On Faber Polynomials and Faber Expansions

T. KÖVARI and CH. POMMERENKE

Received October 8, 1966

I. Estimates for Faber Polynomials

Let

$$
\psi(\zeta) = \zeta + b_0 + b_1 \zeta^{-1} + \cdots
$$

be meromorphic and univalent in $|\zeta| > 1$. Thus, $z = \psi(\zeta)$ maps $\{|\zeta| > 1\}$ onto the complement of a continuum K of logarithmic capacity one. The Faber polynomials $F_n(z) = z^n + \cdots$ are defined by

(1.1)
$$
\frac{\psi'(\zeta)}{\psi(\zeta)-z}=\sum_{n=0}^{\infty}\frac{F_n(z)}{\zeta^{n+1}}.
$$

It is known [9] that

(1.2)
$$
\log n < \max_{z \in K} \sum_{v=1}^{n} \frac{1}{v} |F_v(z)|^2 < 4 \log n + 8.
$$

In particular *[13,* p. 134]

$$
\max_{z \in K} |F_n(z)| < [n \log(n+1)]^{\frac{1}{2}} + e^{\frac{1}{2}}.
$$

We shall give a sharper estimate.

Theorem 1. (i) *There are absolute constants A and* $\alpha < \frac{1}{2}$ *such that*

$$
\max_{z \in K} |F_n(z)| \leq A n^{\alpha}.
$$

(ii) *There exists a function* $\tilde{\psi}(\zeta)$ *such that, for each fixed z,*

 $|\tilde{F}_n(z)| > n^{0.138}$ *for infinitely many n.*

Proof of (i). This statement follows at once from the next lemma which we will also need later on.

Lemma 1. For $z \in E$

(1.3)
$$
\int_{0}^{2\pi} \left| \frac{\psi'(r \, e^{i \, \vartheta})}{\psi(r \, e^{i \, \vartheta}) - z} \right| d \, \vartheta < \frac{A_0}{(1 - 1/r)^{\alpha}}
$$

where A_0 and $\alpha < \frac{1}{2}$ are absolute constants.

14 Math. Z., Bd. 99

The proof will use the same method as in [3]. We may assume that $z=0$. Then $\psi(\zeta)$ + 0 for $|\zeta| > 1$. Let $0 < \delta < 1$. We write $t = re^{i\theta}$, $\rho = 1/r$. Thus

$$
(1.4) \qquad \left\{\int\limits_0^{2\pi} \left|\frac{\psi'(t)}{\psi(t)}\right|^{1+\delta} d\vartheta\right\}^2 \leq \int\limits_0^{2\pi} \left|\frac{\psi'(t)}{\psi(t)}\right|^2 d\vartheta \cdot \int\limits_0^{2\pi} \left|\frac{\psi'(t)}{\psi(t)}\right|^{2\delta} d\vartheta.
$$

Using (1.1) and (1.2) we can easily show that

(1.5)
$$
\int_{0}^{2\pi} \left| \frac{\psi'(t)}{\psi(t)} \right|^2 d\theta \le \frac{A_1}{1-\rho} \cdot \log \frac{1}{1-\rho},
$$

where A_1 , ... denote absolute constants. Let

$$
J(\rho) = \int_{0}^{2\pi} \left| t \frac{\psi'(t)}{\psi(t)} \right|^{2\delta} d\theta.
$$

From the power series expansion of $[t\psi'(t)]\psi(t)]^{\delta}$ and PARCEVAL's formula we obtain \sim

$$
\rho J''(\rho) + J'(\rho) = 4 \int_0^{2\pi} \left| \frac{d}{dt} \left[t \frac{\psi'(t)}{\psi(t)} \right]^{\rho} \right|^2 d\theta
$$

= $4 \delta^2 \int_0^{2\pi} \left| \frac{1}{t} + \frac{\psi''(t)}{\psi'(t)} - \frac{\psi'(t)}{\psi(t)} \right|^2 \left| t \frac{\psi'(t)}{\psi(t)} \right|^{2\delta} d\theta.$

The distortion theorems imply that

$$
|\psi''(t)|\psi'(t)| \leq A_2/(1-\rho), \quad |\psi'(t)|\psi(t)| \leq A_3/(1-\rho).
$$

Hence

$$
\rho J''(\rho) \leq A_4 \, \delta^2 (1-\rho)^{-2} J(\rho) \, .
$$

It follows that

$$
J(\rho) \leq A_5 (1-\rho)^{-\alpha_1 \delta^2}.
$$

Here α_1 , ... denote absolute constants $\langle \frac{1}{2} \rangle$. Therefore we obtain from (1.4) and (1.5)

$$
\int_{0}^{2\pi} \left| \frac{\psi'(t)}{\psi(t)} \right|^{1+\delta} d\theta \leq A_6 (1-\rho)^{-\frac{1}{2}-\alpha_2 \delta^2}.
$$

Hence the Hölder inequality gives

$$
\int_{0}^{2\pi} \left| \frac{\psi'(t)}{\psi(t)} \right| d\theta \leq A_7 (1-\rho)^{-\frac{1}{2}+\frac{\delta}{2}-\alpha_3 \delta^2}.
$$

Choosing $\delta > 0$ sufficiently small we obtain (1.3).

