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Finite groups with invariant fourth maximal subgroups 
By 

ZVONIMIR JANKO 

Let g be a finite group. Then a series of subgroups G - - X  0, X 1 . . . .  , X~ 
of g is called a maximal  series of G if X i is a maximal  subgroup of Xi_ ~ 
( t < i < n ) .  A subgroup H of G is called an n-th maximal  subgroup of G 
if there exists at least one maximal  series X i ( 0 < i < n , )  of G so tha t  H - - X , , .  
Natura l ly  an n- th  maximal  subgroup H of g can be also an m-th (m q-n) 
maximal  subgroup of G. If  we speak about  n- th  maximal  subgroups of a 
group G, then we suppose tha t  they  really exist. 

The object of this paper  is to generalize the following theorems of B. 
HUPPERT [6]: 

I. If  each second maximal  subgroup of G is normal  in G, then g is super- 
soluble. If  the order of G is divisible by  at least three different primes, G is 
nilpotent. 

I I .  Let  each third maximal  subgroup of g be normal  in G. Then G' is 
nilpotent and the order of each principal factor  of G is divisible by  at most  
two l equal) primes. If  the order of G is divisible by  at least three different 
primes, G is supersoluble. 

Let  G denote a finite group with the proper ty  tha t  each fourth maximal  
subgroup of G is normal  in G. Then the following theorems are valid: 

Theorem 1. I /  G is a simple group, then G is isomorphic to I.FI2, p), 
where p - -5  or p is such prime that p t and p -  I are products o/ at most 
three primes and P ~ - 3  or •  (mod40).  

Theorem 2. iT/ G is a non-soluble and non-s2mple group, then G is iso- 
morphic to SL(2, 5). 

Theorem 3. I / G  is a soluble group, then G' is nilpotent or G is isomorphic 
to the holomorph o/ the elementary abelian group o I order pz b.v the dihedral 
group ol order 2 �9 q (p, q are primes," q is odd, p ~ q )  or G z.s one o/ two re- 
presentation groups (in the sense ol ScI~um ol the symmetric group S~. I /  
the order ol G is divisible by at least tour dil/erent primes, then G is supersoluble. 

Theorem 4. I /  G is soluble, then the order o/ each principal /actor o/ G 
is divisible by at most three (equal) primes. 

Professor MAtlLER communica ted  to me that  it is unknown whether we 
have infinitely m a n y  primes p which satisfy the conditions of Theorem 1. 

Corollary 1. Let G be a linite group with the property thai each /ourth 
maximal subgroup is invarianl. I t  G has a principal/actor o/ order pa (p prime), 
lhe~, G' is niipotent 
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Corollary 2. Let G be a finite group with the following properties: 
(a) The order o/ G is divisible by exactly two different primes, 
(b) G' is non-nilpotent, 
(c) each fourth maximal subgroup o/G is invariant. 
Then if G has more than one involution, G is isomorphic to S 4. I f  G has 

only one invoIulion, G is the group o/order 48 given by." 

T• = T~ = Ta 2 = (T1T2) 3 = (T2 7"a)a = ~T1, r.3~ = J.  

Proof of Theorem 1. Let G be a (non-cyclic) simple group with the property 
that each fourth maximal subgroup of G is the unit group t. Then by a 
celebrated theorem of FEIT-TI~Oh'IPSON I8~ G 24= 1, where G 2 denotes a Sylow 
2-subgroup of G. G2 cannot be a maximal subgroup of G. If G2 would be a 
maximal subgroup of G, then each third maximal subgroup of G2 is I and 
the order IGI of G is less or equal 8. Hence the class of G2 is ~2 .  But 
then by a theorem of D~SKINS ~1~ G would be a soluble group. Because G2 
cannot be a cyclic group, G 2 is the elementary abelian group of order 4. We 
can suppose that C(G2)= G2, where C(G2) denotes the centralizer of G 2 in G. 
If C(G2) 4=G2, then C(G2) is a maximal subgroup of G. Hence C(G2)=N(G2), 
where N(G2) denotes the normalizer of G~ in G. But this is impossible by 
a well known theorem of BURNSIDE. Hence G is a simple group whose 2-Sylow 
subgroup is the elementary abelian group of order 4, which is equal to its 
centralizer. We can apply a recent theorem of OORElX-STEIN-WALTER ~5~ 
which shows that G is isomorphic to LF(2, q), where q is an odd prime power 
~ 3 .  But all subgroups of LF(2, q) are known (DIcKSON ~2~) and we see 
that  q-=5 or q is such prime that q t and q + t  are products of at most 
three primes and q ~ 4-3 or 4-13 (rood 40). 

