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Orthogonally spin-adapted multi-reference Hilbert space 
coupled-cluster formalism: diagrammatic formulation* 
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Summary. The problem of spin-adaptation of the multi-reference (MR) coupled- 
cluster (CC) formalism, employing Jeziorski-Monkhorst ansatz, is addressed. The 
diagrammatic technique based on graphical methods of spin algebras is generalized 
to the MR case, so that both direct and coupling terms can be determined. 
Usefulness of this fully diagrammatic spin-adaptation approach is illustrated on 
a derivation of explicit expressions for the linear and bilinear coupling terms that 
are required in the special two-reference MR-CC theory involving singly and 
doubly excited states (MR-CCSD formalism). Results obtained with the diagram- 
matic approach are compared with those derived earlier using the algebraic 
technique and relative advantages of both procedures are compared. 
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1. Introduction 

Recently, several advances have been made in the development and implementation 
of the so-called Hilber t  space or s tate  universal multi-reference (MR) coupled-clus- 
ter (CC) approach that is based on Jeziorski-Monkhorst cluster ansatz [ 1]. The 
explicit equations for both linear [2] and nonlinear [3] versions of the orthogonally 
spin-adapted MR-CC approach were derived for the special two-reference case, 
corresponding to a valence space spanned by two active orbitals of different 
symmetry. This derivation employed an algebraic approach formulated in terms 
of spin-free replacement operators [4], even though the resulting terms were also 
given a diagrammatic interpretation [3] in order to facilitate a comparison with 
the single-reference (SR) closed-shell case. At the same time, a diagrammatic 
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version of the theory was developed by Meissner et al. [5, 6] for spin-orbital and 
non-orthogonally spin-adapted cases. The actual implementation of ,both ap- 
proaches was tested on simple model systems investigated earlier [3, 5-8] and the 
approach was extended to incomplete model spaces [9]. 

The advantages and shortcomings of the spin-orbital vs orthogonally spin- 
adapted version are the same as in the SR case: The spin-orbital formalism is 
considerably simpler, so that it facilitates the design of more general codes 
which, moreover, may be more easily vectorized. It also allows the use of 
unrestricted Hartree-Fock (UHF) spin-orbitals which, however, should be less 
important in the MR than in the SR case, where the UHF spin-orbitals enable 
a SR handling of open-shell systems. On the other hand, the main disadvantage 
of the spin-orbital formalism is the necessity to handle twice as many one-elec- 
tron functions and correspondingly more cluster amplitudes. The orthogonally 
spin-adapted version has the advantage of using the minimum number of cluster 
amplitudes, in addition to an obvious esthetic appeal in exploiting the spin 
symmetry of the Hamiltonian and a direct link with corresponding spin-adapted 
configuration interaction (CI) approaches and there arising CI amplitudes. This 
interrelationship may be very useful in actual computations of potential energy 
surfaces in view of a possible multitude of various solutions that the highly 
nonlinear MR-CC equations generally possess [8]. However, the orthogonally 
spin-adapted formalism is considerably more complex than the simple spin- 
orbital one, so that its computer implementation is more laborious and more 
difficult to be cast into a recursive form. 

In either case, the MR formalism is much more complicated than the weil 
known SR versions, since in addition to the so-called direct terms, that for each 
reference configuration are essentially the same as the SR equations, we also 
need so-caUed coupling terms [2, 3, 10], which have no counterpart in the SR 
case. In view of this increased complexity, one must take special precautions in 
order to develop an error-free formalism. Thus, to ascertain the correctness of 
the orthogonally spin-adapted formulation, it is desirable to carry out an 
independent derivation of basic equations. Relying on the diagrammatic ap- 
proach [11], this is quite straightforward to achieve for the direct terms in view 
of their similarity with those encountered in the SR case. However, for the 
coupling terms, the diagrammatic technique [11] based on graphical methods of 
spin algebras [12] must be generalized to the MR case, involving different model 
space references. We present such an extension below and amply illustrate it on 
an independent derivation of the linear and bilinear coupling terms for the 
closed-shell type reference states. In particular, we independently verify the 
correctness of the formalism presented in [3]. 

The paper is organized as follows. We first recall basic definitions and 
notation and in Sect. 2 we generalize them to the MR case. Then, we employ 
the resulting formalism to derive the MR linear and bilinear coupling terms in 
Sect. 3 and compare the result with the algebraic derivation in the concluding 
Sect. 4. 

2. Basic formalism 

We consider two-dimensional model space [2, 3] spanned by 

I~l)  I{(core)~/c)~fc~}) and l~2>=l{(core) ¢+»~-) = I l } ) ,  
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with k and l transforming according to different irreducible representations of 
the spatial symmetry group of the system, I (~t~> = I#> I 1, +1> and curly brackets 
designating the antisymmetrizafion. The reference configurations [ ~J >, J = 1, 2, 
may be interrelated as follows: 

1+2> = G~k(0)l+l>, 1+1> = G~k(0) 1+2>, (1) 

where, generally, 

with 

and 

QO- • Qtr QO- " G«,(t) = N«aS«a(t), i = 0, 1, (2) 

1 
N°~~ = [(1 + ö«t~)(1 + 6°")]-~, (2') 

Q« • = im 1 S«~(t) [i]-½ ~, ~ <~ «, ><½m o, lmŒ im\V~mQX~ v«m«v imù [ im ~ t e t / . e x  « m e " " -  .ex f lmfl ,  
m¢t,m~,mO,m a m 

(2-) 
represents a particle-particle-hole-hole (pp-hh) coupled orthogonally spin- 
adapted biexcitation operator [13]. We employ a convention designating the 
dimension of the spin space (2S + 1) by [S], i.e. [X] =- 2X + 1 for any spin 
quantum number X. The corresponding monoexcitation operator is then: 

G~ = S~ = 2-½x°mX~m. (3) 

We write X ~m= X~m and use Einstein summation convention to indicate unre- 
stricted summation over repeated upper and lower indices [e.g., m in Eq. (3)]. 
Occupied orbitals in the reference state, chosen as a Fermi vacuum (in most 
cases [~1 >), are labeled by a, fl . . . . .  while the unoccupied ones by Q, tr . . . . .  
Core orbitals are labeled by a, b . . . .  , virtual orbitals by r, s , . . . ,  and the labels 
x, 2 . . . .  are employed as generic indices that run over all (occupied and 
unoccupied, or, core, valence and virtual) orbitals (cf. Table 1 of [2]). In addition 
to fixed valence labels k and 1, we also employ free (summation) [14] valence. 
labels k',  k" and l', l", which in the two-reference case assume a single value, 
k ' =  k " =  k, 1 '=  l " =  l. We also note that formally 

s~ = (s~)+, 

S~~(i) = [S~~(i)] +, (4) 

N ~ ~ -  « - N « a  = ( N ; ~ ) * ,  

so that we may define 

In particular, 

G~ - (c~)*, (Sa) 

G~~(i) =- [G~~(i)] t. (5b) 

o,~~(o) = [cg~(o)]t. (6) 

When the cubic and higher-order terms in cluster amplitudes are nelgected, 
the coupling term A« (cf. [1]), 

Ac =_. <(P)Gi~p[ e -  T(p) _T(q)lAr~ X rleff e IWq2nqp,  q = 3 - - p , p = l , 2 ,  (7) 
can be written as 

A« = ((P)Gi¢ib p l T(q) - T(P)[ ~q > Heqffp 

+ ½<(»G,¢,[(T(«~ - TOp)) 2 -{- [7 (q), T(P)]I¢ q >Heq fr, (8) 
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or  

Here 

A« = <(~)G,% I T(«) - T(P)[~q >Hqg 

+ ½<(P)Gfl)p[T (q)2 + T (p)2 _ 2T(P)T(q)[ (Bq >Hqffp. (9) 

eff__ Hqp -- < ~)q I e - T(V'H e T(n[% > (I0) 

= <(Bq I(HNp e T(n)C l@p > (I I) 

is the effective Hamiltonian matrix element and (hG i designates a spin-adapted 
singlet excitation operator, Eqs. (2), (3), that generates exeitations outside the 
model spaee. This excludes operators like (1)G~ or °)G~k(0 ). The superscript (p) 
in (P)G~ indieates that the excitation operator is defined with respect to the 
reference ]~p > and the subscript C designates the eonneeted component. Simi- 
larly, the subscript Np in Hu designates the normal produet form of H (of. [ 14]) 
defined relative to ]~p >. Cle~arly, H~~ depends only on the valence indices that 
distinguish I~p > and I~q >. For example, 

eff H21 = (~:I(HN1 eT(1))Ct(~I > 

= ( ~ 1  ](l)G~lk(O)(HN1 e T(I))c [(~1 • ~ g~k, (12) 

where in the last identity we employed the notation of [3] [Eq. (21)]. Similarly, 

HIE ~ = (~2 I(2)G~k (0)(HN2 e ~:))c l~2 > -- ggg- (13) 

Of course, matrix elements Hqg in Eqs. (8) and (9) are sometimes replaced by 
truncated quantities, like Hqp = (~q IHN, [~p > or by (4~q I H + [H, T(ù)] [4~» > = 
<~q I[HN~(1 + T(n)] c ]¢p >. In order to parallel the results obtained with the 
algebraic approach [2, 3], we shall rely on Eq. (8), although Eq. (9) will also 
prove to be useful (cf. Sect. 4). 

We employ the CCSD approximation, i.e.: 

T (p) = T~ p) + T(2 p), (14) 

where, in the orthogonally spin-adapted formalism, 

with 

T~5) = Z <0 [dP) l « >(P)G~ (15) 

- -  (P)tŒ (P) ~O (16) - -  - Q  ~ ¢ t ,  

1 
T(2P)= Z Z (Qt7[t~P)[o~fl>i(P)G~aß(i) (17) 

¢t<~fl i=O 

1 
- -  4 Z (P),«flg;h (P)~O~rl'¢'~ (18) 

i=0 

(P)t~~(i) = N~~ (Qa I t~ p) lafl >;. (19) 

Choosing [4~p> as a Fermi vacuum, we can represent the operators it',(, p), 
i =  1,2, Eqs. (15)-(18), by Hugenholtz vertices whose nonoriented form is 
shown in Fig. la,b. Similar diagrams can be used to represent excitation 
operators (2) or (2") and (3). To make the distinction, we shall use a filled 
circle in the latter oase. The diagrammatic representation for the operator ~~ 
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Fig. la-e. Nonoriented Hugenholtz 
vertices representing the operators TiP) 
(diagram a), T(z p) (diagram b) and f2q 
(diagram c) as well as T~ q) (diagram 
d) and T~ q) (diagram e), when 4~p is 
chosen as a Fermi vacuum 

• that transforms 1% > into ]~q >, i.e., 
2 ll 

~'~1 = G k k ( O ) ,  a 1 = G ~ ( 0 ) ,  (20)  

is shown in Fig. lc. Although in the diagrams a, b and c of Fig. 1 all the lines 
extend to the left, there is an essential difference between them. According to 
general MR-CC formalism [1], cluster amplitudes must carry at least one 
non-valence (i.e. core or virtual-type) index. Thus, at least one line of diagrams 
representing 7",(. p), i = 1, 2, must be of  a non-valence type, while all the lines in 
the f2~ diagram, Fig. lc, carry valence indices. Using the MR-MBPT terminol- 
ogy, diagrams representing T} "), i = 1, 2, operators are open while that for O,  q is 
closed. Representing valence lines by double arrows, we thus have that 

0 , (21) 

~ = 0 , (22) 

In other words, the resulting diagrams, in which all the lines that are incident 
with T! ?), i = 1, 2, vertices are of the valence type, must vanish. 

Notice that the diagram of  Fig. lc can also represent the operator T~2 p) [cf. 
Eq. (27) of  [3]], 

T(2 p) -~- ~'iTeff,O-q (24) - -  qp - - p ,  

that describes an excitation inside the model space, in contrast to operators T~ p), 
creating excitations into the orthogonal complement of  (i.e., outside) the model 
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space. This operator is closely related with the effective Hamiltonian 

(P)H~fr = PHUPp,  (25) 

or the effective interaction 

(P) W ~fr = PH~p UPp, (26) 

and can be written explicitly as follows (summation convention does not apply 
here since k and l are fixed): 

Tl,) kk ,, = gu Gkk(O), (27) 

= gkkGtt (0). (28) 

Here, 

and 

P = P I + P 2 ,  pp=[CI~p)(~p[, 

U = e ~~)P1 + e ~2)p: 

is the usual Bloch wave operator [1]. For example, 

(P)H "fr = H;~Pp + T(P) P, 

where [cf. Eqs. (10) and (Il)] 

p = 1, 2, (29) 

(30) 

(31) 

HV~ = <~l e-~~'I-I e~~l~ > 
~P) fr) " = H p , + ( ~ p l ( H N e  )«] p>. (32) 

To derive Eq. (31), we have to realize that 

oq]~q ) = 0, (33) 

so that 
eff T(2P ) P = H eff O q ( . .  p \ .  p "]- P q ) = H qp [ l~ q >(%1- (34) 

It is thus not surprising that diagrammatic representations of :r~2P), and of 
operators (25) or (26), are similar [5, 6]. 