Proof of (ii). Let

$$
\widetilde{\psi}(\zeta) = \zeta + a_1 \zeta^{-1} + \cdots \qquad (|\zeta| > 1)
$$

be the function constructed in *[11].* Then

(1.6) $|a_n| > n^{0.139-1}$ for infinitely many n.

From (1.1), we can get the relation

$$
(n+1) a_n = z \widetilde{F}_n(z) - \widetilde{F}_{n+1}(z) - \sum_{\nu=1}^{n-1} a_{\nu} \widetilde{F}_{n-\nu}(z) \qquad (n=1, 2, ...).
$$

Suppose that, for some fixed z ,

$$
|\tilde{F}_\nu(z)| \leq C_1 v^\beta \qquad (\nu = 1, 2, \ldots)
$$

where $\beta = 0.138$ and C_1 , ... are certain constants. Then it follows that

$$
(n+1) |a_n| \leq C_2 (n+1)^{\beta} + C_1 \sum_{\nu=1}^{n-1} |a_{\nu}| (n-\nu)^{\beta}.
$$

SCHWARZ'S inequality and the area theorem give

$$
(n+1) |a_n| \leq C_2 (n+1)^{\beta} + C_1 \left(\sum_{\nu=1}^{n-1} \nu |a_{\nu}|^2 \right)^{\frac{1}{2}} \left(\sum_{\nu=1}^{n-1} \frac{1}{\nu} (n-\nu)^{2\beta} \right)^{\frac{1}{2}}
$$

$$
\leq C_2 (n+1)^{\beta} + C_1 n^{\beta} (1 + \log n)^{\frac{1}{2}} < C_3 (n+1)^{0.1385},
$$

in contradiction to (1.6).

2. The Faber Polynomials of Convex Sets

We shall assume now that the set K is convex. Then the function

(2.1)

$$
h(t,s) = \frac{t\psi'(t)}{\psi(t) - \psi(s)} - \frac{1}{2} \frac{t+s}{t-s} = \frac{1}{2} + \sum_{n=1}^{\infty} \left[F_n(\psi(s)) - s^n \right] t^{-n}
$$

$$
= \frac{1}{2} - \sum_{n=1}^{\infty} \left[\frac{t\psi'(t)}{n} F'_n(\psi(t)) - t^n \right] s^{-n}
$$

is analytic in $|s| > 1$, $|t| > 1$ and has positive real part [4, Lemma 2]. The second identity (2.1) and CARATHÉODORY's coefficient estimate together with SCHWARZ' lemma imply

$$
\left|\frac{t\psi'(t)}{n}F'_n(\psi(t)) - t^n\right| \leq \frac{1}{|t|} \qquad (n = 1, 2, \ldots; |t| > 1).
$$

In particular, for $n = 1$ we obtain a new proof of the inequality

$$
|\psi'(t)-1| \leq \frac{1}{|t|^2}
$$
 $(|t|>1),$

due to GRÖTZSCH [7] and GOLUSIN [5].

Theorem 2. *If K is convex but not a segment then*

$$
|F_n(\psi(\zeta)) - \zeta^n| < 1 \quad (\lvert \zeta \rvert \geq 1).
$$

Hence all zeros of $F_n(z)$ *lie in the interior of K.*

14"

Proof. The function $h(t, s)$ is continuous in $|t| > 1$, $|s| \ge 1$. Let s be fixed, $|s|\geq 1$. Then Re $h(t, s) > 0$, $h(\infty, s) = \frac{1}{2}$. Hence the first identity (2.1) and CARATHÉODORY'S coefficient estimate show that

(2.2)
$$
|F_n(\psi(s)) - s^n| \leq 1
$$
,

and equality can hold only if

(2.3)
$$
h(t,s) = \frac{1}{2} \frac{\zeta^m + a}{\zeta^m - a} \qquad (m \ge 1, |a| = 1).
$$

Suppose that $m \geq 2$. Using (2.1) and integrating, we obtain

$$
\psi(t) = \psi(s) + (t - s) \left[1 - a t^{-m} + \cdots \right]^{1/m}
$$

$$
= t + \cdots + \frac{as}{m} t^{-m} + \cdots
$$

and therefore

$$
t\,\psi'(t)=t+\cdots-a\,s\,t^{-m}+\cdots.
$$

Since $t\psi'(t)$ is starlike in $|t|>1$ it follows [2] that $|as|\leq 2/(m+1)\leq 2/3$, in contradiction to $|as| \ge 1$. Hence $m=1$. But in this case integration of (2.3) shows that K is a segment. Therefore equality cannot hold in (2.2) .

3. Faber Expansions, General Remarks

Let first K be a closed Jordan domain, and let the function $f(z)$ be analytic in the interior of K and continuous on K . Let again

(3.1)
$$
\psi(\zeta) = \zeta + b_0 + b_1 \zeta^{-1} + \cdots
$$

map $|\zeta| > \rho$ onto the exterior of K. Then $\psi(\zeta)$ is continuous in $|\zeta| \geq 1$.