Proof of Theorem 2. Let G be a non-soluble and non-simple group with 
the property that each fourth maximal subgroup is invariant. Let N be a 
maximal normal subgroup of G. Then the following is true" 

(a) G/N is a simple group LF(2, p) of theorem t. Take a maximal sub- 
group H/N of G/N. By the HUPPEI~T'S theorem II, H is a soluble group. 
Hence N is a soluble group and if G/N would be soluble, then G would be 
soluble. Consequently G/N is a non-abelian simple group. Each fourth max- 
imal subgroup of G/N is the unit group. Hence G/N~LF(2, p) (P>3).  

(b) N is a nilpotent group -~ t. Take a third maximal subgroup K/N 
of G/N. Then K is nilpotent and so is N. 

(c) N=Z(G), where Z(G) denotes the center of G. For each prime p4=2 
we have Np<=Z(G). For let us take a third maximal subgroup H/N of G/N 
so that ]H/N I --2. Then H is a nilpotent group. Hence C(Np)~N. A~ is 
normal in G (Np<lG) and so is C(Np). Assume that C(2VI))+G. Then c(xp) 
is a soluble group and C(Np). N = G would be a soluble group. Hence C(N~) = G 
for each odd prime p. If 241NI, then we have N=Z(G). So we can suppose 

6* 
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tha t  2 I INI. If  N would not  be a 2-group, then there exists an odd prinie r 
so tha t  G # :  1. Let  us take a prime q with the properties ' q=~, q@r and 
q IIG/N]' Consider a subgroup K/N of order q of G/N. The subgroup is a 
second or a third maximal  subgroup of G. In  any  case, each proper subgroup 
of K is nilpotent.  Hence by  a theorem of IwasAwa  ~7~ K is a nilpotent 
group because IKI is divisible by  at least three different primes. We get 
C(N2)~N and, finally., N--Z(G). Now we assume tha t  N is a 2-group. Let  
us consider a subgroup LjN of GIN of order p (p 4:2).  I f  L is a third maximal  
subgroup, then L is nilpotent. If  L is a second maximal  subgroup, then L 
is snpersoluble by the HUPPERT'S theorem I. Hence Lp<~L ( p > 2 )  and L 
is again nilpotent.  Consequently C(N)4= N and we have N--ZIG). 

(d) G'--G. If  G'<G, then NG'--G and G would be a soluble group 
because G' is soluble by the Hl:PPzl~r's theorem II .  

(e) G is isomorphic to SL(2, p) and IN =2~ This isomorphism we get 
by  a theorem of ScrtuR EIO]_. 

(f) Each  third maximal  subgroup K N of GIN has order t or 2. Let  K i N  
be a third maximal  subgroup of G/N. If  ]K/N] 7 t ,  then I K / N I - - q  (prime). 
If  q ~ 2 ,  then Kq~=l and Kr is a fourth maximal  subgroup of G. Hence 
Kq<IG. But then K - - h ~ N  is a normal  subgroup of G, which is impossible. 

Finally, we have that  each second maximal  subgroup of GIN is nilpotent. 
Hence G/N~LF(2, 5) (see JANKO ~8~) and G"~SL(2, 5). 

Proo/ o/ Theorem 3. Let G be a soluble group with the proper ty  tha t  each 
fourth maximal  subgroup is invariant.  We consider three cases: 

Case A. The order of G is p~ qr (p, q primes; ~, ~q> 0). 
We have ~o prove (by induction~ that  G' is niIpotent  or G is isomorphic 

to S~ or to the representat ion group T 4 of S 4, where T~ has only one involution. 
Let M be a minimal normal  subgroup of G. Then (G/M)' is nilpotent 

or GIMPS 4 or G/M~--T 4. Representat ion group T 4 has the center Z(T4) of 
order 2 and TJZIT4)~S ~. 