Clearly, the diagrams representing conjugate excitation operators (P)G~ or 
(P)S~ and (P)G~~(i) or (P)S~¢~(i), Eqs. (4), (5), are conjugate to those of Fig. la,b. 
It thus remains to draw the diagrams which represent the cluster operators T! q) 
(i = 1, 2), when ~p (p ~ q) is chosen as a Fermi vacuurn. We can use the same 
type of vertices as shown in Fig. la (for i = 1) and lb (for i = 2). Clearly, they 
taust be labeled with q instead of p and, in contrast to diagrams representing 
T~ p), the fermion lines may now extend to the left as well as to the right (see Fig. 
ld,e). Since all the lines that extend to the right carry valence labels that 
distinguish ~p and ~q, at least one line incident with T! q) vertex must extend to 
the left, lest the diagram vanishes (cf. Fig. ld,e). Otherwise, contrary to the 
results of the general MR-CC formalism [1], the cluster operators T~ q) would 
produce excitations into the model space. 

Equipped with this diagrammatic representation, we find that within the 
realm of the CCSD approximation (i.e., considering only singly and doubly 
excited configurations relative to a given reference), only a few terms in Eqs. (8) 
and (9) survive. For example, the linear term ((P)Gi~p[T(P)]Crpq)Hq~ , which is 
represented by diagrams resulting from one skeleton of Fig. la,b and the 
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skeleton of Fig. Ic, must vanish unless (P)Gi represents a triexcitation (for the 
T (p) component) or a tetraexcitation (for the T(2 p) component) operator, since no 
lines of T~ p) and Oq can be contracted (see also Table 3 of [2]). Thus, since we 
restrict ourselves to singly and doubly excited cluster components, Eq. (14), this 
term will vanish as does the quadratic term in T (p). We also see easily that from 
((P)Gi ~p[ T(q)T(P) I ~q ) and ((P)Gi~pl T(P)T(q)[~ q ) terms, only the terms involving 
T~ q) and T~ p) survive, assuming that G~ p) represents at most a double excitation 
[cf. diagrams in Fig. 1 ld and h in Sect. 3]. We thus find that the coupling term 
A«, Eq. (8), can be rewritten in the form: 

2 2 
A« Z R(P)(G*i)+ E B(~)(G~) "(P) t = + B12 (G,), (35) 

n = 1 n,n" = 1 
(,~ < n9 

where 

R(nP)(G*~ ) = ( ~p [(P)G*~ T(fl ) I ~q ) Hq~p, 
B~Pn)(G,) _1/~ I(p)fT-~T(q)2l x) eff 

- - 2 " ,  Pl ~ i - - n  i ~ q . H q p ,  
(p) eff Jt" 12~I~(P)[¢~~*)\xa, = < lTZ)p I(p,G*~ T~«) ( T~q) - T, )[~q ) H qp, 

B(p)£1"Tt ) = ( CZ)p l(P)G~ [T(2q), T~P)] lChq ) Hq~p, 12 t u i  

while Eq. (9) becomes: 
2 2 

A« = ~, RT)(G~) + Z B(,~)(G~) + Æ~~)(G*i ), 
n = l  n = l  

where 

(36) 

(37) 

(38) 

(39) 

(40) 

~ ( . ~ _ ,  = <~p I<»G, (T~«) r~P))T~q»l¢ 5/-/eer (41) 12 \"a i ? -- q/--qp" 

Equivalence of Eqs. (35) and (40) is obvious, since 

= -~- B12 (G e ). ( 4 2 )  

Although Eq. (40) is simpler, Eq. (35) is more convenient when the algebraic 
approach based on the E-operator technique [2-4] is employed. Eq. (35) can 
be rewritten in terms of commutators, which can be evaluated using the 
contraction theorem [15] or analogous rules. This is why Eq. (35) was used in 
[3] that relied on the algebraic approach. Another reason for splitting of B~~) 
into »12~(P) and u12õ(P), Eq. (42), will be given later. On the other hand, Eq. (40) is 
more convenient in the diagrammatic approach, since it contains fewer terms to 
evaluate. Nonetheless, we shall use Eq. (35), since we wish to compare the 
diagrammatic method with the algebraic replacement operator technique [2-4] 
of spin-adaptation. 

We can limit ourselves to Eqs. (35) and (40) for p = 1. Corresponding 
expressions for p = 2 easily follow from the former ones if we interchange indices 
k and l and the amplitudes of T (1) and T (2). To derive explicit expressions for the 
R, B and B terms in Eq. (35) for Ge=Gg and G«p(z), i 0,1, using a 
diagrammatic technique [11, 13b] based on graphical methods of spin algebras 
[12], we first introduce orbital and spin diagrams representing basic quantities 
(operators) in Eqs. (36)-(39), as indicated in Figs. 2 and 3. Brandow-type 
orbltal" diagrams representing cluster operators T} 1), i = 1, 2, .with (2)|~1) as a 
Fermi vacuum, are shown in Fig. 2a and c, while those representlng Te , i = 1, 2, 
components are displayed in Fig. 3. Formally, all the orbital and intermediate 
spin labels are free, including valence labels k', k", I' and l" in Fig. 3. Of course, 
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Fig. 2a-j. Diagrammatic representation of the operators T~ 1), Eq. (16) [diagrams a, b], T[ 1), Eq. (18) 
[diagrams c, d], °)G~, Eq. (5a) [diagrams e, f], °)G~~(i), Eq. (5b) [diagrams g, h], and O)Gtk%(S ) 
[diagrams i, j]. Diagrams a, c, e, g and i represent a Brandow-type version of nonoriented Hugenholtz 
vertices of Fig. la-c, while b, d, f, h and j are the corresponding 3-im-type spin diagrams 

in the final expressions pertaining to the two-reference case considered earlier 
[2, 3] we have to set k '  = k" = k and l' = l" = / ,  since there is only one valence 
orbital (k) occupied in I~1 ) and unoccupied in 1~2) and, similarly, one valence 
orbital (/) unoccupied in [~1) and occupied in 1~2). The 3-jm-type spin 
diagrams associated with T~ p) (i = 1, 2; p = 1, 2) diagrams are shown in Fig. 2b 
and d. The diagrams a and b of Fig. 2 can also serve to represent the single 
excitation operators (1)S°~ or (1)G~, Eq. (3), provided that the orbital and spin 
labels are fixed. Likewise, diagrams c and d of Fig. 2 can be used to represent 
double excitation operators (1)S~~(i), Eq. (2"), or °)G~~(i), Eq. (2), assuming that 
the normalization factor N~~ is incorporated "into the spin graph, Fig. 2d. 
Corresponding conjugate diagrams e and g of Fig. 2 and associated spin graphs 
f and h of Fig. 2 serve to represent conjugate excitation operators, Eq. (5). As 
already mentioned, we use filled vertices for excitation operators. Finally, we 
need a graphical representation for the operator (1)G~k(0) ~ Ggk(O) transforming 
[~~) into [~2). For combinatorial reasons it is prudent to consider a more 
general operator O)G~~(S), and set in the final expressions k = k-, l = / -and S = 0. 
The Brandow orbital diagram and the corresponding 3-im graph representing 
(I)G~r(S) operator are shown in Fig. 2i and j, respectively. 

Rather than considering the R, B and B terms in Eqs. (35)-(39), with p = 1, 
as matrix elements between ((I)Gi~II and I(1)G/k/k(0)t~l) that must be subse- 

H21 - g k k  we can also express them via the operator T~21), quently multiplied by e r _  
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r 

r r r 

~ r .~.~ k '  

, @__, .  . .  

Fig. 3a,h. Possible 
Brandow-type orbital dia- 
grams representing T~ z) (a) 
and T[ 2) (b), with ~t cho- 
sen as a Fermi vacuum, 
corresponding to nonori- 
ented Hugenholtz vertices 
of Fig. ld and e, respec- 
tively. Scalar factors asso- 
ciated with diagrams a are 
(2)t7, (2)trr and (2)/~,, re-  

spect ive ly ,  and scalar fac- 
tors associated with b are 
~)d~(s3, ~t'~'~" (s,), 
(2)tarb,(Si), (2)t l'r'L~'.'l 

(2)tffm,(Si), (2)t ~L(S/), 
(2)d'r' e¢,rk,,Wij, ~ and (2)t~rk,,(Si) , 

respectively. In the final 
formulas, we have to set 
k ' = k " = k  and l '=l"=l .  
We do not present corre- 
sponding spin diagrams, 
since they are identical 
with those given in Fig. 2b 
[for diagrams of part a] 
and Fig. 2d [for diagrams 
of part b] 

Eq. (27), which can be writ ten as 

T(2 ') = ¼ ~ (1)~,;~" (S)°)S~t,~,,(S), (43) 
s 

where k ' ,  k", l', l" and S are free summat ion  labels and 

o)7~Y(S) x* 'xk"x ,x ,  x t ~ r , , ~ - l . k *  (44) "~- W k  t " k  V l ' V l " w S ,  O\l"C k k )  ~ l l  " 

Indeed,  

R(,I)(G~) / ~  10)~*T(2)e(1)l,n \ (45) 

g(.~(a~ ) = 1(4110)a~ Z(n2)2T~ 1)1 41 >, (46) 

B O ) t n t )  = / 4  I(1)Gt T(2)(T (2) Tf))~') 141 ),  (47) 12 kxJi  X 1 ] i 2 \ 1 - -  

~(1) /~ t  12 ~,~Ji ) = ( 4 1 1 ( 1 ) G ~  IT(22), T~I ) ]T(1) [  ( iDl) .  ( 4 8 )  

Expressions ( 4 5 ) - ( 4 8 )  can be directly evaluated once we choose a suitable 
graphical  representat ion o f  the opera to r  T(21), Eq. (43). To  this end we can use 
d iagrams i and  j o f  Fig. 2, provided that  we replace fixed orbi tal  labels k, JE by 
free ones k ' ,  k", regard spin label S as a summat ion  index and remove  the factor  
N~(~,, f rom the spin graph  in Fig. 2j. The scalar factor  associated with a modified 
orbi tal  d iagram,  Fig. 2i, is then o)7~Y(S),  Eq. (44). Thus,  the coefficients (44) 
play now the same role as the unnormal ized  pair-cluster  ampli tudes  (P)t~(i), Eq. 
(18). 

We can thus find the explicit expressions for  R, B a n d / ~  terms by either using 
Eqs. ( 4 5 ) - ( 4 8 )  with ~(21) given by Eq. (43), or  by using Eqs. ( 3 6 ) - ( 3 9 )  and 
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evaluating the matrix elements between ((1)Giqbl I and I G~k(0)@l ). Although both 
methods must yield the same result (cf. the next section), the latter one is slightly 
more convenient, since in the resulting Brandow diagrams we do not have to 
draw vertices representing °)Gt* and G~k(O) operators. When Eqs. (45)-(48) are 
employed, vertices representing the iF(2» operator must be drawn. 

3. Diagrammatic evaluation of the coupling term 

When deriving the explicit form of the coupling term A«, we need the expression 
for gü, Eq. (12), assuming that T (1) = T~ 1) + T(2 ~). This was already accomplished 
in [16], where we found that 

4 
ll (1) k k  = 1 g~k=Nkk(~a l  S,t (O)(HN, eßl'+~")cleßl> ~ E (J)A~k(O) • (49) 

j = 0  

The explicit expressions for the quantities (J)A~~(i) are also given in [16], (cf. 
Eqs. (57)-(61) of [16]). Different truncation schemes for the expansion (49) will 
lead to different versions of the quadratic two-reference CCSD formalism 
considered in this paper, since both the matrix element of the product e - zm e z~=) 
between ((1)Gi~ 11 and 1~2 ) = I G~k(0)~i ) (see Eq. (7)) and the effective Hamilto- 
nian matrix element H~I ~ contain higher than linear terms in cluster amplitudes. 
We may, for example, consider the theory in which the entire coupling term is at 
most bilinear in cluster coefficients. In such a case, we only need those parts of 
O)A~k(0) that are at most linear in cluster amplitudes (see Eqs. (8) and (9) or 
(35)-(41)), so that j = 3 and j = 4 terms in Eq. (49) do not contribute and, 
consequently (see [ 16]), 

g~k = vkk + 2½(V}k (1)t~ _ ,kk 0),« ~«, ., ) + ( ' ~  o)t~,~(0) - o)f~ o) tV(0)  
l_r, ,qa(1)~kk[fl '~ «~kk(l)taß((~'~] , , ¢k r  (1)~k«~'t'l~ '~«,kë(1)~ko:(IT~ 

-{- 21."// ~q«k"*] "1- ~«B "11 ~ v ] j  "l- ~ « l t  ~lq ~.~'~' "}- 3½(1)t~~(1)] - -  " " a t  "le ~" . ' ,  

(50) 

where 

- z~  + (2v~= - v~«) ,  ( 5 1 )  

2 (« runs here over the orbitals occupied in I~,>), and z~=<xlzl2> and 
~~ = (x21vlpv > are, respectively, standard one- and two-electron integrals. The /3 x2 

whole expression (50) then enters R~°(G~*), while only the constant part of it 
(i.e., the term vü)  enters B(1)nn',(G'*, ,/ and /~{~(G,-* ). We can also consider a higher 
level formalism, in which in calculating R, B and /~  terms the entire expansion 
(49) (containing even quartic contributions in cluster amplitudes; cf. [16]) is 
used. Finally, we can consider an intermediate version, in which we include at 
most bilinear terms in both the matrix element of the product e -  ~1) e ~2) and the 
effective Hamiltonian matrix element «r H2~. All these versions are based on the 
same formula for A«, Eq. (35) or (40), and in all of them the explicit expressions 
for O)A~~(i), which were derived in [16], apply. 