The *Faber coefficients* of the function $f(z)$ are defined by

(3.2)
$$
c_m = \frac{1}{2\pi i} \int_{|t| = 1} f(\psi(t)) \frac{dt}{t^{m+1}} \qquad (m = 0, 1, ...).
$$

The formal series

$$
\sum_{m=0}^{\infty} c_m F_m(z)
$$

is the *Faber series* or *Faber expansion* of the function $f(z)$.

One can easily extend this definition to the more general case when K is any continuum whose complement is connected. Using FATOU'S theorem about the radial limits of bounded analytic function, one can define $\psi(\zeta)$ almost everywhere on $|\zeta| = 1$ as a bounded integrable function. Therefore $f(\psi(\zeta))$ is also a bounded integrable function.

In the remaining sections of this paper we shall consider the following question: Under what conditions does the Faber expansion of $f(z)$ converge uniformly on K, and represent the function $f(z)$?

AL'PER has shown [1] that if the boundary Γ of K is a smooth rectifiable Jordan curve, which satisfies a certain smoothness condition¹, then, as far as uniform convergence is concerned, the Faber series behaves very much like a Fourier series.

It will be shown that the situation is rather similar if we assume that Γ is a Jordan curve of *bounded rotation.* We recall the definition of such curves [8],

Let Γ : $z(\tau)$ be a smooth Jordan curve, and let $\vartheta(\tau)$ denote the angle between the positive real axis and the tangent of Γ^* at the point $z(\tau)$. Then

$$
\int_{\Gamma^*} |d\vartheta| = \int \left| \frac{d\vartheta}{d\tau} \right| d\tau
$$

is the *total rotation* of F.

Now let Γ be an arbitrary Jordan curve, let (3.1) map $|\zeta| > \rho$ onto the exterior of Γ , and let Γ , $(r > \rho)$ denote the level curves of the mapping. $V(r)$, the total rotation of Γ_r is a decreasing function of r. If $V(r)$ is bounded, Γ is said to be of *bounded rotation,* and

$$
V = \sup_{r > \rho} V(r) = \lim_{r \to \rho} V(r)
$$

is called the *total rotation* of F. A curve of bounded rotation has a right and Ieft tangent at every point, and a proper tangent outside a countable set.

In section 4 we shall compare the approximation provided by the partial sums of the Faber-expansion of $f(z)$ with the best polynomial approximation of $f(z)$. In section 5 we shall give necessary conditions for the uniform convergence of the Faber expansion.

4. Faber Expansion and the Best Polynomial Approximation

It is known that if K is any continuum, and that if $f(z)$ is any function continuous on K and analytic in the interior of K , there exists a polynomial $\pi_n(z)$ of degree *n* (the polynomial of best uniform approximation) such that for every polynomial $P_n(z)$ of degree n

$$
\max_{z \in K} |f(z) - P_n(z)| \ge \max_{z \in K} |f(z) - \pi_n(z)| = \rho_n(f, K),
$$

and $\rho_n(f, K)$ is the best (uniform) polynomial approximation of the function $f(z)$ on K .

Theorem 3. *If*

$$
S_n(z) = \sum_{k=0}^n c_k F_k(z)
$$

$$
\int_{0}^{c} \frac{\Omega(h)}{h} |\log h| \, dh < \infty
$$

should be satisfied for some $c > 0$.

¹ Let s be the arc length parameter on Γ , and let $\mathcal{S}(s)$ denote the angle between the positive real axis, and the tangent of the curve. Let $\Omega(h)$ denote the modulus of continuity of the function $\vartheta(s)$. Then Al'per requires that the condition

then for any continuum K whose complement is connected and for any function f(z) analytic in the interior of K and continuous on K we have

$$
(4.1) \t\t\t |f(z)-S_n(z)| \leq A n^{\alpha} \cdot \rho_n(f,K)
$$

where A and $\alpha < \frac{1}{2}$ *are absolute constants.*

We shall need:

Lemma **2.**

(4.2)
$$
\frac{1}{2\pi i} \int_{|t|=1} \frac{F_n(\psi(t))}{t^{m+1}} = \begin{cases} 1 & \text{if } n=m\\ 0 & \text{if } n+m, m \ge 0. \end{cases}
$$

For $|\zeta| = 1$, $\psi(\zeta)$ *is defined by its radial limits.*

Proof. It is known that $F_n(\psi(\zeta)) = \zeta^n + H_n(\zeta)$ where $H_n(\zeta)$ is regular and bounded in $|\zeta|>1$ and $H_n(\infty)=0$. Thus, it follows from the theorem of GOLtmEV-PRIvALOV *[12,* p. 144] that

$$
\int_{|t|=1} \frac{H(t)}{t^{m+1}} \, dt = 0 \qquad (m=0, 1, 2, \ldots),
$$

and (4.2) follows now immediately.

