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Finite groups with invariant fourth maximal subgroups
By
ZVONIMIR JANKO

Let G be a finite group. Then a series of subgroups G=X, X, ..., X,
of G is called a maximal series of & if X, is a maximal subgroup of X, ,
(1=i=n). A subgroup H of G is called an #-th maximal subgroup of G
if there exists at least one maximal series X; (0= n) of & so that H=X.
Naturally an #-th maximal subgroup H of G can be also an m-th (m==#u)
maximal subgroup of G. If we speak about zn-th maximal subgroups of a
group G, then we suppose that they really exist.

The object of this paper is to generalize the following theorems of B.
HuppEerT [6]:

I. If each second maximal subgroup of G is normal in G, then G is super-
soluble. If the order of G is divisible by at least three different primes, G is
nilpotent.

II. Let each third maximal subgroup of G be normal in &. Then G is
nilpotent and the order of each principal factor of G is divisible by at most
two (equal) primes. If the order of G is divisible by at least three different
primes, G is supersoluble.

Let G denote a finite group with the property that each fourth maximal
subgroup of G is normal in G. Then the following theorems are valid:

Theorem 1. If G is a simple group, then G is isomorphic to LF(2, ),
wheve p="5 or p is such prime that p—1 and p-+1 are products of at most
three primes and p=4-% or =13 (mod 40).

Theorem 2. I} G 4s a non-soluble and non-simple group, then G is iso-
morphic to SL(2,5).

Theorem 3. If G is a soluble group, then G is nilpotent or G is isomorphic
to the holomorph of the elementary abelian growp of order p* by the dihedval
group of order 2 -q (P, q are primes; q 1s odd, p==q) or G s one of two ve-
presentation growps (in the sewse of SCHUR) of the symmetvic group S;. If
the order of G is divisible by at least four different primes, then G is supersoluble.

Theorem 4. If G is soluble, then the ovder of each principal factor of G
1s divisible by at wmost three (equal) primes.

Professor MAELER communicated to me that it is unknown whether we
have infinitely many primes p which satisfy the conditions of Theorem 1.

Corollary 1. Lei G be a finite group with the property that each. fourth
maximal subgroup is invariant. It G has a principal factor of order p* (P prime),
then G’ is milpotent.
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Corollary 2. Let G be a finste growp with the following properties:
(a) The order of G is divistble by exactly two diffevent primes,

(b) G’ is non-nilpotent,

(¢) each fourth maximal subgroup of G is invariant.

Then if G has more than one involution, G is isomorphic to S,. If G has
only one involution, G is the group of order 48 given by:

Jr={T, J1=13, J1 =[5, J1 =1,
=T =T¢= (1) = (LT = [T, ;] =] .

1,3

Proof of Theovem 1. Let G be a (non-cyclic) simple group with the property
that each fourth maximal subgroup of G is the unit group 1. Then by a
celebrated theorem of FEIT-THOMPSON [3] G,==1, where &, denotes a Sylow
2-subgroup of G. G, cannot be a maximal subgroup of G. If G, would be a
maximal subgroup of G, then each third maximal subgroup of G, is 1 and
the order |G,| of G, is less or equal 8. Hence the class of G, is =<2. But
then by a theorem of DEskiNs [/] G would be a soluble group. Because G,
cannot be a cyclic group, G, is the elementary abelian group of order 4. We
can suppose that C(G,)==G,, where C(G,) denotes the centralizer of G, in G.
If C(G,) ==G,, then C(G,) is a maximal subgroup of G. Hence C(G,)=N(G,),
where N(G,) denotes the normalizer of G, in G. But this is impossible by
a well known theorem of BURNSIDE. Hence G is a simple group whose 2-Sylow
subgroup is the elementary abelian group of order 4, which is equal to its
centralizer. We can apply a recent theorem of GORENSTEIN-WALTER [§]
which shows that G is isomorphic to LI(2, g), where ¢ is an odd prime power
=3. But all subgroups of LF(2,¢) are known (DICKSON [2]) and we see
that g=5 or ¢ is such prime that ¢—1 and ¢--1 are products of at most
three primes and ¢= 43 or £-13 (mod 40).

Proof of Theorem 2. Let G be a non-soluble and non-simple group with
the property that each fourth maximal subgroup is invariant. Let N be a
maximal normal subgroup of G. Then the following is true:

(a) G/N is a simple group LF(2, ) of theorem 4. Take a maximal sub-
group H/N of G/N. By the HupPERrT’s theorem II, H is a soluble group.
Hence N is a soluble group and if G/N would be soluble, then G would be
soluble. Consequently G/N is a non-abelian simple group. Each fourth max-
imal subgroup of G/N is the unit group. Hence G/IN=LF(2, p) (p>3).