Now, to apply the diagrammatic procedure [11,131o] to Eqs. (36)-(39) with 
p = 1, or Eqs. (45)-(48), we must first draw all possible nonequivalent, nonori- 
ented vacuum Hugenholtz skeletons that can be formed from the vertices 
representing the operators (I)G~ or O)G~~(i), G~k(0) or T(21), and the pertinent 
products of cluster operators. Once this is done, we  have to introduce orienta- 
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tions and labeling of lines in all nonequivalent ways. Then, each Hugenholtz 
vertex is replaced by its Brandow version, yielding the orbital diagrams, and, 
finally, the corresponding spin diagrams are constructed. The desired final 
expressions are then obtained by combining the resulting spin-coupling co- 
efficients (determined by exploiting the graphical methods of  spin algebras [12]) 
with the orbital factors. 

As mentioned earlier, there are at least two possible strategies to follow: we 
can either calculate the matrix elements between ((1)Gi4}11 and IG~k(0)4}~), 
corresponding to Eqs. (36)-(39),  or use Eqs. (45)-(48)  with T~2 ° defined by 
Eq. (43). Let us illustrate these two possibilities on a typical example, con- 
sidering B~~)[G~~(i)], Eq. (39) or (48). Instead of the matrix element 
(4}11(1)G~~(i)[T~225, T~°]Ggk(0)14}1 ) we consider a more general one, namely 

B = (4}, [O>G~g(i)[T<22), T~ I)] (1)G~r(s)i 4}i ), (52) 
which would be needed when more than two active orbitals were involved. To 
evaluate B, Eq. (52), we have to draw four Hugenholtz diagrams, w h o s e  
Brandow form will be given later (cf. Fig. 12a-d), when all the coupling terms 
are systematically evaluated. One of these diagrams (cf. Fig. 12a) gives the 
contribution: 

2-½~is[S]-lN~~N~r~5°'r(S){6~~r }s¢«a(i){°)t~,(2)tff (S) }, (53') 

which for k = aT, l = 7=  l' and S = 0 (the case considered in this paper) equals 
(cf. Eq. (109)) 

2-½6,~N~~6~6~S¢«a (')t~ (2)t ~~(0). (53) 

Note that the corresponding spin graph (see the Appendix, Table 3) gives the 
factor 2-½6~s[S]-½, which, due to the presence of  the normalized bra and ket 
states in Eq. (52), is multiplied by N~~ and N~ r .  The weight of  the diagram 
equals to one. Further, 5e~a(i) is a two-index symmetrizer (i = 0) or antisym- 
metrizer (i = 1), 

5e~~(i) = 5~~a(i ) = 1 + ( -- 1);(~2), (54) 

with (x2) designating a transposition of  indices x and 2, and 

6 e~z = ~ a  = 6e~a(0) = ~~(0) = 1 + (x2). (55) 

To get the contribution corresponding to ~(o ca • B12 [Go,,(t)], we have to multiply the 
expression (53) by g~k. Now, if we use Eq. (48), with ~~2 ° defined by Eq. (43), 
we must again consider four Hugenholtz diagrams. Brandow version of the 
diagram corresponding to the contribution (53) is shown in Fig. 4. As usual [11], 
the vertex representing the bra excitation operator G~~(i) is not explicitly shown. 
Instead, external lines carry the fixed orbital labels characterizing ca • Go«(1), and 
different labelings of external lines are represented by the symmetrizer 6e«a. As 
pointed out in [16, 17], this notation is very convenient, since it provides a 
one-to-one correspondence between the symmetrizers 6e«a (~«)  in orbital dia- 
grams and the (anti)symmetrizers 6e«a(i) (~«(i)) in algebraic expressions. As 
usual [16, 17], the summation over the intermediate spin quantum numbers Si 
and S is already carried out in the diagram of Fig. 4. It can be easily verified that 
the spin diagram restricts the summation over & and S to only one term labeled 
by S~ = S = i. The algebraic expression corresponding to the diagram of Fig. 4 is 
thus: 

2-~[i1-½N~~7~?"(i) oq,«a(i)o)t~, (z)tffk,(i). (56) 
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S ~ ~C 
; (2,)  
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Fig. 4. Brandow-type orbital diagram yielding the 
eontribution (53), when Eq. (48) with ~r,~l) given by Eq. 
(43) is used (cf. Fig. 12a). The rightmost rectangular 
vertex serves as a graphical representation of ~~1) (see 
Sect. 2 for details) 

In this case, the spin diagram gives the factor 2-½[i]-½, the bra state gives the 
normalization factor N~~, and the weight is 1. From the definition of  the scalar 
factor 7~~Y', Eq. (44), it follows that 

7ok~k"(i) k" k" ,  , kg = 26 k c5 k ö~6«aiogu , (57) 

SO that we can rewrite Eq. (56) as 
_ 1  . & ¢tfl k" k" l l kk «fl • (1)~¢ 2 26i0[/] 2Ne«BkÔkÔotSagu ~a (l) tr(2)tffk.(i) 

= 2--½6ioN~~666t~gkk6 a«p O)t~ (2)tk#r(0), (58) 

where the summation over l' extends over one value, namely l ' =  l. This is 
precisely the previous result, Eq. (53). We thus see that both the calculation of  
the matrix element B, Eq. (52), and the application of Eq. (48) with T(21) defined 
by E 9. (43), lead to the same result. The latter method requires the presence of 
the T~ ° vertex in the orbital diagram that can be avoided when the former 
approach is used. Moreover, calculation of  slightly more general matrix elements 
between ((1)G~OI ] o r  ((l)G~~(i)t~l [ a n d  ](1)GtkE(S)O 1 ) may be useful, when more 
than two active orbitals are involved. Although this increased generality can also 
be achieved by redefining 7~~~"(S), in the following we employ the method, which 
is based on the evaluation of the matrix elements be tween  ((1)Git~l] and 
I(1)G~E(S)Ol ). 

3.1. Explicit expressions for  linear terms 

Consider, first, the linear terms R(nl)(G/t ) (n = 1, 2). It can be verified (cf. the 
discussion before Eq. (35)) that 

(O1 [(I~G~ T~ 2~ mG~r(s)  [ O, ) = 0, (59) 

so that, in particular, 

R~°(G~) = 0. (60) 

For the two-body component, Rt°[G~~(i)], we can draw two distinct Hugenholtz 
diagrams that correspond to a single nonoriented Hugenholtz skeleton shown in 
Fig. 5. Their Brandow representatives, associated with the general matrix ele- 
ment (0~ [O»G~g(i)T~ 2» (1)G/k/Æ(S)[ ~ 1 ), are given in Fig. 5a,b. Notice that Brandow 

(1) «# (1) t/- vertices representing Ge«(i ) and GkÆ(S), Fig. 2g and 2i, respectively, are not 
explicitly shown. Instead, as in the diagram of Fig. 4, all external lines are 
labeled by the fixed orbital indices characterizing the operators O~G~~(i) and 
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Fig. 5. Nonoriented Hugenholtz 
skeleton corresponding to 
R~O[G~~(i)] 

k 

Fig. 5a,b. Brandow diagrams 
i corresponding to 
k (~i l°)G~g(i)T~ 2) °)G~~(S)I~I ), 

representing the successive terms 
on the right-hand side of Eq. 
(61) 

°)G~r(S), and distinct labeling schemes carried by the external lines are repre- 
sented by the symmetrizers 6e«P, ~ « ,  6etr and ~Æ (see [17]). In this way, the 
resulting diagrams (Fig. 5a,b) are much more transparent than in the case when 
all the vertices are explicitly shown. However, in determining the sign factor 
( - - 1 )  l+h, where l designates the number of closed loops and h the number of 
internal h01e lines (cf. [ 14]), we have to join all the external lines of our diagrams 
(cf. Fig. 5a,b) with vertices representing the excitation operators, °)G~~( i )  on the 
left and O)G~r(S)  on the right [cf. Fig. 2g and 2i, respectively], and regard them 
as internal lines. 

To obtain the final algebraic expression that is associated with a given 
diagram, we evaluate and combine orbital and spin factors corresponding to 
each diagram while ignoring the symmetrizers, and replace the symmetrizers 

f f  Œl3 l l [  6 a«a, 6~Q«, 6 p and 6~k~ with operators 5# (i), 6~~,(i), 6 a (S) and 6~kÆ(S), respec- 
tively [ 16, 17]. Spin diagrams and the pertinent orbital and spin factors are listed 
in the Appendix. 

Evaluation of diagrams 5a and 5b thus gives: 

(#1 (1) ca(DT(3)(1) ~r,4 G e .... G,ù~,S: 1~1 ) 

= -- 2-½6,sN~~N~~~tr(S)6~k~(S)[66f ir ,6e«a(S)(2) t~f i~  - 6~6~~,(S)(z)tQ6,]., r 

(61) 

To obtain the expression for (1) ca • R 1 [Ge«(t)] , we assume that k = k, I = l, S = 0, and 
multiply the result by g§k. Notice that the presence of  N~~ introduces the factor 
1 a l l (S )  can be replaced by 2, and ~~(S)  in Eq. (61) gives another factor of 2. 
As a result, we get 

R~I)[G~~(i)] = _2½~,~g~kN~~[fió&~S¢«~(2)t~6~ .~«xäc.a (2),x,1 (62) - -  t , , k V k J e a  ~,aoaJ~ 

or, in fact, 

R~I)[G~~(i)] = _ ~  ,kgr.~t.~l 6o«l~(z)t~6~ .~«XP~ (2)¢.lxl] (62') wiO,5ll LVoVa~" - -  V k V k ~ . B c  r ~ O v a J .  

To derive Eq. (62'), we observe that in order to get a nonzero result, we must 
have either Q = a = l, « # fl (~ or fl = k) or c~ = B = k, O # a (0 or a = I), so that 

1 / . 

always N~~ = 2-2 [cf. Eq. (2)],  slnce « and (2)t~ cannot simultaneously be e in 
valence labels. 
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Fig. 6. Nonoriented Hugenholtz skeleton eorresponding to 
R~')(c;) 

ct ~ ~ ~ " ' ~  ~ ~  k p ~ ~ ~ " ' ~  ~~ l 

S 'r " Sc« 

p « «  I ot ~~ k 

a b 

Fig. 6a,b. Brandow diagrams 
corresponding to 
(~ßl I(I)G~ T~ 2) ( l )GIE(s ) [~ l  >- They 
represent successive terms on the 
right-hand side of Eq. (63) 

We next consider the linear term R~2a)(G~). For the one-body component 
R~°(G~) we get two Hugenholtz diagrams that correspond to a single non- 
oriented Hugenholtz skeleton of Fig. 6. The corresponding Brandow diagrams 
for the matrix e l e m e n t  (O11(I)G~T(22)(1)GlkE(S)[~l) are shown in Fig. 6a,b. 
Evaluating these diagrams and corresponding spin graphs (cf. Appendix), we get 

(~ ,  [(1)G; T(22) (1)G~r(S)[ ~1 ) = -2-½N~r[6e'r(S)(:)t~r(s)6~ - ~~(S)(:~t~r(S)6~], 

(63) 

so that the expression for 

R~O( G~) = g~k ( ~, ](OG~ T(22)Ggk( O) [ dp1 ) (64) 

is 

R~, ) (  G ; )  = _ 2 -½g~k[ (2 ) t~~  ( O)66 _ (2),U, okt,,,~, n~X« , (65) 

The only nonvanishing cases are R(1)(G7 ) and no ) [~k~  a~- 2 ~ , U r l .  