Proof of the theorem. We can write the polynomial of best approximation in the form

$$
\pi_n(z) = \sum_{k=0}^n c_k^{(n)} F_k(z) \, .
$$

Using (4.2) we obtain

$$
(4.3) \qquad \frac{1}{2\pi i} \int\limits_{|t|=1} \pi_n(\psi(t)) \, \frac{dt}{t^{m+1}} = \sum_{k=0}^n c_k^{(n)} \, \frac{1}{2\pi i} \int\limits_{|t|=1} \frac{F_k(\psi(t))}{t^{m+1}} \, dt = c_m^{(n)}.
$$

From (3.2) lnd (4.3) we obtain for $z \in K$

$$
|f(z) - S_n(z)| = \left| f(z) - \sum_{k=0}^{n} c_k F_k(z) \right|
$$

\n
$$
\leq |f(z) - \pi_n(z)| + \left| \pi_n(z) - \sum_{k=0}^{n} c_k F_k(z) \right|
$$

\n
$$
= |f(z) - \pi_n(z)| + \left| \sum_{k=0}^{n} (c_k^{(n)} - c_k) F_k(z) \right|
$$

\n
$$
= |f(z) - \pi_n(z)| + \left| \sum_{k=0}^{n} \frac{1}{2\pi i} \int_{|t|=1} \left\{ f(\psi(t)) - \pi_n(\psi(t)) \right\} F_k(z) \frac{dt}{t^{k+1}} \right|
$$

\n
$$
= |f(z) - \pi_n(z)| + \left| \frac{1}{2\pi i} \int_{|t|=1} \left\{ f(\psi(t)) - \pi_n(\psi(t)) \right\} \sum_{k=0}^{n} \frac{F_k(z)}{t^{k+1}} dt \right|
$$

\n
$$
\leq \rho_n + \rho_n \frac{1}{2\pi} \int_{|t|=1} \left| \sum_{k=0}^{n} \frac{F_k(z)}{t^{k+1}} \right| |dt|;
$$

\n(4.4)
$$
|f(z) - S_n(z)| \leq \rho_n (1 + L_n)
$$

where

(4.5)
$$
L_n = \frac{1}{2\pi} \int_{|t|=1} \left| \sum_{k=0}^n \frac{F_k(z)}{t^{k+1}} \right| |dt|
$$

is the "Lebesgue-constant" of the system of Faber polynomials.

Using (1.2) we could easily prove $L_n \leq 2 \frac{1}{n} (\log n + 5)$. To get a sharper estimate we shall use Lemma 1. By (1.1) and (4.5), with $1 < r \le 2$,

$$
L_{n} = \frac{1}{2\pi} \int_{|t|=1} \left| \sum_{k=0}^{n} \frac{1}{2\pi i} \cdot \int_{|s|=r} \frac{\psi'(s)}{\psi(s)-z} \left(\frac{s}{t}\right)^{k} ds \right| |dt|
$$

$$
\leq \frac{1}{(2\pi)^{2}} \int_{|t|=1} \int_{|s|=r} \left| \frac{\psi'(s)}{\psi(s)-z} \right| \left| \frac{(s/t)^{n+1}-1}{s/t-1} \right| |ds| |dt|.
$$

Exchanging the orders of integration, we obtain from Lemma 1

$$
(4.6) \quad L_n \le A_1 r^{n+1} \log \frac{1}{1 - 1/r} \int_{|s| = r} \left| \frac{\psi'(s)}{\psi(s) - z} \right| |ds|
$$
\n
$$
\le A_2 r^{n+1} \log \frac{1}{1 - 1/r} \cdot (1 - r)^{-\alpha_0} < A_3 r^{n+1} (1 - r)^{-\alpha}
$$

where A_1 , ... and $\alpha_0 < \alpha < \frac{1}{2}$ are absolute constants. Choosing $r = 1 + 1/n$ in (4.6) we obtain

$$
(4.7) \t\t\t L_n \leq A_4 n^{\alpha}.
$$

By (4.4), this implies (4.1).

Theorem 4. *Suppose that K is a closed Jordan domain whose boundary 1" is of bounded rotation. Then for any function f(z) analytic in the interior of K and continuous on K we have that*

(4.8)
$$
|f(z) - S_n(z)| \leq (A \cdot \log n + B) \rho_n(f, K).
$$

Here the constants A and B depend only on the domain K.

We shall need:

Lemma 3 *[10,* Lemma 1]. *Let F be a closed Jordan curve of bounded rotation, and let*

$$
v(s, \vartheta) = \arg(\psi(e^{is}) - \psi(e^{is}))
$$

Then

(4.9) (i)
$$
\int_{0}^{2\pi} |d_{\tau}v(\tau, \vartheta)| \leq V,
$$

where V denotes the total rotation of Γ .