Suppose that  G M is isomorphic to S 4 or 5f~. Then M is a 2-group or a 
3-group. If  M would be a 3-group, then we consider a subgroup K/M (of 
G/M) which has order 2 in the case G/M~S 4 and order 4 in the case G/M~T,.  
We can choose K as a thi rd  maximal  subgroup of G. Hence K is a nilpotent 
group. The 2-Sylow subgroup K~, of K is contained in a tourth maxima!  
subgroup B which is contained in K. Hence K2<JG and K--K2.  M<~G. 
But  this is impossible because S 4 has not a normal  subgroup of order 2. I t  
follows tha~ M is a 2-group. Hence the Fi t t ing subgroup F--F(G) of G is 
a 2-group because the 3-Sylow subgroup G s of G is not  normal  in G. Namely,  
if G a would be normal in G, then the 3-Sylow subgroup of S 4 would be normal 
in S 4. (S 4 is a homomorphic  image of G.) 

Now we assume tha t  the Fi t t ing subgroup of G is not  a p-group. Then 
we have two minimal normal  subgroups M 1 and Mz of G and (G/M1)' and 
(G/M2)' are nilpotent.  Namely,  if G/M 1 or G/M~ would be isomorphic to S~ 
or T~, then F(G) would be a 2-group. We can suppose tha t  M 1 and M~ are 
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both contained in G'. Then G'/M, and G'/M 2 are nilpotent. Hence G'= 
G'/(Mlc, M2) is nilpotent. 

Now we suppose that  the Fit t ing subgroup F(G) is a p-group (4=1). I f  
q~>=qa, then it would exist a fourth maximal  subgroup B (of G) whose order 
is divisible by  q. B is nilpotent and normal in G. Hence Be<~G. But this is 
impossible because F is a p-group. Hence qr q3. 

Suppose, at first, that  F = @ .  Then ]Gq] =q3 because, otherwise, G' is 
nilpotent. Each subgroup F, of F with tf/  I = p  is normal in ~ and F~ Gq is 
maximal  subgroup (of G). Consequently F~=I  and IFI = p  By a theorem 
of FITTING [4~ we get C(F)=F. Hence Gq is a group of automorphisms of 
F and therefore cyclic. We have G'<=F and G' is nilpotent. 

Suppose now that  F =4= @.  Then we have F Gq 4= G and [ G e [ <= q~. Assume 
that  ]Gql--q2. Then GqF must  be a maximal  subgroup of G. Let F 1 be a 
subgroup of index p of F. Then F 1 <~ G and G e F~ is a maximal subgroup of 
GqF. If  F14  = 1, then again we would have a fourth maximal subgroup B 
of G with Bq4=t. Consequently IFI = p ,  and C(F)=F. G/F is a cyclic group 
and G' is nilpotent. 

So we can assume that  [Gq] =q. Consider a maximal  normal subgroup 
M/F of G/F. Then we have ] G/M t 4:q because F 4 = @ .  Hence [ G/M[ : p .  