For the two-body part (1) afl • R2 [G~«(0], we can also draw a single nonoriented 
Hugenholtz skeleton (Fig. 7). The corresponding Brandow diagrams that are 
associated with the matrix element N~'l/tl) [1(1)~«/~//~T(2)'-'0«~.','--2 ( 1 ) G ~ E ( S ) 1 ~ 1 )  are given in 

Fig. 7. Nonoriented Hugenholtz skeleton corresponding to 

« ~ ~ ~ ~ k  p ~ ~ ~ ~ 1  p ~ ~ ~ ~ 1  

S 'r~ ~ Sù«~ s - -~  .~°~,~ o s ~ - ù  K.M --kk-- -po KTM-- 

a b c 

Fig. 7a-e. Brandow diagrams corresponding to \/4111O)G«~ri~T(2)o«~ J 2 ° )G~r(S)  [öl ). They are associated 
with successive terms on the right-hand side of Eq. (66) 
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Fig. 7a-c .  Notice that spin coupling coefficients corresponding to hh and pp cases 
[diagrams 7a and 7b] restrict the summation over Si to only one term, Si = S, 
while for the ph case [diagram 7c], the summation over the intermediate spin 
quantum number (Si = 0 and 1) remains. Evaluation of diagrams 7 a - c  yields: 

(dr'~ I(1)l'~.«/~gCh"P(2) (1)G/~(S) [41 ) "~1 [ v Otr l.~ l J- 2 

= ~nrŒ~, o~'~r~" kg föis[S]-½((2)t~~(S)Sa'r(s)6~6r + (a)t~~(S)5~kæ(S)õ~6~) 
k. 

5¢'r(S)~~(S)Se«P(i)~ù(i)6~6~ È [i, Si, S]½C(i, S» S)(2)t~~(S~)~, (66) + 
Si=O J 

where the multiple symbol [X1, ):2 . . . . .  X~] designates the product I-I~= l[Xk] 
and C is a well-known (cf. [11]) 9-j coetticient 

= 1 : : 2  C ( X 1 ,  X 2 ,  X3) . (67) 
1 x~j 2 

Assuming k = k:, l = ~ S = 0, multiplying the resulting expression by g ü ,  and 
using the relation 

C ( X  1 X 2 ,  O) 1 , = ~ U ( X l ,  X2) , (68) 

where U is the 6-j coefficient defined by 

u ( x ,  x~) = g ( x »  x o  = ~ x ,  (69) 

we find that 

R(21)[G~~(i)] _ «kg ~r«# { (2) «~ t t - s ù  ~,«~ ~;o[ t~~(0)~~~« + (~)t~«(0)~~~g] 
M 

+ S#«~(i)6~~«(i)6~~~ s,= Èo [i, S,]½U(i, S,)(2)t~tk(S,)}. ( 7 0 )  

The first term in Eq. (70) contributes only when « = a, /~ = b, 0 = « = l, the 
second one contributes when « =/~ = k, Q = r, a = s, while the third term 
becomes nonzero only when the operator °)G~~(i) is of the type Gff(i). Other- 
wise, R(21)[G~~(i)] vanishes. 

3.2. Explicit expressions for bilinear terms 

Here we have to consider four distinct contributions, namely, B(~)~(G*i ) (n = 1, 2), 
B~~2)(G*~), and/~~~)(,G~*)" Although the latter two contributions can be replaced 

(1) t by the single term B12 (Gi),  Eq. (41), in this section we examine them separately, 
since we wish to compare our results with those of [3]. Direct evaluation of  the 
contribution n( )t~* u12 ~,~i ) is discussed in the next section. 

Since no vacuum diagrams can be drawn for B~~)(G~) (all the lines on the 
leffmost T~ z) vertex would extend to the right), we have that 

l/a32N~ll] (l)t'~~Œ ~-~ 0 ~1T(2)2 (l)Gffk-(S)[ ~1 ) = 0, (71) 

and 

B~])(a~) = 0. (72) 
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Fig. 8. Nonoriented Hugenholtz skeleton corresponding to 
Bt;>[G~~(i)] 

s '~ ,«  « ~ ~ ~~~ s~s~o 
/ a ~_~_ k a ~~ / [ 

a b e 

Fig. 8a-e. Brandow diagrams corresponding to ½(q~, IO)G~~(i)Tt 27 O)GB(S)1~1 )" They are associ- 
ated with successive terms on the right-hand side of Eq. (73) 

However ,  for  the two-body  componen t  o) ca • Bl l  [Go«(t)] we can draw a nonor iented  
Hugenhol tz  skeleton shown in Fig. 8. The  corresponding Brandow diagrams,  
representing the matr ix  element 1(~~ [(1)G~~(i)T~2)~O)G~r(s)]~~ ) ,  are listed in 
Fig. 8 a - c ,  and give: 

1 ~ß Il" Il], 1/di2 \'~Vl [[(l)/~~afl/;]T(2)2v0a\']al (I)~~CtCa Iq~~,_,kkt~,) I ) = ~6isNa«Nk~5~ (S)5~k~(S) 

(2)+l (2)fl- £ a .~ fl_ 

(73) 

Thus,  the result for  

BO)rc«#{;a 1 1 k k  (1) c a .  (2) 2 ll 111.U0a~,'?.l =Eg, ,  (41[ Ge«(t)T1 G k k ( 0 ) ] ~ , )  (74) 

takes the following form: 

(1) ca • A ,~kkAT°~ß[(2)~'~(2)t f lx l , ,~  l (2 ) t l  (2) t l  x ~ x f l  Bll  [G««(t)] = _ 5o«aoc~~« (2),« (2)tt xaxt  1 viO,Sll ~v Qtrl. *k  ~kt"Q"~er æ ~Q e ¢ W k W k  Lk  ~QWkWaJ"  

(75) 

As in the case o f  R~I)[G~~(i)], the first te rm in Eq. (75) contr ibutes  when « = a, 
fl = b, Q = a = l, the second one becomes nonzero  when « = fl = k, Q = r, a = s, 

(1) ca and the third one contr ibutes only when Ga«(i ) is o f  the type Gä(i). I t  is thus 
not  surprising that  R~I)[G~~(i)] and B~~)[G~~(i)] can be combined  together  
assuming that  the same expression is used for  gkk entering Eqs. (70) and (75). 
This is certainly the case when all the nonl inear  terms are taken  into account  in 
calculating the effecfive Hami l ton ian .  Using the explicit values o f  the 6-j co- 
efficient U(X1, X2), Eq. (69), (see Table  1), we can write: 

R(21)[G~~(i)] + B~~)[G~~(i)] 

ctkk ÄT~fl 1 1 (2) ctß = szt " e «  {6,v[6e6« Dkk(0) + Ô~Õ~(2)D~«(0) c,a«#c.o.. «e«"«~'k~t ~a(2)~Ar«t1~,.kej 
+ ( 1  ca-  • z a(2) «z -- 6io)5 e ( t )~«( , )6«ôk  Pk0}, (76) 
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Table 1. Explicit values of 6-j co- 
efficient U(X1, X2), Eq. (69) 

X1 -¥2 U(X'I,  X~2) 

0 0 -½ 
0 1 1 

6 

where 

and 

(P)D~~(i) = (P)t~~(i) + l[i]½3~«a(i)(P)t~ (P)t~, 

(P)M~~ = (P)A~~ 4- (P)t « (P)t# 

( p ) p ~ f l  1 1_ =i[32(P)t~~(0) (P)t~~(1)], 

(77) 

(78) 

(79) 

(P)A~~ = !r(p),«atm2, ,Qù,~, + 3½ (P)t~~(1)]. (80) 

Notice that the expressions (P)D~~(i), Eq. (77), and (p)A._ at,ca Eq. (80), appear in the 
SR orthogonally spin-adapted CCSD equations [16]. The quantity (P)M~~ can 
also be written as 

(P)M~~ = ½[(P)E~~(0) - 3½ (P)E~~(1)], (81) 

where 

(P)E~~(i) = (P)t~~(i) + -~( - 1)«[i] ½ (82) 

which is another expression that appears in the direct term [16]. Clearly, this is 
not a coincidence. Indeed, quantities (P)A ca._ Q«, (P)D~~(i), (P)E~~(i), etc. enter the 
direct term when we group together the connected and disconnected cluster 
components of the same excitation order, which is the case in Eq. (76), where 
we grouped T(22) with 1T~2)2. In diagrammatic language, we can say that the 

1 (2) 2 " ~~ (2) terrn ~T1 results from a splitting of the T E vertex into the two T~ 2) vertices 
(cf. Fig. 8a-c  with Fig. 7a-c  and the discussion in [16]). No such splitting is 
possible when we consider the one-body component R~21)(G~), since one of the 
T~ 2) vertices in the resulting diagram would carry only the valence labels (see Fig. 
6a,b). Consequently, B~])(G~) = 0 (cf. Eq. (72)). 

Consider, next, the nonlinear term B~zl)(G~). For the one-body component 
B ( I ) [ r T « ~  22 t'-'o» no vacuum diagrams can be formed, so that 

1 ./¢]5 (1)f2ct T(2)  2 (1)(2ff  [ ~ ~  ] 
2 \ - - 1  tJ  0 ùt 2 ~ . J k f l . o }  I ~ l  ) = O, (83) 

and 

BO)t~«~ = 0. (84) 22 \ v 0 )  

For the two-body part B (1)r~«a"~l 22 I.VQak'].l, we can construct two nonoriented Hugen- 
holtz skeletons (Fig. 9) of four Brandow diagrams (Fig. 9a-d).  As in the 
preceding cases, the Brandow diagrams (Fig. 9a-d)  correspond to a general 
matrix element ½(~1 [(1)G~g(i)T~ 2~2 ")G~r~(S) I äh >. Combining the orbital and spin 
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(a,b) (c,d) 

s,~o~ o « s ù A  ° 

« / ~ » k 

b 
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Fig. 9. Nonoriented 
Hugenholtz skeletons 
corresponding to 
B~12)[G;~(i)]. (x, y) 
indicates which Brandow 
diagrams of Fig. 9a-d 
are associated with a 
given skeleton 

-I+1-- I~1-- 
S" S««S «~ 

c d 

Fig. 9a-d. Brandow diagrams 
corresponding to 
1/di [(1)(~~«P(¢'='T'(2) 2 (1)(7.//- .e~'t [Bl ) '  ~N~l [ ~gcr V.Pa2 ~kl~l, °) 
They are associated with successive 
terms on the right-hand side of Eq. 
(85) 

factors (of. Appendix) gives: 

\ -  ?trab ?trll- ~ 1 tF, «/~ • (2) «l • (2) ,8/- l ( ~ l  I(1)G~~(i)T(2 2)2 ( I )G /k~ (S ) I  ~ l / - ~ ,  oa ~, kk- - - 2 [ ~  ( S )  ~~O (1) lot(1) tkÆ(S ) 
L 

+ S~k¢(S)~õ«(i) (2)t~~(i) (2)t~;(S)] + 6is[S] -1 (z)t=a¢~a (2),tr I¢a 

+ ~ [i, $I ,  S 2, S]~R(i, S~, S~, S)Setr(S)ŒÆ(S)S¢«~(i)(2),«,ok, ~',tc~', (z).pr,cz,~æto~) , 
sil S 2 

(8») 
where the coefficient R(Xa, X2, X3, X4) is a 12-j symbol of  the second kind [12] 
defined by (of. [16, 17]) 

½ 2 2 
R(X~, X» &, X4) = X~ X~ X~ X4. (86) 

! 1 
2 2 

Assuming k - - k ,  l - - l ,  S---0, multiplying the resulting expression by g~k, and 
using the relation [12] 

R(X1, X2, X3, O) : ½ V(X1, X2, X 3 )  2, (87) 
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where V is the 6-j coefficient defined by 

V(X1,  X2,  X3)  ~- { ~  1 12 

we obtain 

B~ 1) [G~~(i)] --~gs"ggt~ ~xr«a, ~« { _  5~ ca(i)(2)tot (i)(2)t ~~ (0) 

x: x~}½, (88) 

- -  5'~e« ( i )  (2)t~~ß(i)(2)t~g(0)  

2 ~ )2 -+" ai0(2)/~#k(0)(2)t/óa(0 ) -t'- 2 ~ù [i, S~, S ,  ]~V(i, S~, S 2 
s?s? 

(2)~~tl t '~l  X (2)~ßl [~2 X'~ x 5e«t~(i) ,o~toe~ , « k ~ O , ~ f .  (89) 

The 6-j coettäcient V, Eq. (88), has the same symmetry properties as the 9-j 
symbol C, Eq. (67), namely 

V ( X 1 ,  X 2 ,  X3) = V ( X i l  , X i 2  , X i 3 ) ,  (90)  

for any permutation of indices 1, 2, 3. Equation (89) implies that B ° ) t ~ « a q  ~~ ~ 0 22 LV oa I, JJ 
only when Œ and fl are core orbitals and Q and tr are virtual orbitals. This is also 
clear from Fig. 9a-d,  since T (2) vertices cannot have valence lines to the left (cf. 
Fig. 3). 