(4.10) (ii)
$$
F_K(\psi(e^{i\vartheta})) = \frac{1}{\pi} \int_0^{2\pi} e^{iks} d_s v(s, \vartheta).
$$

Proof of the Theorem. Using (4.10), and (4.9), we estimate the constant L_n of (4.5):

$$
L_{n} = \frac{1}{2\pi} \int_{0}^{2\pi} \left| \sum_{k=0}^{n} F_{k}(\varphi(e^{i\vartheta})) e^{-ik\vartheta} \right| d\vartheta
$$

\n
$$
= \frac{1}{2\pi^{2}} \int_{0}^{2\pi} \left| \int_{0}^{2\pi} \left(\sum_{k=0}^{n} e^{i k (s-\vartheta)} \right) d_{s} v(s, \vartheta) \right| d\vartheta
$$

\n
$$
\leq \frac{1}{2\pi^{2}} \int_{0}^{2\pi} \int_{0}^{2\pi} \left| \sum_{k=0}^{n} e^{i k (s-\vartheta)} \right| |d_{s} v(s, \vartheta)| d\vartheta
$$

\n
$$
= \frac{1}{2\pi^{2}} \int_{0}^{2\pi} \int_{0}^{2\pi} \left| \frac{\sin \frac{n+1}{2} (s-\vartheta)}{\sin \frac{s-\vartheta}{2}} \right| |d_{s} v(s, \vartheta)| d\vartheta
$$

\n
$$
= \frac{1}{2\pi^{2}} \int_{0}^{2\pi} \left| \int_{0}^{2\pi} \left| \frac{\sin \frac{n+1}{2} (s-\vartheta)}{\sin \frac{s-\vartheta}{2}} \right| d\vartheta \right| |d_{s} v(s, \vartheta)|
$$

\n
$$
\leq \frac{2}{\pi^{3}} (\log n + C) \int_{0}^{2\pi} |d_{s} v(s, \vartheta)| \leq \frac{2V}{\pi^{3}} (\log n + C).
$$

From (4.4) and (4.11) we immediately obtain (4.8).

5. Uniform Convergence of Faber Expansions

Given any complex Fourier series:

$$
\mathfrak{S} = \sum_{k=-\infty}^{+\infty} c_k e^{i k \cdot 3},
$$

its *conjugate* series is the series:

$$
\widetilde{\mathfrak{S}} = \sum_{k=-\infty}^{+\infty} \widetilde{c}_k e^{i k \cdot 3},
$$

where

$$
\tilde{c}_k = \begin{cases}\n-i c_k, & \text{if } k \ge 0 \\
+i c_k, & \text{if } k < 0\n\end{cases}
$$

If both series converge uniformly, then so does the series:

$$
\frac{1}{2}(\mathfrak{S}+i\,\widetilde{\mathfrak{S}})=\sum_{k=0}^{\infty}c_k\,e^{i\,k\,\cdot\,3}.
$$

Theorem 5. *Let K be a closed Jordan domain, whose boundary F is of bounded rotation. Let f(z) be analytic in the interior of K and continuous on K. Suppose that the Fourier series of* $f(\psi(e^{iS}))$ *together with its conjugate series converges uniformly. Then the Faber expansion of* $f(z)$ *converges uniformly on K to* $f(z)$ *.*

We shall need the following lemma:

Lemma 4. *Let K be a closed Jordan domain bounded by a rectifiable Jordan curve, and let the function f(z) be analytic in the interior of K and continuous on K. If the Faber series of* $f(z)$ *converges uniformly on K, then its sum is* $f(z)$ *.*

Proof. We write:

$$
\sum_{k=0}^{\infty} c_k F_k(z) = f^*(z)
$$

 $f^*(z)$ is regular in the interior of K, and continuous on K. Let

$$
c_m^* = \frac{1}{2 \pi i} \int\limits_{|t|=1} f^*(\psi(t)) \frac{dt}{t^{m+1}} = \frac{1}{2 \pi i} \int\limits_{|t|=1} \sum_{k=0}^{\infty} c_k \frac{F_k(\psi(t))}{t^{m+1}} dt.
$$

Integrating term-by-term, and using Lemma 1, we obtain

$$
c_m^* = \sum_{k=0}^{\infty} c_k \frac{1}{2\pi i} \int_{|t|=1} \frac{F_k(\psi(t))}{t^{m+1}} dt = c_m.
$$

The function $g(z) = f(z) - f^{*}(z)$ is regular in the interior of K, continuous on K, and all its Faber coefficients are zero:

(5.1)
$$
\frac{1}{2\pi i} \int\limits_{|t|=1} g(\psi(t)) \frac{dt}{t^{n+1}} = 0 \qquad (n = 0, 1, 2, ...).
$$

Also, $g(\psi(\zeta))$ is continuous on $|\zeta|=1$. By the theorem of GOLUBEV-PRIVALOV [12, p. 144] it follows from (5.1) that there exists an analytic function $G(\zeta)$, regular in $|\zeta| > 1$, continuous in $|\zeta| \ge 1$, and such that

$$
G(\infty) = 0,
$$

$$
G(\zeta) = g(\psi(\zeta)) \quad \text{for } |\zeta| = 1.
$$

If we denote the inverse function of $z = \psi(\zeta)$ by $\zeta = \varphi(z)$, then $G(\varphi(z))$ is regular in the exterior of Γ , continuous on the closed exterior, vanishes at $z = \infty$, and satisfies

$$
G(\varphi(z)) = g(z) \quad \text{for } z \in \Gamma.
$$

Thus the function

$$
g^*(z) = \begin{cases} g(z) & \text{for } z \in K \\ G(\varphi(z)) & \text{for } z \notin K \end{cases}
$$

is continuous on the extended plane, and regular in the interior and exterior of *F*. Hence, since *F* is rectifiable, by a well-known theorem $g^*(z)$ is regular on *F* also. By LIOUVILLE's theorem: $g^*(z)$ is a constant, $g(z) \equiv g^*(\infty) = 0$. Hence $f(z) \equiv f^*(z)$ which was to be proved.