T' I f F  is a minimal normal subgroup of M, then by  the HUPPER_ S theorem II ,  
IFI <p~. if  : p ,  then G/F is cyclic and we are finished. So in this case 
we can suppose tha t  IF[----p~ and F is the elementary abelian group. G/F 
is an automorphism group of F. Let us take a principal series of G which 
contains M and F. First principal factor X/F between M and F must be 
a q-factor because F is a maximal  normal nilpotent subgroup of G. Hence 
FG e is normal in G. If  M4=FGq, then it must  be IM/FGql = p  because, 
otherwise, Gq would be contained in a fourth maximal subgroup of G. But  
then F is a third maximal  subgroup of G and each subgroup of order p of 
F must  be normal in G and G is a supersoluble group. Hence G' is nilpotent. 
So we can suppose that  M=FGq, [G I =paq and F is a minimal normal sub- 
group of G. By a theorem of HUI'PERT [6], a finite group is supersoluble if 
and only if every maximal  subgroup has prime index. Because G is not a 
supersoluble group, there exists a maximal  subgroup S of index p~ (2 < d =< 3). 
But  d ~ 3 is impossible because Gq is a proper subgroup of M. Hence l sl q. 
if  p>q, then S~,<aS. Hence Sf,<1G because N(SI,)~ S. On the other hand, 
St,<F because F contains every nilpotent normal subgroup of G. But  then 
G would be a supersoluble group. So we can suppose tha t  q>p and, because 
G/F is an automorphism group of F, we have q = p + t. Consequently p = 2, 
q =  3, and the order of G is 24. The subgroup S is not normal in G, also S 2 
is not normal in S and S a is normal in S but  not in G. Now we represent 
the group G by  permutations of the eosets of S. This is a faithful representa- 
tion of degree 4. Because the order of G is 24, G is isomorphic to S 4. On 
the other hand, every fourth maximal  subgroup of S 4 is the unit group and 
the commutator  subgroup of S~ is not nilpotent. S~ is also the holomorph 
of the elementary abelian group of order 2 ~ by the dihedral group of order 2.3. 
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I t  remains to consider the case where F is not  a minimal normal sub- 
group of M. If IM/F] ~q, then GeF=I=M and there exists a fourth ma~ximal 
subgroup (of G), whose order is divisible by  q, which is impossible. Hence 
!M/F --q and F=Mp. Let F 1 be a maximal  normal  subgroup of M contained 
in F.  Then by  the HUPPERT'S theorem I I  IF/~ _<_p~. F 1G2 is a maximal  
subgroup of M because, otherwise, Gq is contained in a fourth maximal  sub- 
group of G. Also Gq is a maximal  subgroup of F~ Gq. Let ~ be a maximal  
subgroup of F 1. Then F 2 (as a fourth maximal  subgroup of G) is normal  in G. 
And because Gq is maximal  in F 1 Gq, the subgroup F 1 is a minimal normal  
subgroup of G. Hence IF~ =-t  and IF~ - -p .  If  ]F/F~' =p, then G is a super- 
soluble group. So we can assume tha t  !F/F~I--p2. Each subgroup of order 
/5 of F is normal in G. If  F would have two subgroups of order p, then F~ 
would not be a maximal  normal  subgroup of M contained in F .  Hence F 
has only one subgroup of order p. I f  p is odd, then F is cyclic and G/f; is 
cyclic. We can suppose tha t  p - - 2  and tha t  F is the quaternion group. Then 
q - - 3  and G/F~--S 4 is the automorphism group of the quaternion group F. 
Tile subgroup G' is not  nilpotent because (S~) ~ is not  nilpotent. I t  follows 
tha t  G' must  be a maximal  subgroup of G because, otherwise, G' would be 
supersoluble, by  the HUPeERT'S theorem I, and (G')3--G3 would be normal  
in G. On the other hand, we have G'~M. Hence G ' - - M  and g ~ > ~ ,  By  
a theorem of SCHUR [11" 2, G is a representat ion group of Sa But  S~ has 
exact ly two representat ion groups T~ and T2*, where T~ has onl?: one involution 
and T* has more than one involution Each fourth maximal  subgroup of 
T* is not normal  in T*. On the other  hand, T 4 has the proper ty  tha t  each 
fourth maximal  subgroup is invariant  because each fourth maximal  subgroup 
of T~ is either the unit  group or the center of T 4. Hence in this case G is 
isomorphic to T~. 

Case B. The order of G is divisible by exactly three different primes. 

We have to prove by induct ion that  G' is nilpotent or G is isomorphic 
to the holomorph H of an elementary abelian group P of order p2 by  a 
dihedral group D of order 2q, where 2, p, q are three different primes. 