Let us now turn to the most complicated bilinear term, namely, B(1)tGtl2~ ~» a For 
the one-body component R(1)t~«~ • -'12 ~'-'oJ we can draw two Hugenholtz diagrams that 
follow from a single nonoriented Hugenholtz skeleton of Fig. 10. The corre- 
sponding Brandow diagrams, associated with the matrix element 
( ~ 1  (1)[7Œ ,T'(2)g,'r,(2) tJOa 2 \Jt 1 --T~I))(I)G~~(S)[q)~), are shown in Fig. 10a,b. Notice that 
there is no contribution from the vacuum diagrams containing the T~ ~) vertex: In 
these diagrams, T(~ 2) vertex would have to carry only valence labels. Thus, after 
evaluating the orbital and spin factors corresponding to diagrams 10a and 10b, 
we can write: 

( t~ l  (1)['7Œ 'T'(2)['T'(2) t"Oa 2 I, a l - T~I))(1)Glkr,((S)[(I)I) = ",/q~l II(1)G«T(2)T(2)°)Glr 2 l k~t ° )  I 1) 

=--~NkE[6el  tr zr,(S) (2),«rtt-~(2),t, kCtOj % + ~¢(S)(2)tä~(S)(2)t~].  (91) 

Consequently, the result for 

B(1) t c  «~ - -  « k g / d i  I(1)r7« T(2)rT(2) _ T~1))G~k(0) ]~ßl ) 12 k~"~ O /  - -  ,511 N ~ l  [ x'z 0 J t 2  k ~ t l  

= g ö  ( ~ 1  (1)1"7~« 'T'(2)"P(2)/711 [aß ta 0"t2 a l  t J * * l v )  I(B1 ) (92)  

is 

B(1)/•«a 1,vkk[(2)~,«l I'(~~ (2)tl 12 k~QY = - -2 ,5 l l  I_ ekkkV]  "Q + (2)t~k(0) (2)t~], (93) 

which means that R(1)r~«~ ~ 0 only when « is core and 0 is a virtual orbital ~'12 k~JQJ 
label. This is again immediately obvious from Fig. 10a,b, since T (2) vertices 
cannot have valence lines extending to the left (cf. Fig. 3). 

For the two-body component B (l»r~«ac;~l 12t,.~0a~.~ij w e  c a n  d r a w  as  many as four 
distinct nonoriented Hugenholtz skeletons: two for the term involving T(2)T (2) 2 1 
product, and another two for the term involving T(22)T~ 1) product. They are 



« ~ 2 ~ . .k  

S 'i ~ Sek 
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Fig. 10. Nonoriented Hugenholtz skeleton corresponding to 

p ~ , ¢ " ~  ~_1 
Fig. 10a,b. Brandow diagrams 
corresponding to 
(~] I(I)G~ T~2)(Tt 2) - T~l)) (1)Gtr(S) I ~1 ) 
= <~, Io)a;T~=)Tt =) «' )«' [~s) l~,  >. They 
represent two terms on the right-hand side 
of Eq. (91) 

a b 

shown in Fig. 11. The corresponding Brandow diagrams, associated with the 
matrix element (¢I[(»G~g(i)T~2»(T~ 2 ~ -  T~ 1)) «)G~r(S)I~I >, are given in Fig. 
l l a -h .  Minus signs associated with the two triples of diagrams l id  and l lh  
indicate that the corresponding algebraic expressions have to be subtracted. 
Notice the presence of diagrams I 1 ld» d3, h2 and h3, in which the vertices T~ 2~ 
and T~ l) are connected. Obviously, contractions between T~2 2~ and T~ ~) may 
only involve valence indices that distinguish ~~ and ~2. Formally, valence 
indices k' and l' are summation labels (k' occupied in [~1> and unoccupied 
in [q)2), l' occupied in 1~2) and unoccupied in [~~>, which, in the final 
expressions, assume a single value, namely k' = k and l' = I. Evaluation of the 
orbital and spin factors associated with diagrams 1 l a - h  leads to the following 

(a,b,e,f) 

(al,~) 

(c,g) 

(a~,d~~,~ 

Fig. 11. Nonoriented Hugenholtz 
skeletons corresponding to 
B~~[G~~(i)]. (x, y . . . .  ) indicates 
which Brandow diagrams of Fig. 
1 l a - h  are associated with a 
given skeleton. We must 
remember that expressions 
corresponding to diagrams 
obtained from skeletons (dl, hl) 
and (d2, d3, h»  h3) will have to 
be taken with the minus sign 

For simplicity, the /th diagram in Fig. N x  is designated as diagram Nxi.  Thus, for example, the 
rightmost diagram in Fig. 1 ld is referred to as diagram 1 ld 3. 
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s'~sùo. 

-s'~ ~, sùo 

B«s °~, 

-s«~s~,. s ~ 

. ~ .~k  

« i 

S ~ 

__ t tJ = 22S~ I 2 ~ ~  

. P 

« J 

P 

a ~ k 

a i 

p ~ ~  I 

ù i  

B == k 

B == k 

apo, ~ ~ G  ~~' 

f g 

a < 2 / ~ 2 I 

S a « p 

Fig. l l a - h .  Brandow diagrams corresponding to (~1 I°)G~~ (i) T~2)(T~ 2) - T~ 1)) O)G~r¢(S)  1~1 ). They 
are associated with successive terms on the right-hand side of Eq. (94) 

-S ;~ ~So, , ( 1 -~ ) (1 -~  ~) -S«~S~S~ ( 1 - ~ ) ( 1 - ~ )  

(d) (h) 

Fig. II 'd,h.  Brandow diagrams which can be used instead of Figs. l l d  and l l h  when k = k - = k ' ,  
/ = f =  1' and S = 0. They correspond to expressions (99) (diagram d) and (101) (diagram h), or to 
the fourth and eighth terms in Eq. (103) 
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expression: 

(4)11(1)G~g(i)T~2)(T~ 2) - Tt O) O)G~r~( S) [(B1 ) 

= 2-½N:,N~r~ (6eff(S) {Sf~«(i) [6is[S]-½ (2)ttq(2)t:~S) 

( , -- 6a«#(i) 6feE(S)(2)t~ 2 ( -- 1) '+ s[ i, S» S]½C(i, Si, S)(2)tqB~S,) 
Si= 0 

+5[i1 ~ ~ ( S )  6 ~ + ~ « ~ ( i )  ~o«(i) 5[d~(°t~ó(2)t~~(S) 

( - -  1) ;+ s[i, S» S]½C(i, S,, S)(2)tg!~(S~) ~ 5 r + ~E( s)6 ~ (,)té 
Si= 0 / 

--6is[S]--l (l)'« (2)'»r L¢';il Ar l t -- 5akt(S) {Sa«#(i) [ Ôis[S]-½(2)t~(2)t:ä(S) 

( 1 
- ~«( i )  ~'r(S)(2)tó 2 ( -  1)~+s[ i, S~, S]½C(i, S» S)(2)tffk(S,) 

Si= 0 

1 • 1 1 • 1_ (1) « (2) /7 

1 (2) l 'l- ) + 6etr(S)66(l)tT. (-1)~+s[i,S»S]~C(i, Si, S) t,k(S,) Ô~ 
Si= 0 

-t~is[S]-½(l)tk'(2)tallk.(S)Ô~Oßl}). (94) 

Again, to obtain the final expression for B~12)[G~~(i)], we have to set in the above 
expression k =/~ = k',  l = i-= l '  and S = 0, and multiply the result by g ü .  This 
leads to drastic simplification of the terms associated with the diagrams of  Fig. 
1 l d and h. Since 

(2)tkP~(1) _-- (2),U~«kttl) = 0, (95) 

the summations over S; in the expressions corresponding to diagrams l ld2 and 
h 2 reduce to a single term with S~ = 0. If  we next realize that 

C(i, 0, 0) 1 1);+ 1 = ~(  - , ( 9 6 )  

• l 1 l l 25ioßoÔ«, ~«(t)6o6,, = (97) 

and 

(o,«x« x« - o),ext x« = O, (98) ~~ot"QVk - -  ~l  V~oVk 

we can rewrite the contribution associated with the three diagrams of  Fig. 1 ld 
(fourth, fifth and sixth terms in Eq. (94)) as follows: 

2-~[i]½N~~Sf«~(i) (2)t~~(O){5~~«(i)((1)t~ - (1)tk6~)6~ -- 26ioO)t~66Ô~ } 
= 2-3[i]½N~~Sf«B(i)6~~~(i)(1)t~ (2)t~~(0) ( 1 - 6~ - 56)6~ 
= 2-~[i]½N~~Sa«B(i)SaQ«(i)(1)t~(2)t~~(O)(1 -- 5~)(1 -- 60)6 « . ' '  (99) 

Similarly, using Eqs. (96) and (98), and the relation 
«/~. « # 6 ~ (t)fik6k = 26io6~6~, (100) 
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we can replace the contribution corresponding to three diagrams of Fig. l lh 
(tenth, eleventh and twelfth terms in Eq. (94)) by the expression 

3 1 «fl «fl -2-~[i]~Na«SP (i)~«(i)O)t~(2)t~k(O)(1 -- ô~)(1 -- 66)6~k. (101) 

We thus see that when k =/~ = k', l = / - =  l' and S = 0, the second and third 
diagrams in Fig. l l d  [ l lh]  eliminate from diagram l l d  1 [ l lh l ]  contributions 
with Œ = k and/or 0 = l. This becomes clear when we realize that diagrams 1 ld2, 
da, h2 and h3, which are formally connected, can also be interpreted as 
disconnected terms when k'  and l' assume only a single value: Diagram l ld2 
then cancels the « = k contribution to diagram 1 ldl ,  while diagram 1 ld 3 cancels 
the contribution with 0 --I. Similar cancellation takes place when we consider 
diagrams of Fig. 1 lh. This means that for k = k- = k',  l = / - =  l' and S = 0, the 
three diagrams of Fig. 1 ld and the three diagrams of Fig. 1 lh may be replaced 
by single diagrams shown in Figs. 1 l 'd  and 1 l 'h, respectively. We thus see that 
the contribution from the connected diagrams lld2, d3, h2 and h3 can be 
incorporated into disconnected diagrams 1 ldl and 1 lhl by simply adding to the 
latter ortes the numerical factor ( 1 - 6 ~ ) ( 1 - 6 6 )  (cf. Fig. l l 'd,h).  This is 
precisely the factor which appears in expressions (99) and (101). 

From Eqs. (94), (99) and (101), and relation (68), it follows that 

Bt~)[G~~(i)] = gkk (~ ,  [(,)G~~(i)T(~)(T~2) __ Ttl))G~k(O)[Ol ) (102) 

can be written as 

( , ) « f l ' " ) - - ~ ~ k k ~ g « f l (  { B,2  [Go«( t ) ]  = - -s, ,  I ,  o« ~ « ( i )  a,~(2)te (2)t~k~(0) 

[1 
- ~ « ~ ( i )  (2)t~ 2 (-1)~[ i, sd lu(  i, S~)(2~tg(si) 

S i = 0 

+ ~t/:~~~,,~- ~',,» ~~,«~~ O~~l-~~~~ l -  ~:~ ]} ~,~ 
. . J j  

-- :ca(i) {6,0(2)t~, (2) t~«(O) 

- ~«(i)  ( - 1)~[i, Si]½U(i, S~)(2)t~~(S~) 
o 

-F l[i]½((2)t~ -- (1)t~) (2)t'k(O)(1-- 6~,)(1-- 6 ' ) l t  ~~ ) . (103) 

Here, we have also made use of the fact that 

(2)t~ = (2)t~( I - -  6~) (  I - -  Öé). (104)  

It is clear from Eq. (103) that (1) ~ocr - B12 [G«a(t)] is nonzero only if (1)G~~(i) is equal (up 
to a permutation of upper or lower indices) to Gffb(i) or G~~(i). In the first case, 
B (1)rt'~'~«p[;~] is given by the first four terms in Eq. (103) (the terms appearing 12 LV Q a \ ~ ] J  

between the first pair of curly brackets), while in the second oase only the last 
four terms (appearing between the second pair of curly brackets) give nonvanish- 
ing contribution. As explained in [3], disconnected diagrams in Fig. 1 l a - h  and 
1 l 'd,h do not generate any disconnected perturbation theory diagrams, since 
they lead to appearance of the differences (2)t~ - o)t~ in the final expression for 

(1)  «fl  • B12 [Ge«(0]. These differences are clearly present in our Eq. (103). 
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Let us, finally, consider the last of the bilinear coupling terms a.nl2~(1)(~t~,~,i ). We 
can easily verify that no permissible vacuum diagrams can be drawn for the 
one-body component ~(l)«r:_«~ (the only vacuum diagrams that could be con- ~ 1 2  ~,'J ~2 

structed would contain the vertex T~2 2) with all lines extending to the right), so 
that 

and 

<<~Jl I¢I)G+[T~ =>, T~ 1)1 °)GtkÉ(s)1~1 > = o (105) 

J~ (1)(/7"«'1 = 0 .  (106) 12 k v 0 l  

For the two-body part /~(l)r~«aml however, we can draw the nonoriented 12.U'..s Oo\t.tJ~ 

Hugenholtz skeleton shown in Fig. 12. Notice that this is exactly the skeleton 
(d2, d3, h2, h3) of Fig. 11. This skeleton is, however, now taken with the plus 
sign. We can thus expect some canceUations (see the next section for details). 
Skeleton of Fig. 12 involves a contraction between T~2 2) and Tt 1). Clearly, such 
contraction involves only valence orbitals that distinguish references [qh ) and 
14'2>. In principle, we could also draw skeletons of the type (dt, hl) shown in 
Fig. 1 I. The corresponding diagrams, however, mutually cancel. The fact that 
only connected diagrams contribute to ~(l)r~«Pri~l is associated with the pres- 12 L~Joak ] J  

ence of the commutator in Eq. (39). 