Proof of Theorem 5. We note that the Faber coefficients (3.1) of *f(z)* are also Fourier coefficients of the function $F(9) = f(\psi(e^{i\vartheta}))$ for $k \ge 0$. Applying (4.10):

$$
S_n(\psi(e^{i\varphi})) = \sum_{k=0}^n c_k F_k(\psi(e^{i\varphi})) = \sum_{k=0}^n c_k \frac{1}{\pi} \int_0^{2\pi} e^{ik\tau} d_\tau v(\tau, \varphi)
$$

(5.2)

$$
= \frac{1}{\pi} \int_0^{2\pi} \left(\sum_{k=0}^n c_k e^{ik\tau} \right) d_\tau v(\tau, \varphi) = \frac{1}{\pi} \int_0^{2\pi} s_n^*(\tau) d_\tau v(\tau, \varphi)
$$

where

(5.3)
$$
s_n^*(\theta) = \sum_{k=0}^n c_k e^{ik\theta}.
$$

By the assumptions of the theorem and the remark made at the beginning of section 5, $s_n^*(\tau)$ converges uniformly to a continuous function $F^*(\vartheta)$:

(5.4)
$$
\max_{\mathfrak{g}} |s_n^*(\mathfrak{H}) - F^*(\mathfrak{H})| = \varepsilon_n \to 0.
$$

From (5.2), (5.3) and (4.9), we obtain

$$
S_n(\psi(e^{i\varphi})) - \frac{1}{\pi} \int_0^{2\pi} F^*(\tau) d_\tau v(\tau, \varphi)
$$

\n=
$$
\left| \frac{1}{\pi} \int_0^{2\pi} (s_n^*(\tau) - F^*(\tau)) d_\tau v(\tau, \varphi) \right|
$$

\n
$$
\leq \frac{1}{\pi} \int_0^{2\pi} |s_n^*(\tau) - F^*(\tau)| | d_\tau^{\alpha} v(\tau, \varphi)|
$$

\n
$$
\leq \varepsilon_n \cdot \frac{1}{\pi} \int_0^{2\pi} |d_\tau v(\tau, \varphi)| \leq \frac{V \varepsilon_n}{\pi} \to 0 \qquad (n \to \infty).
$$

Then $S_n(\psi(e^{i\varphi}))$ converges uniformly for $0 \le \varphi \le 2\pi$, i.e. $S_n(z)$ converges uniformly on Γ . Hence, by the maximum principle, $S_n(z)$ converges uniformly on K. By Lemma 3 its sum is $f(z)$. This completes the proof of theorem 3.

Before stating the next theorem, we shall formulate some lemmas:

Lemma 5 [8, Nr. 28]. *Suppose that F is of bounded rotation. Then there exists a function u(O) such that:*

- **2** π (5.5) (i) $\int_{0}^{1} |du(\vartheta)| = V.$
	- (ii) *At every point* $\psi(e^{i\vartheta})$ of Γ where there is a tangent, $u(\vartheta)$ gives the *angle between the positive real axis and the tangent.*

(5.6) (iii)
$$
\log \psi'(\zeta) = \frac{1}{\pi} \int_{0}^{2\pi} \log(1 - e^{i\vartheta/\zeta}) du(\vartheta)
$$
 for $|\zeta| > 1$.

Lemma 6. If Γ is of bounded rotation, and all its exterior angles are $\geq \pi \alpha$ $(0<\alpha\leq 1)$ *then, for every* $\varepsilon>0$ *:*

$$
(5.7) \t\t |\psi'(\zeta)| \leq \frac{K_{\varepsilon}}{\left(1 - \frac{1}{|\zeta|}\right)^{1 - \alpha + \varepsilon}}.
$$

Proof. Since $u(0)$ (cf. Lemma 5) is of bounded variation, we can write:

$$
u(\vartheta) = u^{+}(\vartheta) - u^{-}(\vartheta),
$$

$$
\int_{0}^{2\pi} |du(\vartheta)| = \int_{0}^{2\pi} du^{+}(\vartheta) + \int_{0}^{2\pi} du^{-}(\vartheta)
$$

where $u^+(3)$ and $u^-(3)$ are increasing functions. We also write:

$$
u^+(\varphi+0)-u^+(\varphi-0)=h^+; \quad u^-(\varphi+0)-u^-(\varphi-0)=h^-;
$$

$$
u(\varphi+0)-u(\varphi-0)=h=h^+-h^-.
$$

If $h \ge 0$ then $h^+ = h$, $h^- = 0$; if $h < 0$, then $h^+ = 0$, $h^- = -h \le 1 - \alpha$ by assumption. Let $z=r \cdot e^{i\varphi}$. Applying Lemma 4:

(5.8)
$$
\log |\psi'(re^{i\varphi})| = \frac{1}{\pi} \int_{0}^{2\pi} \log |1 - \frac{1}{r} e^{i(3-\varphi)}| du(9)
$$

\n
$$
= \frac{1}{\pi} \int_{0}^{2\pi} \log |1 - \frac{1}{r} e^{i(3-\varphi)}| du^{+}(9) - \frac{1}{\pi} \int_{0}^{2\pi} \log |1 - \frac{1}{r} e^{i(3-\varphi)}| du^{-}(9).
$$

For the first integral, we have the estimate

$$
(5.9) \qquad \frac{1}{\pi} \int_{0}^{2\pi} \log \left| 1 - \frac{1}{r} e^{i(3-\varphi)} \right| du^{+}(9) \leq \frac{\log 2}{\pi} \int_{0}^{2\pi} du^{+}(9) \leq \frac{\log 2}{\pi} V.
$$

Using the monotonicity of u^- and the compactness of the unit circle it is easy to show that there exists a fixed $\delta > 0$ such that

$$
u^-(\varphi+\delta)-u^-(\varphi-\delta)=1-\alpha+\frac{\varepsilon}{2}
$$

for every φ . Hence

$$
\frac{1}{\pi} \int_{0}^{2\pi} \log \left| 1 - \frac{1}{r} e^{i(3-\varphi)} \right| du^-(3)
$$
\n
$$
= \frac{1}{\pi} \int_{\varphi-\delta}^{\varphi+\delta} \log \left| 1 - \frac{1}{r} e^{i(3-\varphi)} \right| du^-(3) + \frac{1}{\pi} \int_{\varphi+\delta}^{2\pi+\varphi-\delta} \log \left| 1 - \frac{1}{r} e^{i(3-\varphi)} \right| du^-(3)
$$
\n
$$
\geq (u^-(\varphi+\delta) - u^-(\varphi-\delta)) \log \left(1 - \frac{1}{r}\right) + \log \left| 1 - \frac{1}{r} e^{i\delta} \right| \cdot \int_{\varphi+\delta}^{2\pi+\varphi-\delta} du^-(3)
$$
\n
$$
\geq \left(1 - \alpha + \frac{\varepsilon}{2}\right) \log \left(1 - \frac{1}{r}\right) + V \log \sin \delta.
$$

If

$$
1 - \frac{1}{r} \leq (\sin \delta)^{\frac{2V}{\epsilon}} = 1 - \frac{1}{r_{\epsilon}}
$$

then

$$
\frac{\varepsilon}{2}\log\left(1-\frac{1}{r}\right)\leq V\log\sin\delta
$$

and

(5.10)
\n
$$
\frac{1}{\pi} \int_{0}^{2\pi} \log \left| 1 - \frac{1}{r} e^{i(3-\varphi)} \right| du^{-}(3)
$$
\n
$$
\geq \left(1 - \alpha + \frac{\varepsilon}{2} \right) \log \left(1 - \frac{1}{r} \right) + \frac{\varepsilon}{2} \log \left(1 - \frac{1}{r} \right)
$$
\n
$$
= (1 - \alpha + \varepsilon) \log \left(1 - \frac{1}{r} \right).
$$

The inequalities (5.8) , (5.9) and (5.10) yield:

$$
\log |\psi'(r \cdot e^{i\varphi})| \le \frac{\log 2}{\pi} V - (1 - \alpha + \varepsilon) \log \left(1 - \frac{1}{r}\right),
$$

$$
|\psi'(r \cdot e^{i\varphi})| \le \frac{2^{\pi V}}{\left(1 - \frac{1}{r}\right)^{1 - \alpha + \varepsilon}}
$$

for $r < r_{\varepsilon}$.

The class of the derivatives of functions (3.1) univalent in $|\zeta| > 1$ is uniformly bounded in $|\zeta| \ge r_{\epsilon} > 1$. Hence, with a suitable constant K_{ϵ} , (5.7) holds for every $\zeta(|\zeta| > 1)$.

Lemma 7 (HARDY-LITTLEWOOD, [6, p. 361]). *If* $\psi(\zeta)$ *is regular in* $|\zeta| > 1$, *continuous in* $|\zeta| \geq 1$ *and*

$$
|\psi'(\zeta)| \leq \frac{M}{\left(1 - \frac{1}{|\zeta|}\right)^{1 - \beta}} \qquad (|\zeta| > 1)
$$

then $\psi(\zeta)$ *satisfies a Lipschitz-condition (with exponent* β *) on* $|\zeta| = 1$:

 $|\psi(e^{i\vartheta_1})-\psi(e^{i\vartheta_2})|\leq K |\vartheta_1-\vartheta_2|^{\beta}.$

Lemma 8. *If F is of bounded rotation and has no zero exterior angles, then* $\psi(\zeta)$ satisfies on $|\zeta| = 1$ a Lipschitz-condition

$$
(5.11) \t\t |\t \psi(e^{i \vartheta_1}) - \psi(e^{i \vartheta_2})| \leq K |\vartheta_1 - \vartheta_2|^{\beta}
$$

for some $\beta > 0$ *.*

Proof. Since Γ is of bounded rotation, the number of exterior angles which are $\leq \pi/2$ is finite. Let the smallest of these angles be equal to $\pi \alpha$. By hypothesis, $\alpha > 0$. Applying lemma 6 with $\varepsilon = \alpha/2$, we obtain that

$$
|\psi'(\zeta)| \leq \frac{M}{\left(1 - \frac{1}{|\zeta|}\right)^{1 - \beta}} \qquad \left(\beta = \frac{\alpha}{2}\right),
$$

and (5.11) is now a consequence of Lemma 7.

