propagation mode is (1 1 0)[T 1 0]. If Klc, the 
critical stress intensity factor, or P~c, the critical fracture 
load is known, the Equations 25 and 26 can be applied 
to obtain %c, the critical strain energy release rate. 
The fracture surface energy, y, is related to f#Jc as 
follows 

"~IC = 27 (27) 

Eo~uation 26 is used in calculating fffc and Pic is 
obtained experimentally. 

3. Experimental  detai ls  
Silicon wafer samples used in this investigation were 
thin. They were 0.0254m in length and 0.0064m in 
width. They were cut from wafers, from Monsanto 
Co. (St. Louis, Missouri) of  380/~m in thickness. The 
wafers were of n-type and had a resistivity value of 
173 4- 10ohmm.  The orientations of  the samples 
were determined by the X-ray back reflection Laue 
method using a molybdenum tube operating at 35.5 kV 
and 27 mA and recording the pattern on type 57 film 
with an average exposure time of 7 rain. The samples 
were of  { 1 0 0} orientation, the planes of  the samples 
are shown in Figs 2 and 3. As-cut samples were lapped 
with 600 grit SiC and were subsequently etched. 
Precursor cracks were produced using a standard 
technique used for brittle ceramics. Lines were scribed 
on the broad surface of  the samples and, with some 
practice, this technique produced straight long cracks, 
as shown in Fig. 4. According to Equation 20, the 
compliance is proportional to the crack length. Exper- 
imentally, it was true only when the crack length was 
between 1/3 and 2l/3, where l was the length of  the 
sample. The samples were fractured in mode I. The 
experimentally obtained value of critical stress intensity 
factor was near to K~c and was much less as compared 
to the published K.~c for silicon. The crack points 
were continuous, contrary to those in the case of  I and 
III mixed mode fracture. A universal testing machine, 
model TM, Instron Corp. (Canton, MA) was used in 
the experiments. The machine was fitted with a com- 
pression cage, a double torsion jig and a CM load cell 
with a maximum capacity of  50 kg. A crosshead speed 
of  1.27 x 10-4msec -~ was used to fracture the 
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Figure 3 Sketch of the crack plane in the DT specimen of silicon. 

samples. When the crack lengths were between l/3 and 
2I/3, the P~c values were constant. Equations 26 and 27 
were employed to calculate the fracture surface energy 
for the {1 1 0} planes in silicon. 

4. Results  
The fracture surfaces of the silicon samples were 
determined to be the {1 10} planes. Optical micro- 
graphs did not reveal branching of cracks into other 
planes. The Plc value was found to be 0.650 kg. From 
Equation 20, f#ic was calculated to 3.62 J m -2 yielding 
a fracture surface energy of 1.81 Jm  2 for the {1 1 0} 
planes of silicon. 

5. Discussion 
This study brought out some interesting points 
regarding the fracture surface energies of  { 1 1 0} type 
planes in silicon. The different surface energy values 
from the literature are tabulated in Table I. Chen and 
Leipold's [5] experimental value was extracted from 
their K~c value with the help of  Equation 25. Follow- 
ing Jaccodine's idea [2], it was noted that the fracture 
surface energies of two surfaces are proportional to 
their planar bond densities. The planar bond density 
on a {1 1 1} plane is given as 4/3~/2a~ and that on the 
{1 1 0} plane is 2(2)~/2a~, where a0 is the crystal lattice 
parameter of  silicon. The ratio of the number of  bonds 
on {1 1 1} to that on {1 1 0} is, therefore, 0.816. From 

\/,,o, / 
Figure 2 Orientation of (100) planes with respect to { 110} planes 
in a diamond cubic structure. Figure 4 Silicon specimen with a precursor crack. 
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T A B  LE I Experimentally determined fracture surface energies of  silicon 

Plane Surface fracture Reference Comments 
orientation energy (J m -2) 