Fig. 12. Nonoriented Hugenholtz skeleton corresponding 
~o) «~ • to B12 [Ge«(l)] 

S'~~ o S ù A o  o 

p ~~  I ct ~~  k 

a b 

S S«~S ~ ~ -~ « 

o « [ o [ 

¢ tt 

Fig. 12a-d.  Brandow diagrams 
corresponding to 
<~1 (t),-,«t~ù~r,r(2) T 0) (1) ,fr,_( tro«t.'Jt--2 , I ] G,,~,S, 
I q~t ). They represent successive 
terms on the right-hand side of 
Eq. (107) 
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Brandow diagrams corresponding to -(o «p • B12 [Go«(l)] or to the matrix element 
(1) «/~ • (2) (~ ,  I GQ«(,)[Tz , Ttl)] (1)G~%(S) I~ , )  

are given in Fig. 12a-d. Clearly, they are identical (except for the minus sign) 
with the connected diagrams of Fig. 1 ld and h. The algebraic expression for 
(~l]°)G~a,(i)[T~ 2), T~I)]O)G~Æ(S)]~1) c a n  be thus written as follows: 

(1) a B • (2) = <(~11 G«(,)[r=, T ~ ' ]  (1)GffE(S) [(Bl > 2-{N~~N~% 

(5,s[S]-½{SPff(S)[a~6r~]S¢«~(i)[(l)t~. (z)tg ( S)] X 

- ~E(S)[3~ö~]~«(i)[(1)t  k" (2)t ~k,(S)] } 
1 

- F. [i, S» s]kc( i ,  S» S )Se t r ( s )ge (S )Se '~ ( i )~« ( i )  
Sc= 0 

(1) t~ " (2) rl  a F )  
\ 

{(1)té(:)G(s,) -- tok(S~)}6~6 « . (107) × 

This means that the final expression for 

~(1) Œfl " -- « k k / ~  I(O~«/~t;~rT(2) TtO]G~k(0)]ü5 l )  (108) B12 [Gor(t)] -- ~su k " ~ l [  "~Oo'\')'l.~t 2 , 

is 
/ 

~(1) rG: ,~[ i~ l  ")--l-~kk l~]'Œfl [ 1 l Œfl .~«,~B Go (1)~-k - "  2gtt "'o« 3,v[3oö«Sa (1)t~O)tg~(0) -- ~'k~'k~'o~ "o(2)t~k(0)] 12 L 0tr \  ]J 

+ ½( _ 1)i[i]15¢=p(i)~õq~(i)[(1)tk(Z)t~~(O) (1)~.Œ(2)fll tn'~'l.~fl.gl ) - -  i. l ~okI .V)JVkVa • 

(lO9) 

To obtain the above result, we took advantage of the fact that k" = k and l' = l 
and made use of Eqs. (95) and (96). Clearly, the first term in Eq. (109) 
contributes only when a, fl are core orbitals and 0 = tr = l. The second term in 
Eq. (109) is nonzero only when Œ = fl = k and 0, tr are virtual orbitals. Finally, 
the third and fourth terms in Eq. (109) give nonvanishing contributions only 
when the excitation operator (OGg*a(i) is of the type G~( i ) .  

4. Discussion and eomparison with an algebraic approach 

Before comparing our results with those obtained using algebraic technique [2, 3], 
let us discuss the possibility to completely eliminate the connected diagrams of 
Fig. 12a-d. As mentioned in the previous section, this can be achieved by the 
mutual cancellation of diagrams l ld2 and 12c, l ld3 and 12a, l lh2 and 12d, and 
1 lh3 and 12b. One can easily verify that the remaining diagrams of Fig. 1 la-la 
(i.e. diagrams l l a - c ,  l l d l ,  l l e - g  and l lh l ) ,  which are coUected in Fig. 13a-h, 

(1) ctfl (2) (1) (2) (1) h r correspond to the matrix element (#1] GQ«(i)(T1 - T 1  )Tz  Gk~(S)[#I). 
This is also obvious since 

,T,( 1 )'VT,(2) T(2)"T(2)2 t 1 - T~ ')1 + [T~ 2), T~ 1)] = (T~ 2) -- -'1 » '2  • (110) 

Similarly, diagrams 10a and b can be used to represent matrix element 

( ~ ,  ](1)G~(T~ 2» - ~lT(1)YT'(2)/--2 ( 1 ) G / ~ - ( S )  ] ~ 1  > ,  
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s x ~ ~  " - ,  s -  ,, > 
V-'-(9-~.' [ ~ (-1) 
L ° L ° o _ ; o ~. , 

a b c d 

I S  l i  ~ p S««S '~ S m ~ .  _ (-1) 

/ ~ - - - o  ~ / ~--o~« 
• f g h 

Fig. 13a-b. Brandow diagrams corresponding to (~11°)G~~(i)(Tt 2) -- Ttl))T~ 2) O)G~r(S)l~l )- They 
are associated with successive terms on the right-hand side of Eq. (113). Minus signs in front of 
diagrams d and h indicate that the corresponding algebraic expressions have to be subtracted 

since [cf. Eq. (91)] 

(41 [(a)G~ (T~ 2) - -  "tl'T'(1)yT'(2):~2 (1)GtÉ(S)141) = (41 ](1)G~ T~ 2)T~ 2) (°G~r(S) ] 41 ). (111) 

We can thus write: 

( 4 1 1 ( 1 ) G ~ ( T ~  2) - T(1) ]T(2)  (1)/TJT_/~'~ ~ 1 . 2  -.~k,~.141) 
__ 1 7~TIT r c, a ll? ¢,'~ (2).¤ (2)j,«/-t'e'~ 
- -  - - 2  l "  kELJ U J] tO " k E \ ° ]  + ~ # ( S )  (2)t~c ( 2 ) t e % ( s ) ]  , ( 1 1 2 )  

(4110)G~~(i)(T~ 2) - T(lhT(2)I j 2 °)GtrketrS~),41.l ) 

= 2-½N~~N~É (~9~tr(S)Höo«(i){6is[S]-½(2)t:(2)t~~(S) 

[ 1 
--6et#(i) 6eg~(S) (2)t~ 2 (--1) i+ s[ i, S» S]½C(i, S» S)(2)teß~(Si) 

S i = O  

+ ½[i]½((2)t~ - (1)t~) (2)t##~(S) l }  Ô~ - ~£(S)~«fl(i) {Ois[S]-½ (2)t~ (2)tffe«(S ) 

- 5ee«(i) [ 6e'r(S)(2)tO s, È= o (-1)~+s[i'S"S]½C(i'Si'S)(2)t:~(S~) 

q- ½[i]½((2)t~ -- (1)t~) (2)täg( S) l }  Ô#E ) . (113) 

It follows from Eqs. (112) and (113) that [el. Eq. (41)] 

__ 1) (2) II --12B(')r~«~v-.Q, =g~k (411(l)G;(T~2) Tt )T2 Gkk(O)[4,) 

1 _ k k r ( 2 ) . l  ± (2)~~ (2)~,ll [(I"~I = --5gH t 'o(2)t~~(O) (114) 



Orthogonally spin-adapted MR-CCSD formalism 95 

and 

/ • ( 1 ) r t T « B / ; d  - -  « k k  / d i  (1)[T«B[;'~[T(2) _ T(I)'~T(2)[71l [l'l'~ [ 1 2 t " o « w J - ~ ,  \~'l "-,o«w,~l -1 , - 2  ' - 'kk," , l~l)=2-½g~kN~~ ( { [ 1  
x ~ o « ( i )  Ôio(2)tó(2)t~g(O) - -  6e«a( i )  (2)t~ E ( - - 1 ) i [ i ' s i ] l u (  i' S i  )(2)flltok(Si ) 

Si=O 

+ ½[i]l((2)t~ -- (1)t~) (2)t#ktk(O) l }  ~l -- ~c~«fl(i) {t~iO(2)t~ (2)téZ,(O ) 

- 6ae«(i) [ (2)to s, ~= o (-1)i[i'S~]½U(i'S~)(2)t:~(St) 

+ ½[i]½((z't~ -- O)t~)(2)t'k(O)]} 6~k ) . (115) 

To obtain Eq. (115), we used the relation (68). 
We thus see that from the diagrammatic viewpoint, it is rauch more conve- 

ment to conslder the term B~~)(G~), Eqs. (41) and (42), than to examine 
separately n(p)«~*), Eq. (38), and u12 ~.~Ji 1, R(P)(I'7~f ~ is ~J12 \ v i  ü ( P ) ( l ' T t ~  Eq. (39), terms. When ~ 1 2  \ " J i  I 
used, we do not have to consider the connected diagrams of Fig. 12a-d at all. 
Consequently, the final expressions for /~~~) are far more compact than the 
formulas for Bt~ ) and/~~~). There is, however, some advantage to split ,t,, 12ü(P) into 
B~ p) and .t.. 12ü(P). For example, it is easier to apply the E-operator technique in this 
case [3]. To some extent, this is due to the fact that the connected terms from 
BO)rG«~ti~l 12 t Q,~ n can be easily incorporated into the terms that are associated with the 
disconnected diagrams l ldl and hl (cf. Fig. l l'd,h). There is also a practical 
reason for sphttmg the term B~{ ). As mentioned in the preceding section, 
Bt12)[G~~(i)] is nonzero when O)G~~(i) equals G]tb(i) or G]~k(i), while Btx2)[G~~(i)] 
gives nonvanishing contribution only if °)G~ä(i) is equal to G~b(O), G~~k(O) or 
G~~(i). This means that B~~)[G~~(i)] and Æ~P)iG~~(i)] contribute to the coupling 
term for different types of excitations. It is, therefore, useful from the computa- 
tional viewpoint to consider B~~)(G~) and a~,12~(P)[g'7~~f~\v i ) separately. 

Comparing Eq. (114) with Eq. (93) and Eq. (115) with Eq. (103), we see that 
/~~I)(G~) = B~12)(G~), and that there is only a very small difference between the 
expressions for B~I)[G~~(i)] and B~12)[G~~(i)], namely, the absence of the factor 
(1 Ôk)(1 6 ~ ) i n t h e e x p r e s s i o n ( l l 5 ) f o r  ~'o) ca • 

- -  « - -  B l z  [GQ«(0]. In the preceding section, 
we have shown that the factor (1 - Ô~)(1 - 3~) appears in B °)r~«t~"al 12 LVQal.~)J as a result 
of considering the connected diagrams 1 l d»  d3, h 2 and h 3. These diagrams are 
then reintroduced with the opposite sign in the term g~~~[G~~(i)], so that the 
factor ( 1 -  6 ~ ) ( 1 -  36) finally disappears and we obtain B~I)[G~~(i)]. This can 
also be seen by examining the terms 5e«a(i)~«(i)((2)t~--(1)t~)(2)tgl(O)6ä a n d  
5e«~(i)~«(i)(~2)t~ _ o),«~,~~ (2),n,~~~,)~,g,ù~~xa which appear in expression (115). Using the 
relation [cf. Eqs. (98) and (104)] 

((2)t~ (O,«~,~«.~t = 0, (116) - -  ~~)VkW ~ 

we can write 

5a«»( i)S~~«(i)((z)t~ - O)t~ ) (2)t~~,( 0)6~ = 6¢«a(i)S,~o«(i)((2)t~ -- (1)t~) (2)t~~(0) 

x[(1 ~~)(1 õó)+Ô~ , t - -  - -  + 6 0 1 6  « .  (117) 
Since [cf. Eq. (104)] 

(2)t~ = (2)t~' = 0, (118) 
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we fur ther  obta in  

~a«fl(i)~«(i)((2)t~ _ (0,«% (2),fl/«mxt 

= 5 f«~( i )~ , ( i ) ( ( : ) t~  - ° ) t ; )  (2)t~~(0)( 1 - 5~)(1 - 56)6~ 

_ 5f«a(i)5~o«(i) (l)/k (2)~,fll/'ù%X:¢ X 1 __ 5e«a(i)5~~«(i) o),« (2)~,fll [n%AI Ä i 
~ ' k k ~ . U ] U k t " a  ~'l » k k \ U ] t " q ° a  • 

Finally, appl icat ion of  Eq. (97) and the obvious  p roper ty  
(ant i )symmetr izers  6~~a(i), namely  

5'~~~(i)(x2) = ( -- 1)'5~~~(i), 
leads to the result 

5e «~(i)5~o « (i)((2)t ~ -- (')" « '  (z), a, t mx,  ~O)  a ' k k £ ' ° l ~ a  

= 6f«fl(i)6fo«(i)((2)t~ -- (')t~)(2)tk~~(0)( 1 -- 5~)( 1 -- bto)b ~ 

_ ( _ 1)iSa«~(i)6~o,,(i) (1)t~ (2),«1 tmx~x~ _ "~.S .~~ .~~ c,o«~ (1),« (2),~t ~m 
~ ' k k \ " J ] t ' k t " a  " ~ ' i O t ~ o v a «  ~l  ~ ' k k \ ~ ]  • 

Similarly, we can prove  that  

s e « f f i ) ~ ~ ( i ) ( ( ~ ) t ~  - (')t O) ¢~)t~~(o)~g 
= 6f«a(i)S~o«(i)((2)t~ --O)t~)(2)t~~(O)(1 - -  ô~)(1 - õ O)6~. 