(b} N is a nilpotent group ==1. Take a third maximal subgroup K/N
of G/N. Then K is nilpotent and so is N.

(¢) N=Z(G), where Z(G) denotes the center of G. For each prime p =2
we have N, <Z(G). For let us take a third maximal subgroup H/N of G/N
so that |H/N|=2. Then H is a nilpotent group. Hence C(N,)=EN. N, is
normal in & (N, <1G) and so is C(N,). Assume that C(N,)s=G. Then C(N,)
is a soluble group and C(N,). N =G would be a soluble group. Hence C(N,) =G
for each odd prime p. If 24|N|, then we have N=Z(G). So we can suppose

6*
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that 2 | |[N|. If N would not be a 2-group, then there exists an odd prime »
so that N,5=1. Let us take a prime g with the properties ¢g=£2, g==7 and
¢||G/N|. Consider a subgroup K/N of order ¢ of G/N. The subgroup is a
second or a third maximal subgroup of G. In any case, each proper subgroup
of K is nilpotent. Hence by a theorem of Iwasawa [7] K is a nilpotent
group because |K| is divisible by at least three different primes. We get
C{N,)E N and, finally, N=Z(G). Now we assume that N is a 2-group. Let
us counsider a subgroup LN of G/N of order  (p=£2). If L is a third maximal
subgroup, then L is nilpotent. If L is a second maximal subgroup, then L
is supersoluble by the HupPERT’'S theorem I. Hence L,<1L ($>2) and L
is again nilpotent. Consequently C(N)£= N and we have N=Z{(G).

(d) G'=G. If G'<G, then NG'=G and G would be a soluble group
because G’ is soluble by the HuppERT’S theorem II.

(e) G is isomorphic to SL(2,p) and |[N|=2. This isomorphism we get
by a theorem of Scuur [10].

(f) Each third maximal subgroup K/N of G/N has order 1 or 2. Let K/N
be a third maximal subgroup of G/N. If |[K/N|==1, then |K/N| =g (prime).
If g2, then K, =1 and K, is a fourth maximal subgroup of G. Hence
K,<1G. But then K=K N is a normal subgroup of &, which is impossible.

Finally, we have that each second maximal subgroup of G/Nis nilpotent.
Hence G/N=LF(2,5) (see Janko [8]) and G=SL(2,5).

Proof of Theoven 3. Let G be a soluble group with the property that each
fourth maximal subgroup is invariant. We consider three cases:

Case A. The order of G is p* ¢° (p, q primes; «, $>0).

We have to prove (by induction) that G’ is nilpotent or G is isomorphic
to S, or to the representation group 7, of S,, where 7, has only one involution,

Let M be a minimal normal subgroup of G. Then (G/M)" is nilpotent
or GIM=S, or G/M=T,. Representation group I, has the center Z{1}) of
order 2 and T,/Z (T,)=S,.

Suppose that G/M is isomorphic to S, or 7. Then M is a 2-group or a
3-group. If M would be a 3-group, then we consider a subgroup K/M (of
G/M) which has order 2 in the case G/M =S, and order 4 in the case G/M =T,.
We can choose K as a third maximal subgroup of ¢. Hence K is a nilpotent
group. The 2-Sylow subgroup K, of K is contained in a fourth maximal
subgroup B ‘which is contained in K. Hence K,<iG and K=K, M <1G.
But this is impossible because S, has not a normal subgroup of order 2. It
follows that M is a 2-group. Hence the Fitting subgroup F=F(G) of G is
a 2-group because the 3-Sylow subgroup G, of & is not normal in G. Namely,
if G, would be normal in G, then the 3-Sylow subgroup of S, would be normal
in Syq. (S, 1s a homomorphic image of G.)

Now we assume that the Fitting subgroup of G is not a p-group. Then
we have two minimal normal subgroups M, and M, of G and (G/M,)" and
(G[M,)" are nilpotent. Namely, if G/M, or G/M, would be isomorphic to S,
or T,, then F(G) would be a 2-group. We can suppose that M, and M, are
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both contained in G'. Then G'/M, and G'[M, are nilpotent. Hence G'=
G'[{(My~M,) is nilpotent.