{1 1 1} 1.24 Gilman [1] 
{1 1 1} 1.23 Jaccodine [2] 
{1 1 1} 2.50 St. John [3] 
{1 1 1} 1.14 Messmer [4] 
{1 1 0} 1.9 Messmer [4] 
{ 1 1 0} 1.81 Present study 
{ 1 1 0} 2.69 Chen and Leipold [5] 

Precracked DCB specimens 
DCB specimen 
Tapered DCB specimen 
Edge crack tension 

DT specimen 
Controlled flaw 4 point 
blend specimen 

our experimental data, the fracture surface energy of 
{1 1 1) type planes was calculated to be 1.47Jm -2, a 
value slightly higher than the figures reported by 
Gilman [1], Jaccodine [2] and Messmer [4]. Gilman and 
Jaccodine did not perform any experiments on { 1 1 0} 
planes. Messmer's [4] experimental value of 1.90 J m -2 
for {1 1 0} planes is equivalent to 1.55Jm -2 for {1 1 1} 
planes. This result is higher than his own experimental 
value of 1.14Jm -2 for {111) planes [16]. Thus 
Messmer's data shows a discrepancy to Jaccodine's 
idea. Careful scrutiny revealed that his samples were 
thicker ( ~  1 mm) than the usual samples. Therefore, 
there was a possibility that the cracks initiated on the 
{1 1 0} planes of his samples could branch out to the 
{1 1 1} planes. Messmer actually saw river markings 
on the fractured surfaces, which could be due to the. 
transfer of the crack plane from the {1 1 0} to the 
{1 1 1} plane. Also, Chen and Leipold [5] observed 
branching of cracks from {1 1 0} planes into the {1 1 1} 
planes. This is the reason they obtained a very high 
fracture surface energy of  2 .69Jm -2. In the present 
case, the fractured surfaces were carefully examined 
by using an X-ray back reflection Laue technique and 
optical microscopy. No crack branching or deviation 
of  the crack planes were observed. Thus, the present 
data represent data of  { 1 1 0} planes only. 

The present experimental values are also compared 
with theoretical calculations. Sinclair and Lawn [17] 
and Cahn and Hanneman [18] assumed the force laws 
for the diamond structure and determined the surface 
energies of  different crack planes. Their estimate for the 
{1 1 1} type planes was 1.41Jm -2 equivalent to 1.74J 
m -2 for {1 1 0} planes. This was close to our exper- 
inaental results of  1.81Jm -2 for {1 1 0} planes. Our 
results could be also viewed with respect to the lattice 
trapping theory [19]. This theory predicted that the 
surface energy varies periodically with the propagation 
of the crack. The present experiments were performed 
with ambient environment and the conditon of the 
lattice trapping theory was not fulfilled in our exper- 
iments. Therefore, no variation of  surface energy was 
observed. Rice [20] extended the thermodynamic 
approach of  crack growth theory from the Griffith 
theory. He extended the expression of  surface energy 
by adding terms in the case of adsorption of fluid 
phases at the freshly cracked surface. The strain 
energy release rate was found to be 2 ~  F'(#')d/z' where 
F'  is the surface energy isotherm at a particular tem- 
perature, and # the chemical potential of  the adsorbed 
fluid phase. The lower limit was for the extremely 
dilute case or the vacuum case. Rice's treatment showed 
that with the presence of  more adsorbed species the 
2492 

difference between the intrinsic surface energy and 
that of the case with adsorbed species increases. This 
suggests that the experimental value might, in fact, 
be quite different from the true fracture surface 
energy despite its being quite near to the theoretical 
calculations. 

6. C o n c l u s i o n s  
The fracture surface energy of { 1 1 0} planes of  silicon 
were determined by the double torsion method. For 
thin samples, controlled precursor cracks could be 
easily produced and cracks propagated all along 
{1 1 0} type planes. To calculate the fracture surface 
energy, the double torsion formulae were modified 
taking into account the elastic anisotropy. The exper- 
imentally determined value of 1.81Jm 2 compared 
well with other data presented in the literature. 
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