--  ( - -  1)iY«l~(i)5~o«(i)(')t7 (2)t[k(O)6~6t~ -- va .~«xB ca (i)~.k (2)fl/ [/%% 

(119) 

of  the 

(120) 

(121) 

(122) 

Insert ing now Eqs. (121) and  (122) into Eq. (115), and using the result o f  Eq. 
(103), we obta in  

~'(1) ctfl " (1) erl .  + 2 - 1 g ~ k N ~ ~  
B 1 2  [ G Q « ( I ) ]  ---- B I 2  [ G o « ( l ) ]  

l l «fl £ . ~ « . ~ f l G o  ( 1 ) ~ k ( 2 ) f l l  [ f l% X (l~i06qBa~~ ° (1)Ic (2)lfll [/]% 
~l ~ k k \  "a} - -  v i O W k t ' k « o a  t" 0 «ok~."<l 

+ ½( -- 1)i[ i 6f«a(i)~'õo«(i) O)t ,kk~",~'k~'« 

-- ½( -- 1)'[i]½6~«a(i)~,(i)(1)t~ (2)t~k(0)5~5 ~), (123) 

SO that  indeed [see Eq. (109)] 

~'(1) a B • (1) «fl • ~ ( 1 ) [ ~ « [ 1 [ i % 1  B12 [Go«(t)] + B,2 [Go«(t)] = (124) u 1 2  L".,-~ Qo-\ ] j .  

Let us now compare  the formulas  for  R, B a n d / ~  terms derived in Sect. 3 with 
the expressions obta ined  in [2, 3]. Let  us first examine linear contr ibufions [2]. 

As implied by the results o f  Sect. 3, the only linear terms tha t  have to be 
considered a r e  R~l)[G~lk(O)], (1) kk R~ [Grt(0)],  R(2°(G~),  R(2°(Gk),  R(2°[Gä»(O)], 

(1) k k  R2 [Gù« (0)] and R(21)[Gff(i)]. The remaining terms R( .° (G~)  and R(ù~)[G~~(i)] 
(n = 1, 2) vanish. F r o m  Eqs. (62'), (65) and (70) we get: 

R~I)[G~k(0)] = _ c k k  (2),a 
25ll ~ k ~ 

R ~I)[G kP ( 0 ) ]  = " k k  (2),  l 
dS l l  * r ~ 

R(:»(G7 ) = _ 2-½g§k (z)t~~(0), 

R?)(C~) = 2-1g,?(2)t¢;(0), 
R(21)[G~b ( O)] _ ckk ~rab (2)~,ab 1/)% 

(1) k k  __ ~ k k  M ' k k  (2)fl l  [N", R2 [G,~ (0)] - - s t t  ~'~, "~,t"J, 
1 

R~l)[G f f  (i)] kk ~r«k = g ' l  ~ ' r '  Z [i, Si]~U(i; Si)(2)t7~(Si). 
S i =  0 

(125) 
(126) 
(127) 
(128) 
(129) 
(130) 

(131) 
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Thus, employing the relations between the unnormalized and normalized cluster 
amplitudes [cf. Eqs. (15) - (  19)] 

¢ù)t; = <016»1«>, (132) 

(P)t~~ (i) = (N;g) - l ( ea  It ~") I «fl }i, (133) 

and the explicit values of the 6-j coefficient U(X1, X2) (see Table 1), we obtain: 

R~'[G~?(0)] = -g~? <k162) la>, (134) 

R~°[G~~(0)] = g~l k (r I t~2)]l), (135) 

R(21)(G7 ) = _g§k (kk It~Z) laOo, (136) 

R(1)(~k'~ g§k(rk]t~2)lll)o, (137) 2 \ V r )  = 

R~O[Güb(O)] = g§k (kk]t~2)]ab )o, (138) 

(1)  k k  R2 [Gr~ (0)] = gä  (rs I t~2)lt/)0, (139) 

R ( 1 ) [ G a ~ ( 0 ) ]  = --½«§k((rk]t~2)]al)o--3½(rk]t(zZ)lal>l), (140) 

R~O[Gff(1)] =½g§k(3½(rk[t~~)]al)o+(rk]t~2)]al)l). (141) 

Identical expressions are given in Table 3 of  [2]. Clearly, the diagrammatic 
spin-adaptation approach based on graphical methods of angular momentum 
theory [11, 13b] yields the same results as the E-operator algebraic technique [4]. 
Our results express, however, the numerical factors entering Eqs. (140) and (141) 
in terms of the 6-j symbol U(XI, X2) , Eq. (69). 

Let us now turn to bilinear terms. Before comparing our results with those 
of [3], we point out a different definition of the unnormalized pair-cluster 
amplitudes and the normalization factors used bere ((P)t~~(i) and N~~, respec- 
tively) and in [3] (2;+ lto«(p)«¢ and 2i+ 1 ?tTOa~, «~, respectively), namely (see also [16]) 

2i + 1 ~tTQa I - - -  & ~œ ~,«~ = ~[t] 2N«t~, (142) 

2~+ 1 to~(p)=a = [i] -½ (P)t~~(i). (143) 

The one-particle cluster amplitudes t~ are the same as in [3]. 
In [3], the general expression is given only for the component Bll°)[Go«(t)] , c a  • 

while in the remaining cases, only those terms that do not vanish in the special 
2-reference case are considered. For example, the connected diagrams corre- 
sponding to B (1)r~«at;al (diagrams 1 ld»  d3, h2 and h3) are not given in [3] and 12 t u  Qo" l . ~ / J  

their role in cancelling some disconnected terms (diagrams l ldl and h~ with 
« = k or ¢ = l) is not commented on, as they do not show up when G~~(i) equals 
G~~b(i) or G~(i) (cf. Sect. 3). For the same reason, the possibility to incorporate 
the term/~t~)(G~) in the term B~~)(G~) by cancelling the connected diagrams of  
Fig. 12a-d  by the connected diagrams of  Fig. l l a - h  (the possibility discussed 
above) is also not considered in [3]. 

Equivalence of  our formula for B (1)r~«at;~l Eq. (75), and of  the expression 11 L ~ '  Qa \~ ) ' J~  

given in [3] is immediately obvious when, in addition to Eq. (142), we apply 
relations (97), (100), their analogues 

5~e«(i ) (2)tó (2»t~ = ,~,~ (2),t (2),t "-vio "e "«, (144) 

5ê«a(i) (2)t~ (2)tkB 2 x (2),« (2)+a = ~',~ "k "k, (145) 
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and a simple consequence of the group-theoretical property (120), namely the 
relation 

5e~'¢(i)5'~Q,~(i)(o~fl)(Qcr) = SP~'¢(i)5~o,~(i). (146) 

We use Eqs. (97), (100), (144) and (145) to remove the superfluous symmetrizers 
5e~a and ~ from the expression given in [3]. This means that our formula for 
B~])[G~(i)] is slightly simpler than that given in [3]. This simplification results 
thanks to the diagrammatic approach, in which the "symmetry forcing" opera- 
tors 6e'~(i) and 6~o~(i ) will appear only when nonequivalent external lines are 
present in the resulting orbital diagrams [16]. Of course, the resulting formulas 
for B~])[G~b(O)], (,) kk Bll [Grs (0)] and Bt])[G~(i)], obtained from the general expres- 
sion (75), are identical with those given in [3]. 

According to the results derived in Sect. 3, the remaining types of bilinear 
terms that have to be considered are B~)[G~(i)], B~)(G~), B]12)[G~(i)], 

(,) a k  " ~(1) a b  "(1) k k  (1) a k  • B12[G~s(t)], B12[Gu (0)], B12[Gr~(O)] and B,2[G~t(l)]. For the components 
O) a ~(I) ab ~ l )  kk ~0) ak " " B ,2 (G~), B ,2 [G tt ( 0)], B 12 [G r~ ( 0)] and B, 2 [G ~l (t)], the eqmvalence of the results 

given in [3] and in Sect. 3 is immediately obvious. The only relations that are 
needed in this case are Eqs. (142) and (143), although in the case o f / ~  [Gff (0)] 
and ~0) kk B,2[G~ (0)] we must also use Eq. (120), and in the case of/~)[G~(i)] we 
must also realize that for the dichotomic variable X, X = 0 or I, we have 

2 - [X] = ( - 1) x. (147) 

B22 [G~ (0], B(,1)[G~b(i)] and (,) ~k - B,2 [G~ (t)], which are Only for the components o) ab • 
related to the 6-j symbols U(Xx, X2), Eq. (69), and V(X1, A"2, X3), Eq. (88) [see 
Eqs. (89) and (103)], more complicated relations are needed. This is due to the 
fact that the 6-j symbols that appear in our expressions arise naturally from the 
coupling scheme employed, while in the algebraic approach (see Eqs. (29), (33) 
and (34) of [3]) coupling is implicitly built into the definition of replacement 
operators and the numerical factors arise through an application of the algebraic 
version of Wick's theorem. In order to interrelate the resulting factors, we shall 
rely on the following relations: 

[X,] - [X2] + 1 = 2( - 1 )  1 + Xl[j(t]U(X D X'2) , (148) 

2 - [X2] - [X3] + [X2, )(3] + (2 - [X1])(2 - [x2])(2 - [x3]) 

= 4[x2, x3]v(x1, x2, x3) z, (149) 

valid for X~ (i = 1, 2, 3) that equal 0 or 1. Note that Eq. (148) is a special case 
of another useful identity [16]: 

2 - IX2] - [X3] + (2 - [X1])(2 - [X2])(2 - [X3]) = -4[X2, Xa]C(X,, Xz, X3). 
(150) 

To see this, we set X3 = 0 in Eq. (150), use Eq. (68) and employ the identity 

1 - -  [Xl]  "-1- (2  --  [)(1])(2 --  [X2]) = ( -  1 )x ' (1  + [ / 1 ]  - -  [ / 2 ] ) ,  (151) 

which follows from Eq. (147). Another interesting relation between the 6-j 
coefficient V(X,, 1(2, X3), Eq. (88), and the 9-j symbol C(X,, Xz, X3), Eq. (67), 
can be found by comparing Eqs. (149) and (150). In this way we obtain 

1 (152 )  c ( x , ,  x~, x~) + v ( x , ,  x2, x~) ~ = ~. 
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This relation is easy to understand when we realize that the 12-j symbol 
R(X1, X» X3, X4), Eq. (86), satisfies relations [16] 

Y~ [x]R(x~, x »  x »  x )  = ¼, (153) 
X 

Y, ( - l )X[x]R(X l ,  x »  x3 ,  x )  = - c ( x »  x »  x~),  
x 

so that [see Eq. (87)] 

(154) 

V(X1, X2, )(3) 2 = 2R(Xa, X2, )(3, 0) = ~ {1 + ( - 1)x}[X]R(X1, X2, X3, X) 
X 

1 = ~ - c ( x »  x »  x 3 ) .  (155) 

In order to see that out expression for o) ab • B22 [Grs (t)] [Eq. (89)] is identical with 
Eq. (29) of [3], we apply Eqs. (142) and (143), and then employ the relation 
(149). To see that the formulas for B~12)[G~rb(i)] and (1) «k - B12 [Gr, (t)], Eqs. (34) and 
(33) of  [3], agree with our general expression for B (1)r~«pr;al [Eq. (103)], we 12 t '~ ocr\~]J 
must use Eqs. (142) and (143), identity (148), as weil as the relation 

3 - [X] = 26xo, (156) 

and equation [ 16] 

5PoP(i) (2)t~~(i) = ~õ«(i) (2)t~~(i) = 2 (2)t~~(i), (157) 

which reflects the symmetry properties of the spin-adapted amplitudes (P)t~~(i) or 
(0tr[t~P~lctfl) i [11], [notice the similarity of Eq. (157) and relations (144) and 
(145)]. As in the case of  Bal(l~[GQ«(t)],ca" Eq. (157) enables us to remove the 
superfluous symmetrizers 5e-b and ~ s  from the expressions for (l~ ab • B~2 [Grt (0] and 

(1) ak • 
B 1 2  [ G r s  ( t ) ]  given in [3]. 

