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1 Introduction 

The use of coupled cluster method (CCM) to obtain approximate solutions of the 
Schroedinger's equation has become widely popular in recent years [1-7]. For the 
ground state of a closed shell system, the CCM ansatz is given by [1-4] 

IOo) = exp(T)] ~bo), (1) 

where 10o) and I qSo) are the exact and the single determinantal reference wave 
functions respectively. The matrix elements of the cluster operator T and the 
ground state energy Eg are obtained from 

(4el//[qS0) =0, (2a) 

(q~o I/-/I 4o) =Eg. (2b) 
Here, 14o) are the hole particle excited states orthogonal to 14o), and 

/ t  = exp( -  T)H exp(T). (2c) 

The advantages of using this approach i.e. its size extensive nature and the general 
observation that even low order truncations to the cluster operator can yield 
energies comparable in accuracy to full CI stem from the exponential structure of 
the wave operator in Eq. (1). 

Parallel to these developments, attempts have also been made to calculate other 
molecular properties [8-13]. Within the framework of the CCM formalism, the 
expectation value of an operator O is given by 

(~bo I exp(T +)0 exp(T)[ qgo) 
(0o101~'o)- (~bo i exp(T+) exp(T)l ~bo) 

= ( qSo I exp(T + )O exp(T) I q So)L, (3) 
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the last expression following from the linked cluster theorem [1, 14]. Unlike the 
equations for the cluster matrix elements (2a), Eq. (3) is a non-terminating series. 
This has been the major bottleneck in extending CCM approaches to the calcu- 
lation of non-energetic quantities. Consequently, very few attempts have been 
made to use Eq. (3) directly [9, 10]. Instead, several authors have attempted to 
formulate the expectation value problem in terms of response functions to avoid 
the infinite series [11-13]. Calculation of transition matrix elements using CCM 
wave functions also suffers from the same problem. 

The purpose of the present paper is to outline an alternative method to 
calculate transition matrix elements between different eigenstates of the hamil- 
tonian and also expectation values which to some extent eleminates the above 
mentioned problem. It is based on the observation that /7  defined in Eq. (2c) is 
related to the original hamiltonian via a similarity transformation. Given the 
eigenvectors of/7, it is now possible to construct the eigenvectors of H and thus 
determine the matrix elements of any arbitrary operator. This is presented in 
Section 2. The implication of this analysis to CCM are discussed in Section 3. 

2 Similarity transformations and eigenveetor relations 

The problem at hand may be posed as follows. Given a hermitian operator H and 
its eigenvectors I CI), 

H] C~> =E,I Ci>, (4) 

we wish to calculate 

0Ij= < C~IOIG ) /( ( CIICD < GICs> ) x/2 

for some hermitian operator 0. Consider now the operator/7 related to H via 
a similarity transformation, 

/7 = u -  1HU. (5) 

/7 is not manifestly hermitian and its left and right eigenvectors are different in 
general, 

/TIX~> =EllXr>, (6a) 

( Y ,I/7= (Y ,IE~. (6b) 

From Eqs. (4)-(6), the following associations hold: 

I c , >  = uIxD, (7a) 

< c ,  I = < r ,  I u -  1N,, (7b) 

with 

if we set (YIIXx)= 1. Defining 

N1 = (Cx] Cz>, (8) 

O=U-IOU, 

it can be readily verified that 

(YII OIX j > = OIj(Nj/ NI) 1/2. 

(9) 

(lO) 
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Since Ors= 07i = lOts[ exp(i0) we get 

I OtjI = ((YI I01 x j) (YJ] OlXt}) x/2, (1 la) 

O=(1/2)Imagln( (Y tlOlXs} / ( Y slOlXi) ). (llb) 

The expectation value of O is given by 

oti = (gxl OIX,>. (12) 
Thus the matrix elements of any operator between the eigenvectors of the original 
operator H can be calculated from a knowledge of the eigenvectors of/~. 