Now we suppose that the Fitting subgroup F(G) is a p-group (==1). If
¢*=¢%, then it would exist a fourth maximal subgroup B (of G) whose order
is divisible by ¢. B is nilpotent and normal in &. Hence B,<1G. But this is
impossible because F is a p-group. Hence ¢°<g3.

Suppose, at first, that F=G,. Then |G,| =¢® because, otherwise, G’ is
nilpotent. Each subgroup F of F with |F/F| =2 is normal in G and F, G, is
maximal subgroup (of G). Consequently ;=1 and |F|=p. By a theorem
of FITTING [4] we get C(F)=F. Hence G, is a group of automorphisms of
F and therefore cyclic. We have G'<F and G’ is nilpotent.

Suppose now that F==G,. Then we have FG,=4=G and ]Gq| <¢2. Assume
that |G,| =¢% Then G, F must be a maximal subgroup of G. Let K be a
subgroup of index p of F. Then F<1G and G, F is a maximal subgroup of
G,F. If F =1, then again we would have a fourth maximal subgroup B
of G with B,4=1. Consequently |F| =9, and C(F)=F. G/F is a cyclic group
and G’ is nilpotent.

So we can assume that |G,| =¢. Consider a maximal normal subgroup
M|F of G/F. Then we have |G/M|==q because F==G,. Hence |G/M]|=1p.

If I is a minimal normal subgroup of M, then by the HuppERT’S theorem 1T,
|F| =p2 I |F| =4, then G/F is cyclic and we are finished. So in this case
we can suppose that |F|=4? and F is the elementary abelian group. G/F
is an automorphism group of F. Let us take a principal series of G which
contains M and F. First principal factor X/F between M and F must be
a g-factor because I is a maximal normal nilpotent subgroup of G. Hence
FG, is normal in G. 1f M=FG,, then it must be |M/FG,| = because,
otherwise, G, would be contained in a fourth maximal subgroup of G. But
then F is a third maximal subgroup of  and each subgroup of order p of
F must be normal in ¢ and G is a supersoluble group. Hence ¢’ is nilpotent.
So we can suppose that M =FG,, |G| =$%¢ and F is a minimal normal sub-
group of G. By a theorem of HupreRT [6], a finite group is supersoluble if
and only if every maximal subgroup has prime index. Because G is not a
supersoluble group, there exists a maximal subgroup S of index p° (2= §<3).
But §=3 is impossible because G, is a proper subgroup of M. Hence |S| =2g.
If p>g, then S,<1S. Hence S,<1G because N(S,)= S. On the other hand,
S,< F because F contains every nilpotent normal subgroup of G. But then
G would be a supersoluble group. So we can suppose that ¢>¢ and, because
G/F is an automorphism group of F, we have ¢=¢ --1. Consequently p=2,
g=3, and the order of G is 24. The subgroup S is not normal in G, also S,
is not normal in S and S, is normal in S but not in G. Now we represent
the group G by permutations of the cosets of S. This is a faithful representa-
tion of degree 4. Because the order of G is 24, G is isomorphic to S,. On
the other hand, every fourth maximal subgroup of S, is the unit group and
the commutator subgroup of S, is not nilpotent. S, is also the holomorph
of the elementary abelian group of order 22 by the dihedral group of order 2.3.
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It remains to consider the case where F is not a minimal normal sub-
group of M. If |M|F|==g, then G, F==M and there exists a fourth maximal
subgroup (of &), whose order is divisible by ¢, which is impossible. Hence
|M|F| =g and F=M,. Let F be a maximal normal subgroup of M contained
in F. Then by the HuppERT's theorem II |F/F|<p% F G, is a maximal
subgroup of M because, otherwise, G, is contained in a fourth maximal sub-
group of G. Also G, is a maximal subgroup of F G,. Let F, be a maximal
subgroup of K. Then F, (as a fourth maximal subgroup of G) is normal in G.
And because G, is maximal in F G,, the subgroup Ij is a minimal normal
subgroup of G. Hence |5,| =1 and [F|=p. If |F/E|=p, then'G is a super-
soluble group. So we can assume that [F/F|=p? Each subgroup of order
p of F is normal in G. If I¥ would have two subgroups of order $, then
would not be a maximal normal subgroup of M contained in F. Hence F
has only one subgroup of order p. If p is odd, then F is cyclic and G[F is
cyclic. We can suppose that =2 and that F is the quaternion group. Then
g=3 and G/=S, is the automorphism group of the quaternion group F.
The subgroup G’ is not nilpotent because (5,)” is not nilpotent. It -follows
that G’ must be a maximal subgroup of G because, otherwise, ¢’ would be
supersoluble, by the HuppERT'S theorem I, and (G');=Gy would be normal
in G. On the other hand, we have G'<M. Hence ¢'=M and G'=F. By
a theorem of Scmur [11l, G is a representation group of S,. But S, has
exactly two representation groups 7, and 7;*, where 7} has only one invelution
and 73* has more than one involution. Each fourth maximal subgroup. of
T:* is not normal in 7,*. On the other hand, 7, has the property that each
fourth maximal subgroup is invariant because each fourth maximal subgroup
of 7, is either the unit group or the center of 7,. Hence in this case G is
isomorphic to 7.