We thus see that the diagrammatic spin-adaptation approach based on the 
graphical methods of angular momentum theory [ 11, 13b] and the purely alge- 
braic E-operator technique [4] yield equivalent results for both linear, and 
nonlinear coupling terms appearing in the two-reference coupled cluster theory 
[2, 3] (there is a misprint in the formula for B~~~[G~b(i)] given in [3]: Itäb(2) in the 
second term of Eq. (34) of  [3] should read lt~b(2)). Although this result was to 
be expected, direct comparison of  the diagrammatic and algebraic methods 
shows that the formulas obtained with the former technique are slightly simpler. 
We never have to deal with the superfluous (anti)symmetrizers 5e«a(i) or ~«(i) ,  
which may result when the algebraic method is used, and we do not have to 
consider separately the term B~~~(G~), since it can be easily combined with 
B~~~(G~). First of  all, however, the algebraic approach does not provide us with 
the important information about the types of  the spin recoupling coefficients, 
which appear in the spin-adapted expressions, whereas the diagrammatic spin- 
adaptation approach gives us this information instantaneously. Moreover, the 
complexity of  the calculations does not increase if we apply the diagrammatic 
technique to higher-order nonlinear terms. Because of  the necessity of the 
evaluation of  complicated commutator expressions, calculation of these higher- 
order terms using the algebraic approach becomes more difficult. Diagrammatic 
approach should also prove convenient when casting the nonlinear expressions 
into a recursive form (of. [18]) that enable an efficient vectorization of the 
computer code. 
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Although the diagrammatic method seems to be slightly more convenient 
than the algebraic technique, it also has some disadvantages, for example, the 
possibility of overlooking certain diagrams. Moreover, very special care must be 
exercised to obtain the correct normalization and phase factors. It is, therefore, 
very important that we can use two entirely different techniques to evaluate the 
expressions appearing in the orthogonally spin-adapted MR-CC theory. As we 
have seen in this section, the relationship between the diagrammatic and alge- 
braic spin-adaptation approaches is quite straightforward. 

As a final remark, we note that the diagrammatic derivation given in this 
paper can be easily extended to the case of more than 2-dimensional model 
spaces, assuming that only closed shell type references are present. In fact, our 
formulas involve general intemal model space excitations (1)G~~(S). However, a 
generalization to an arbitrary model space is far from being straightforward. 

Appendix: Spin diagrams and orbital and spin factors associated 
with coupling terms R, B and 

For the sake of completeness and to facilitate an understanding of the results of 
Sect. 3, we provide in this appendix a complete list of the orbital and spin factors 
that are associated with Brandow diagrams of Figs. 5a,b, 6a,b, 7a-c, 8a-c, 
9a-d,  10a,b, 1 l a - h  and 12a-d and their spin counterparts. The corresponding 
spin diagrams are presented as weil. 

One-body components R(21)(G~) and a.,12/~(1)(/'7~ct~\,Jo/, that require an evaluation 
of the matrix elements (63) and (91), are represented by the diagrams of Figs. 
6a,b and 10a,b. Algebraic expressions associated with these diagrams take the 
form: 

D(G~; Nx) = Ntkr~Setr(S)~X~e(S)~X{A(Nx)B(Nx)}. (A1) 

Here D(G~ ; Nx) is the expression associated with the Brandow diagram of Fig. 
Nx, A(Nx) designates the pertinent orbital factor (including the orbital sign 
factor ( -  1) l+h and the topological weight which always equals 1), and B(Nx) is 
the spin factor obtained by evaluating the corresponding spin diagram. Accord- 
ing to procedure of [16, 17], to evaluate A(Nx) and B(Nx) we use the diagram 
Nx stripped of the symmetrizers 5 ¢1r and ~~  and only reintroduce the corre- 
sponding (anti)symmetrizers 6elf(S) and 5ekæ(S) later, i.e. in the final expression. 
The presence or absence of 5Ptr(S) and Sekt(S) in Eq. (A1) is determined by the 
parameters kl ux and k2 ux that are either 0 or 1. Recall that the (anti)symmetrizer 
5etr(S) [5~k~(S)] appears only when the external lines l and 7-(k and /~) are 
nonequivalent, so that two different labelings of external lines l and l (k  and k-) 
must be considered. 

Orbital and spin factors, A(Nx) and B(Nx), respectively, as well as parame- 
ters k Nx and k~ x that determine all one-body contributions D(G~ ; Nx), Eq. (A1), 
are listed in Table 2. As we can see from this table, all spin factors associated 
with D(G~ ; Nx) result from a single spin diagram, which is schematically shown 
in Fig. 14. Since this diagram separates over the lines Si and S, it factorizes into 
a product of two "oyster"-type diagrams (cf., Appendix in [13b]) representing 
triangular delta functions {S» ½, ½} and {S, ½, ½} [12]. Consequently, the resulting 
spin coupling coefficient restricts the summation over the intermediate spin 
quantum number Si in every D(G~; Nx) to only one term S~ = S. This summa- 
tion is already carried out in Brandow diagrams of Figs. 6a,b and 10a,b. 
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Table 2. Orbital and spin factors, A(Nx) and B(Nx), respectively, spin diagrams and parameters k~ x, 
i =  1,2, determining the one-body contribution D(G~;Nx), Eq. (A1), that is associated with 
Brandow diagram of Fig. Nx 

Nx k Nx k y  x A(Nx) Spin diagram B(Nx) 

l 
6a 1 0 .~t ( 2 ) , « r ~ c  ~ 14 2-2.6s.s - - ~  0 ~ k [ E k ° i  ) 
6b 0 1 ,~« ( 2 ) , l r  e~  ~ ± ' ~k ,oEtoi) 14 2-2•SiS 

10a 1 0 (2)~«rzc  a (z),z 14 1 
10b 0 l _ ( 2 ) f f f j q  ~ (2),« 14 ] 

" o k \ ~ i J  " k  2 ~ S i S  

s~s 
Fig. 14. Spin diagram associated with one-body contributions D(G~ ; Nx), 
Eq. (A1). For simplicity, line and vertex orientations are suppressed. 
The unlabeled lines carry the angular momentum ½ 

For two-body components we require diagrams in Figs. 5a,b, 7a-c, 8a-c, 
9a-d, 1 l a - h  and 12a-d. Algebraic expressions associated with these diagrams 
have the form: 

D[G ~~ (i); Nx] = N;~ N~kr~Se lr(S) k~~5~kz(S ) k~~5 a «'(i) k~Xs~o,~ (i) k~~{A(Nx)B(Nx) }, 
(A2) 

where Nx, k Nx, A(Nx) and B(Nx) have the same meaning as in Eq. (A1) and are 
listed in Table 3. All nonequivalent spin diagrams that can be associated with 
Brandow diagrams of Figs. 5a,b, 7a-c, 8a-c, 9a-d, l l a - h  and 12a-d are 

a s~ ~ s~ 
i i i 

b c d 

~ ~ ~ ~ i  S , ~ 
ù , c J s :  

• f g 

Fig. 15a-g. Spin diagrams 
associated with two-body 
contributions D[G~~(i); Nx], Eq. 
(A2). As in Fig. 14, line and 
vertex orientations are suppressed 
and the unlabeled lines carry the 
angular momentum ½ 
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Table 3. Orbital  and spin factors A(Nx) and B(Nx), respectively, spin diagrams and labels k ~  ~, i = 1 - 4 ,  
determining the two-body contr ibut ion D[G~~(i); Nx], Eq. (A2), that  is associated with Brandow diagram 
of  Fig. Nx 

Nx k~  ~ k N~ k~  x k~  ~ A(Nx) Spin B(Nx) 
diagram 

L 
5a 1 1 1 0 .~t xrx~(2),« 15a 2-261s 

i 
5b I I 0 1 .~«x#_.~r (2)d 15a 2-:6~s V k V k V a  *O 

7a 1 0 0 0 666r~(2)t~~S~) 15b 6~s3s,s[S] -½ 
x«x~_ (2),//- t~ ~ 15b 6is6s~s[S] -½ 7b 0 1 0 0 ~k~~ "o«t~~J 

L 
xFx~_(2),«I tK' ~ 15d ( -- 1) s* + l[i, S i, S ] 2 C ( i ,  S i ,  S )  7c 1 1 1 1 - ~ « ~ ~  "k«WiJ 

8a 1 1 0 0 x t  X/- (2),Œ (2)oft_ 15a u ~ u a  ~k * k  ~ ~ i S  

8b 1 1 0 0 x«x~ (2)d (2),r 1 V k V l c  ~0 " «  15a ~6is 
8c 1 1 1 1 x~x/- (2),« (2)tl 15a 1 - - V E r «  *k *O ~ ~ i S  

9a 1 0 1 0 --(2)t«lL~l)(2)täkFk-(S2 ) 15e 1 -Qa~--t  

(2) c~ 1 (2) ff 2 1 ) t.z(Si ) 9b 0 1 0 1 - tQg(S i 15e i6is?6ss ? 
(2),«#_«~l x(2),lF rc2~ 1 5 f  6 i s ¢ ~ s s a ß s s 2 [ S ]  - 1  9c  0 0 0 0 , k ~ l O i  ) ,Qtrkoi  ] 

9d 1 1 1 0 (2),«1 [cl~(2),fl_l-cc2~ 15g ( -  1) sl +~[ i ,  SJ ,  S~, S] ½ 

x R(i, $I,  S 2, S) 

l l a  1 0 0 1 6Fa(2)te(2)t~#E(Si) 15b 2-½6is6s, s[S] -½ 
XF (2)~« (2)tBJ £K' ~ 15d 2-12( -1)  ; + s ~ + s + l  l l b  1 1 1 1 ~« "k "koWi: 

x [i, Se, S]½C(i, S» S) 
l l c  1 0 1 1 -Õ~(2)t~(2)t~-k(Si) 15c 2-{6s~s[i] ½ 

l l d  I 1 0 1 1 --6r~O)t~(2)t~(S~) 15c 2-a26s, s[i] ½ 
l l d  2 I 1 1 1 x«.~rO)~k'(2)~#J r'c'~ 15d 2-½(-1)  i+Si+S+a ~ k ~ t r  ~O ~ k k ' k ~ i ]  

x [i, S» SI½C(i, S,, S) 
l i d s  1 0 1 0 6ö6r~O)t~, (2)t~(S,)  15b 2-½a,sös,s[S] -~ 

± i 
l l e  0 1 1 0 -6~(2)t~(2)t~r(S~) 15b 2-~6is6s, s[S] -~ 
l l f  1 1 1 1 "~a(2)'l (2)ter re  ~ 15d 2 21(-1) i + s * + s + ~  

i 
x [i, Si, S]=C(i, S~, S) 
2 ± 

l l g  0 1 1 1 3~(2)t~(2)t~g(Si) 15c 2-~6s«s[i]2 
3 I_ 

l l h  I 0 1 1 1 .~fl-(l),Œ(2)~ -r/ t~  a 15c 2-z6s~s[i] ~ V k  *~ ~trkkOi)  

l l h  2 1 1 1 1 -3~36(1)t~,(2)tr~(si) 15d 2-21( -1)  ~ + s ~ + s + '  
i 

x [i, S c S]~C(i, S» S) 
1 i 

1 lh  3 0 1 0 1 ~«ä~_O),k'(2),n ~~ ~ 15b 2-~6~sös~s[S] -~ 

12a 1 0 1 0 6e3r~o)t~, (2)t~(si) 15b 2-½3~sös~s[S] -½ 
£ 1 

XŒXfl_(1)*k'(2),// /,qr ~ 15b  2-~6~s3s, s[S]-: 12b 0 1 0 1 --~kU]~ t o ,ak, k~i! 
L 

12c 1 1 I 1 x~_xr (l),k' (2),«l gg ~ "l 15d 2 - ½ ( -  1) s~ + ~[i, S~, S]:C(i, S c S) t t~ ' t t« t o ~k lC\Oi]  
I 

X~.~F (1),« (2),//" (K' "~ 15d 2-½( -- 1) s '  + ~[i, S» S]:C(i, S i, S) 12d 1 1 1 1 --~'~" « "r "~kw~~ 

schematically shown in Fig. 15a-g. The correspondence between the individual 
orbital diagrams and their spin counterparts can be easily established by compar- 
ing the first and the seventh columns of Table 3. Again, to obtain the final 
expression for a given diagrammatic contribution D[G~~(i); Nx], we must carry 
out the summation over the intermediate spin quantum numbers Se or S) and S 2, 
which label the orthogonally spin-adapted pair-cluster amplitudes. 
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As follows from Fig. 15a-g, all spin diagrams corresponding to contributions 
D[G~~(i); Nx], except 15d and g, factorize into products of "oyster"-type dia- 
grams. This is true for both the 6-j coefficient of Fig. 15a and the 9-j coefficients 
of Figs. 15b and c, as weil as for the 12-j coefficients of Figs. 15e and f. Thus, 

in every expression D[G~~(i); Nx] corresponding to Figs. 15a-c, e and f the 
summation over the intermediate spin quantum numbers characterizing pair-clus- 
ter amplitudes reduces to a single term. Only diagrams 15d and g, which are not 
separable over k ~< 3 lines, represent genuine 3n-j coefficients [12]. Diagram 15d 
represents a 9-j symbol C(i, Si, S), Eq. (67), while the diagram 15e a 12-j symbol 
of the second kind R(i, S~, S2i, S), Eq. (86). In expressions D[G~~(i); Nx], 
corresponding to these diagrams, the summations over Sj or S) and S~ remain. 
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