3 Implications for CCM 

We now address the problem of calculating expectation values and transition 
matrix elements in CCM. As noted in the introduction,/4 defined in Eq. (2) is 
related to the original hamiltonian via a similarity transformation, and as a conse- 
quence of Eq. (2a) ] qS0 } is the right eigenvector of it. The calculation of expectation 
values via Eq. (12) requires the knowledge of the corresponding left eigenvector 
(Yo[ of/~. Expanding (Y0l as a linear superposition of the vacuum and hole 
particle states 

(Yo[ = (¢o1 + ~  Ye(q~el, (13) 
e 

we obtain, for Ye 

Ye,<~¢,[R-Egl¢¢}= - @5ol/~[qSe). (14) 
e I 

Thus the expectation values are given explicitly as 

(0o1010o) = (~bolOlq~o) + ~  Ye (~belO]~bo), (15a) 
e 

where 

0 = exp( -  r)o exp(T). (15b) 

For an n-body operator O, the Housdorff expansion for 0 terminates after 2n 
commutators. Thus the expansion in Eq. (15) has finite number of terms in it. 
Secondly, the matrix elements Ye obtained from Eq. (14) contain no unlinked 
terms. Consequently, the expectation values of any connected operator O as 
obtained from Eq. (15a) are also explicitly connected. This approach was discussed 
earlier by Salter et al. [12] and by Koch and Jorgensen [17] from a different point 
of view. 

A second approach to obtain (Y0[ is to expand it via an exponential ansatz: 

(Yo[= (~o [exp(T). (16) 

The T amplitude satisfy the set of nonlinear simultaneous equations 

@50 [ exp(T)H exp(-- T)[ Ce} = 0. (17) 

The expectation values are given, in this case, by 

(•o I o I ~,o} = (~o  10[¢o ), (18a) 
Again, by Hausdorf expansion 0 also contains finite number of terms in it. 
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Note that the ansatz (16) for <Yol is equivalent to the invocation of a double 
exponential wave operator to relate to the reference and exact wavefunctions: 

[0o ) = exp(T)exp( -- T) ] q~o ), (19) 

in the spirit of the extended coupled cluster method (ECCM) developed by 
Arponen and coworkers [ 18, 19]. The ECCM prescribes a variational procedure to 
obtain the cluster amplitudes. Consequently, the calculation of the T and T matrix 
elements is coupled. The present approach differs from ECCM in that, the calcu- 
lation of T matrix elements is done by solving Eq. (2b) and is thus decoupled from 
the calculation of the T matrix elements which are then obtained from Eq. (17). 
Thus the original problem of solving for T and f is broken down to two sub- 
problems. Since the computational effort to solve simultaneous equations scales as 
N 3, we can expect the present approach to be more efficient than the ECCM. 
A particularly attractive feature of ECCM is that the cluster amplitudes by this 
theory contain infinite order sums of both upward and downward reducible 
diagrams to all orders [-18]. The present approach, based on the normal CCM, 
sums up only downward reducible diagrams. To date, there have been no serious 
applications of ECCM to assess the importance of such generalized time ordered 
diagrams. On the other hand, numerical experience with the normal CCM gives the 
impression, that it suffices for most applications [3]. So, an approach based on 
Eqs. (16)-(18) might be expected to be fairly accurate. 

We now compare the present method and formulations based on response 
functions which utilize the analytical derivatives of energy [11-13]. These ap- 
proaches are based on the observation that the expectation values can be obtained 
as the derivatives of energy with respect to appropriate external fields. The 
advances made in the evaluation of analytical derivatives within the framework of 
CCM have made these approaches particularly popular [12, 13]. 