Case B. The order of G is divisible by exactly three different primes.

We have to prove by induction that G’ is nilpotent or G is isomorphic
to the holomorph H of an elementary abelian group P of order 2 by a
dihedral group D of order 2¢, where 2, p, ¢ are three different primes.

Let M be a minimal normal subgroup of G. Suppose that G/M is iso-
morphic to the holomorph H. P is a minimal normal subgroup of 4. Hence
the dihedral group D is a maximal subgroup of H. Consequently the unit
group of H is a third maximal subgroup of H and M is a third maximal
subgroup of G. It follows that each maximal subgroup of M is normal in G.
Hence the order of M is a prime 2, p or ¢. If |[M|==p, then we consider a
subgroup K/M of order p of G/M. K, is a fourth maximal subgroup of G.
Hence K,<1G and K=M K,<1G. But this is impossible because H is not
a supersoluble group. If [M| =p, then we consider the subgroup L/M of order
p? of G/M. Every subgroup of order $ of L is normal in G¢. If L would have
two subgroups of order $, then G/M would have a normal subgroup of order $,
which is not true. Because ¢ is odd, L must be a cyclic group. Hence P
would be also a cyclic group. This is a contradiction. So we have proved
that {G/M)" is nilpotent.
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If G would have two minimal normal subgroups M, and M,, then (G/M,)
and (G/M,)’" are nilpotent. Hence G’ is nilpotent.

We assume that G has a unique minimal normal subgroup. Then the
Fitting subgroup F of G is a p-group. Suppose that the order of G is p%¢”#”
(p, g, » are different primes).

At first we consider the case that F is not a -Sylow subgroup of G. Then
F G, , is, by the HupperT's theorem II, a supersoluble group, where G, ,
denotes a Hall subgroup of order ¢#”. We have |G, ,| =¢7 because, other-
wise, there is a subgroup of order ¢ or  which is contained in a fourth maximal
subgroup of G, which is impossible (because C(F)<F). Because of the same
reason, I'(r, , is a maximal subgroup of G. If F would not be a group of
order p, then there exists a subgroup F' 5=1 of F,with the properties /¥ <IFG, ,
and |F/F|=p. The subgroup G, F is then a second maximal subgroup of
G and G, would be contained in a fourth maximal subgroup of G. Hence
|F| =p and N(F)/C(F)=G/F is a cyclic group.

It remains to consider the case where F is a #-Sylow subgroup of G. We
have G=FG, ,. Suppose, at first, that G, , is not a maximal subgroup of G.
Then F is not a minimal normal subgroup of G and G, , is a second maximal
subgroup of G. Let & be a minimal normal subgroup (of G) contained in F.
Then G, , is maximal in M =G, ,F and M is maximal in G. M is a super-
soluble group, by the HuppERT’S theorem II, and F is a minimal normal
subgroup of M. Hence |F|=p. If |[F/F| =$3, then we consider the subgroup
G,F. By the Huppert’s theorem II, there exists a subgroup F* with the
following properties: F < F*< F and F'* <G, F. Then we have F G, << F* G, <TG,
and G, would be contained in a fourth maximal subgroup of G. So we have
|F/F| =p? and also |G, ,|=¢». We can suppose that [F|=p® because in
the case |F|=p? the group G is supersoluble. Each subgroup of order p
of F is normal in G. The group G has the unique minimal normal subgroup.
Hence F is a cyclic group or the quaternion group. In the first case G’ is
nilpotent. In the second case |[N(F)/C(F)| = |G/F| =4g¢r. This is impossible
because the automorphism group of the quaternion group has order 24.