Let  M be a minimal normal  subgroup of G. Suppose that  G/M is iso- 
morphic to the holomorph H. P is a minimal normal  subgroup of H. Hence 
the dihedral group D is a maximal  subgroup of H. Consequently the unit 
group of H is a third maximal  subgroup of H and M is a third maximal  
subgroup of G. I t  follows tha t  each maximal  subgroup of M is normal  in G. 
Hence the order of M is a prime 2, p or q. I f  IM ~p, then we consider a 
subgroup K/M of order p of G/M. Kp is a fourth maximal  subgroup of G. 
Hence Kp<]G and K--MKf<]G. But  this is impossible because H is not  
a supersoluble group. If  {M I -p,  then we consider the subgroup L/M of order 
p2 of G/M. Every  subgroup of order p of L is normal  in G. If  L would have 
two subgroups of order p, then G/M would have a normal  subgroup of  order p, 
which is not  true. Because p is odd, L mus t  be a cyclic group. Hence P 
would be also a cyclic group. This is a contradiction. So we have proved 
that  (G/M)' is nilpotent. 
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If G would have two minimal normal subgroups M 1 and M 2, then (G/M1)' 
and (G/M2)' are nilpotent. Hence G' is nilpotent. 

We assume that  G has a unique minimal normal subgroup. Then the 
Fitting subgroup F of G is a p-group. Suppose that  the order of G is p~qV r v 
(p, q, r are different primes). 

At first we consider the case that  F is not a p-Sylow subgroup of G. Then 
F Gr is, by  the I-Iut'PERT'S theorem II,  a supersoluble group, where Gr 
denotes a Hall subgroup of order qar ~. We have I Gr =qr because, other- 
wise, there is a subgroup of order q or r which is contained in a fourth maximal 
subgroup of G, which is impossible (because C(F)<=F). Because of the same 
reason, FGq,, is a maximal  subgroup of G. If  F would not be a group of 
order p, then there exists a subgroup ff &-t of F, with the properties T<aFGr 
and ]F/F t =p. The subgroup Gq,~F is then a second maximal subgroup of 
G and Ge would be contained in a fourth maximal subgroup of G. Hence 
IF[ = p  and N(F)/C(F)=G/F is a cyclic group. 

I t  remains to consider the case where F is a p-Sylow subgroup of G. We 
have G=FGe, ~. Suppose, at first, that  Ge, ~ is not a maximal subgroup of G. 
Then F is not a minimal normal subgroup of G and Ge, ~ is a second maximal 
subgroup of G. Let F be a minimal normal subgroup (of G) contained in F. 
Then Gq,~ is maximal in M =  Ge,,,~V and M is maximal in G. M is a super- 
soluble group, by  the HUPPERT'S theorem II ,  and F is a minimal normal 
subgroup of M. Hence ]*~t = P '  If  ]F/F l >=p~, then we consider the subgroup 
GqF. By the HUPPERT'S theorem II,  there exists a subgroup F* with the 
following properties: T < F* < F and F* <a GqF. Then we have F Gq < F* Gq <YGq 
and Gq would be contained in a fourth maximal subgroup of G. So we have 
[F/F I <=p2 and also ]Ge,~] =qr. We can suppose that  ]F] = p a  because in 
the case IFt ~ p 2  the group G is supersoluble. Each subgroup of order p 
of F is normal in G. The group G has the unique minimal normal subgroup. 
Hence F is a cyclic group or the quaternion group, In the first case G' is 
nilpotent. In the second case IN(F)/C(F)I = I G/F] ~-4q r, This is impossible 
because the antomorphism group of the quaternion group has order 24. 