It is pertinent to note here that within the CCM framework the energy 
differentiation and the evaluation of expectation values do not in general lead to 
the same result for approximate wavefunctions, since the Hellman-Feynman 
theorem is valid only for exact wavefunctions or wavefunctions determined varia- 
tionally in the complete functional space defined by the method. In addition to the 
expectation value of the operator concerned, the energy derivative contains the 
non-Hellman-Feynman term (non HFT) 

a0(,~) 

<0(o)10(o)> 

Here ~(2) is the wavefunction at field strength 2. To calculate the expectation 
values, this term must be subtracted from the energy derivative. Noga and Urban 
[10] have presented a thorough analysis of this term when 0 is represented by 
CCM ansatz. They found that this term contains contributions from cluster 
operators which were not included in T. Since these terms are often quite small, the 
non HFT term is simply neglected. It is generally accepted that the energy 
derivatives provide a superior approach since it can absorb to a limited extent 
some deficiencies of the wavefunction. However, Noga and Urban found that the 
two methods give results of comparable accuracy at CCSDT level of approxima- 
tion. Indeed the agreement of these two approaches can be used to assess the 
quality of the CCM wavefunction. 
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We next turn to the calculation of transition matrix elements. In one of the 
formulations of CCM for excited states called variously as the coupled cluster 
based linear response theory [15] or the Emrich formalism [16], the excited state 
energies are obtained by diagonalising/~ in the space of the hole particle excited 
states. 

_OIX, ) = E, IX, ). (20) 

Transition matrix elements can thus be obtained using Eq. (11). For example, the 
magnitude of the transition matrix element between the ground state Oo and one of 
the excited states 0I is given by 

I <~i101~,o> I =(<Y~lOIfoo><YolOIXD) 1/2. (21) 

where Y1 and X1 are the left and right eigenvectors of/7 corresponding to ~i and 
Yo is obtained from Eq. (13). 

In summary, the linked cluster theorem from which the size consistency of 
CCM stems, leads to nonterminating serieses for expectation values and transition 
matrix elements. Consequently it is not practical to evaluate these quantities from 
a CCM ansatz directly. On the other hand, the CCM defines an intermediate 
effective hamiltonian H related to the original hamiltonian via a similarity trans- 
formation. The parameters of the similarity transformation (the cluster amplitudes) 
are chosen such that the reference determinant is the right eigenvector of/1. All 
information regarding the normalization constant of this state is then contained in 
the left eigenvector. Once it is obtained no infinite serieses are encountered in the 
calculation of expectation values. The left eigenvectors of/-1 can be obtained either 
by expanding them as a linear superposition of the hole-particle states or by 
a second exponential operator. The former approach leads to a set of linear 
equations while the latter requires the solution of non-linear equations. In either 
case, the expressions for the expectation values would contain finite number of terms. 

The methodology presented here can easily be generalised to CCM based on 
multi determinantal reference functions (MRCCM). Depending upon the form of 
the wave operator employed, MRCCM can be divided into two broad classes- 
Fock space [5-7] and Hilbert space [20, 21] MRCCM. Most of the applications to 
date are based on the Fock space approach. In this, a common wave operator is 
defined to relate a group of unperturbed states (spanning the model space) charac- 
terized by the projection operator P to an equal number of final states 

~, = f2gbl. (22) 

The wave operator is posited as a normally ordered exponential operator 

f2 = N [exp(S)]. (23) 

The operator S induces excitations out of the model space. A model space effective 
h a m i l t o n i a n  H e f  t is now constructed and qS~ are required to be its right eigenvectors 

Heff~bi = EI~b,. (24) 

In one of the strategies adapted to obtain the cluster amplitudes S (called the 
similarity transformation based methods E7]), Herr is defined as 

Hef t  = PHP, (25) 

where, 

= ~'~- 1 Hf2. (26) 
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The cluster amplitudes are defined by requiring 

QHP=O, (27) 

where Q is the projection operator on the virtual space. 
Note that, Eq. (26) defines/~ as a similarity transformation from H. Thus the 

analysis of Section 2 is applicable here also. One only needs to evaluate the left 
eigenvectors of/~ to evaluate transition matrix elements between different ~,. Again 
either a linear expansion similar to Eq. (13) or a second exponential transformation 
similar to Eq. (16) can be used. These lead to multi-reference generalisation of Eq. (14) 
and Eq. (17) respectively. Once the left eigenvectors are obtained, Eq. (11), (12) can be 
used to obtain the transition matrix elements and expectation values. 
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