So we can suppose that F is a minimal normal subgroup of G. Then G, ,
is maximal in G and |G, ,| <¢%? Let us take a maximal normal subgroup
M(of G) which contains F¥ and suppose that |G/M|=g. Suppose that ¢2| | G|.
Then we have |G,| =7. By the HuppERT’S theorem II, M is a supersoluble
group and F is a minimal normal subgroup of M. (Otherwise G, would be
contained in a fourth maximal subgroup.) Hence |F|=p and G’ is nilpotent.
So we can suppose that ¢%4|G|[. If #?| |G|, then we consider a subgroup
H|F of order » of M/F. The subgroup H is a second maximal subgroup of
G and, by the HupPERT’S theorem I, H is a supersoluble group. F must be
a minimal normal subgroup of H. Hence [F|=$ and G’ is nilpotent. So we
have |G, ,| =¢7 and »>g¢. If F is a minimal normal subgroup of M, then
by the HUPPERT's theorem IT we get |[F| =2 If F would not be a minimal
normal subgroup of M, then there exists a subgroup F ==1 with the properties:
F<F andF<1M. But then G, is maximal in G,F and G, - F is maximal in M.
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By using HurpPERT'S theorems I and II we get |[F|=p and |[F/F|=p2 If
|F| =3 then each subgroup of order p of F is normal in G. If F is cyclic,
then G’ is nilpotent. If F is a quaternion group, then [N(F)/C(F)| = | G/Z (F)|
=4y ¢, which is impossible. Hence we can suppose that |F|=p2 If p=2,
then 7 =0, which is not true. Hence we have 7| (p —1) and we can suppose
that G, , is a non-abelian group. Now we can apply the following theorem
of NanaMura [9]: “Let G be a finite group of odd order # such that » does
not contain any factor ¢, (#=13), then G’ is abelian.”” Hence we can suppose
that G is a group of even order. Consequently ¢=2 and G, , is a dihedral
group of order 27. G is the holomorph H of the elementary abelian group
of order $2 by the dihedral group of order 2#. On the other hand the holo-
morph H has non-nilpotent commutator subgroup and every fourth maximal
subgroup of H is the unit group.

Case C. The order of G is divisible by more than three different primes.

We take a maximal subgroup M of G. |M| is divisible by at least three
different primes. Hence M is supersoluble by the HuppeRT'S theorem II.
Every proper subgroup of & is supersoluble and the order of G is divisible
by at least four different primes. Then by a theorem of Hupprrr [6], G is
supersoluble and &' is nilpotent.

Proof of Theorem 4. The order of a principal factor of a soluble group G
is " (p prime). The maximal » which occurs in the order $* of any principal
factor of G is called the rank of G. Let G be a soluble group with the property
that each fourth maximal subgroup is invariant. We have to prove that
the rank of G is less or equal 3. By theorem 3 we have to consider only the
case where G’ is nilpotent and the order of the group is divisible by exactly
two or three different primes.

Case A. The order of & is divisible by exactly two different primes.

Let IV be a minimal normal subgroup of order 47 of G. 1f G has a normal
subgroup R of order ¢ ==1 (g =), then by induction, there exists a subgroup
N=1 of N with the properties RN/R<IG/R and |[N|<p% N=RNAN is
normal in G. Hence N=N and |N| <% By induction, the rank of G/N
is £3 and we are finished. So we can suppose that the Fitting subgroup F
of G is a p-group. The commutator subgroup of G is nilpotent. Hence G, <16G.
Let N be a minimal normal subgroup of G which is contained in the center
Z(G,) of G,. If N3=G,, then N is a minimal normal subgroup of NG, (g3=2)
and NG, is a proper subgroup of G. Then by the HuPPERT's theorem 11 we
get |[N| =p2 If N=G,=F, then G, is a maximal subgroup of G and G, is
a minimal normal subgroup of G. We have |G,| <¢® because, otherwise, we
would have a non-trivial g-group contained in a fourth maximal subgroup
of G. If |G,| =¢ then |N|=p; if |G,| =¢% then |N|=p? and if |G | =y,
then [N[ <% By induction we have, finally, that the rank of G is less or
equal 3.

Case B. The order of G is divisible by exactly three different primes.
The order of the group is p*¢°#".
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In the same way as in the case A we see that we can suppose that F=

F(G)=G, is a minimal normal subgroup of G. The Hall subgroup G, , is a

maximal subgroup of G and the order of G,

q,» 18 divisible by two or three

primes. But then we have |[F|<p? or |[F|=p and by induction we are
finished.
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