So we can suppose that  F is a minimal normal subgroup of G. Then Ge, ~ 
is maximal  in G and I Gr <q"r 2. Let us take a maximal  normal subgroup 
M(of G) which contains F and suppose that  [G/M] --q. Suppose that  q~IlGI. 
Then we have [G~I = r .  By the HUPPERT'S theorem II,  M is a supersoluble 
group and F is a minimal normal subgroup of M. (Otherwise G~ would be 
contained in a fourth maximal subgroup.) Hence IX] ~ p  and G' is nilpotent. 
So we can suppose that  q2-~ IG i. If  r2lJGt, then we consider a subgroup 
H/F of order r of M/F. The subgroup H is a second maximal  subgroup of 
G and, by  the HUPPERT'S theorem I, H is a supersoluble group. F must  be 
a minimal normal subgroup of H. Hence IFI = p  and G' is nilpotent. So we 
have i Ge,~l ~-q r and r>q. If  F is a minimal normal subgroup of M, then 
by  the HHuPI'ERr's theorem I I  we get iX] ~p~.  If  F would not be a minimal 
normal subgroup of M, then there exists a subgroup F @ t with the properties : 
F < F  ~ n d * < a M .  But  then G~ is maximal in G,/7 and G~ �9 P is maximal in M. 
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By using HuPpE~r's theorems I and II  we get tFt =-io and F/F[ <p2. tf 
IF I =pa, then each subgroup of order p of F is normal in G. If F is cyclic, 
then G' is nilpotent. If F is a quaternion group, then [N(F)/C(F). = U/Z(F)[ 
-=4r q, which is impossible. Hence we can suppose that F I - -p~ .  If p--2, 
then r ~--6, which is not true. Hence we have r I( p 1) and we can suppose 
that Gq.~ is a non-abelian group. Now we can apply the following theorem 
of NAHAbIURA [9~: "Let G be a finite group of odd order ~ such that ~,t does 
not contain any factor p~, (r>--3), then G' is abelian." Hence we can suppose 
that G is a group of even order. Consequently q--2  and Gq, r is a dihedral 
group of order 2r. G is the holomorph H of the elementary abelian group 
of order p~ by the dihedral group of order 2r. On the other hand the holo- 
morph H has non-nilpotent commutator subgroup and every fourth maximal 
subgroup of H is the unit group. 

Case C. The order of G is divisible by more than three different primes. 

We take a maximal subgroup M of G. IM is divisible by at least three 
different primes. Hence M is supersoluble by the HUpl, m~T'S theorem II. 
Every proper subgroup of G is supersoluble and the order of G is divisible 
by at least four different primes. Then by a theorem of HUPPERT [6~, G is 
supersoluble and G' is nilpotent. 

Proo.t o~ Theorem g. The order of a principal factor of a soluble group G 
is p~ (p prime). The maximal r which occurs in the order p~ of any principal 
factor of G is called the rank of G. Let G be a soluble group with the property 
that each fourth maximal subgroup is invariant. We have to prove that 
the rank of G is less or equal 3- By theorem 3 we have to consider only the 
case where G' is nilpotent and the order of the group ~s divisible by exactly 
two or three differen~ primes 

Case A. The order of G is divisible by exactly two different primes. 

Let N be a minimal normal subgroup of order/57 of G. If G has a normal 
subgroup R of order q~q=-~ (q @p), then by induction, there exists a subgroup 
N=--t of N with the properties R~V/R<~G/R and INI <pa. ~ = R N r ~ N  is 
normal in G. Hence 2V=N and INI <pa.  By induction, the rank of GIN 
is ~ 3 and we are finished. So we can suppose that the Fitting subgroup F 
of G is a p-group. The commutator subgroup of G is nilpotent. Hence Gp <~G. 
Let N be a minimal normal subgroup of G which is contained in the center 
Z(@~ of @. If N ~ G p ,  then N is a minimal normal subgroup of NGe (q~p) 
and NGq is a proper subgroup of G. Then by the HUPPERT'S theorem II  we 
get N 1 <_/5~. If N=@-=F,  then 6q is a maximal subgroup of G and Gp is 
a minimal normal subgroup of G. We have i Gel<qa because, other~dse, we 
would have a non-trivial q-group contained in a fourth maximal subgroup 
of G. If iGq] =qa, then INt = p ;  if [Gql =q~, then IN <=p~ and if tGq -=q, 
then IN[ <pa.  By induction we have, finaliy, that the rank of G is !ess or 
equal 3. 

Case B. The order of G is divisible by exactly ~hree different primes. 
The order of the group is p~qCr ~. 
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I n  t h e  s a m e  w a y  as  in  t h e  case  A we see  t h a t  we c a n  s u p p o s e  t h a t  F =  

F ( G ) = @  is a m i n i m a l  n o r m a l  s u b g r o u p  of G. T h e  H a l l  s u b g r o u p  G~, r is a 

m a x i m a l  s u b g r o u p  of G a n d  t h e  o r d e r  of Gq, r is d i v i s i b l e  b y  t w o  or  t h r e e  

p r imes .  B u t  t h e n  we h a v e  [F  l ~ p 2  or  !F  t = i b  a n d  b y  i n d u c t i o n  we a re  

f in i shed .  
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