Theorem 6. *Let K be a closed Jordan domain, whose boundary F is of bounded rotation and has no zero exterior angles. Suppose that f(z) is analytic in the interior of K, continuous on K, and moreover that it satisfies* DINI'S *condition:*

$$
\int_{0}^{h} \frac{\omega_f(x)}{x} dx < \infty
$$

or some h > 0. Here $\omega_f f$ is the modulus of continuity of $f(z)$ on K:

$$
\omega_f(\delta) = \max_{\substack{z_1, z_2 \in K \\ |z_1 - z_2| \leq \delta}} |f(z_1) - f(z_2)|.
$$

Then the Faber expansion of $f(z)$ *converges uniformly on K to* $f(z)$ *.*

Proof. By Lemma 8, there exists $\delta > 0$, and $\eta > 0$ such that:

$$
|\psi(e^{i\vartheta_1})-\psi(e^{i\vartheta_2})|\leq |\vartheta_1-\vartheta_2|^{\eta}
$$

for $|\vartheta_1 - \vartheta_2| \leq \delta$. Hence, if $F(\vartheta) = f(\psi(e^{i\vartheta}))$:

$$
|F(\vartheta_1) - F(\vartheta_2)| = |f(\psi(e^{i\vartheta_1})) - f(\psi(e^{i\vartheta_2}))|
$$

\n
$$
\leq \omega_f(|\psi(e^{i\vartheta_1}) - \psi(e^{i\vartheta_2})|) \leq \omega_f(|\vartheta_1 - \vartheta_2|^{\eta})
$$

i.e.

$$
\omega_f(x) \leq \omega_f(x^{\eta}) \qquad \text{for } x \leq \delta.
$$

Hence

$$
\int_{0}^{\delta} \frac{\omega_F(x)}{x} dx \leq \int_{0}^{\delta} \omega_f(x^{\eta}) \frac{dx}{x} = \frac{1}{\eta} \int_{0}^{\delta^{\eta}} \omega_f(y) \frac{dy}{y} < +\infty.
$$

Hence $F(3) = f(\psi(e^{i3}))$ satisfies DINI's condition (5.12), and thus, by a wellknown result [14, p. 54], the Fourier series of $f(\psi(e^{i\vartheta}))$ and its conjugate series converge uniformly. Theorem 6 is therefore a corollary of Theorem 5.

References

- [1] AL'PER, S. YA. : On the uniform approximation to functions of a complex variable on closed domains [Russian]. Izv. Akad. Nauk SSSR, Ser. Mat. 19, 423–444 (1955).
- [2] CLUNm, J.: On meromorphic schlicht functions. J. London Math. Soc. 34, 215--216 (1959).
- $[3]$ -, and CH. POMMERENKE: On the coefficients of univalent functions. Mich. Math. J. (1967, to appear).
- [4] DANZER, L., u. CH. POMMERENKE: Über die Diskriminante von Mengen gegebenen Durchmessers. Monatsh. Math. 71, 100 - 113 (1967).
- 206 T. KOVARI and CH. POMMERENKE: On Faber Polynomials and Faber Expansions
- [5] GOLUSIN, G. M.: Some coefficient estimates for univalent functions. Mat. Sb. 3, $321 -$ 330 (1938) [Russian, German Summary].
- [6]- Geometrische Funktionentheorie. Berlin: Deutscher Verlag der Wissenschaften 1957.
- [7] GRÖTZSCH, H.: Zur Theorie der Verschiebung bei schlichter konformer Abbildung. Comm. Math. Helv. 8, 382-390 (1935/36).
- [8] PAATERO, V.: Über die konforme Abbildung von Gebieten, deren Ränder von beschränkter Drehung sind. Ann. Acad. Sci. Fenn. Ser. A., 33, No. 9, 1--77 (1931).
- [9] POMMERENKE, CH.: Über die Faberschen Polynome schlichter Funktionen. Math. Z. 85, 197-208 (1964).
- [10] Konforme Abbildung und Fekete-Punkte. Math. Z. 89, 422-438 (1965).
- *[11] --* On the coefficients of univalent functions. J. London Math. Soc. 42, (1967, to appear).
- *[12]* PRIVALOV, I.L : Randeigenschaften analytischer Funktionen. Berlin: Deutscher Verlag der Wissenschaften 1956.
- *[I3]* SMIRNOV, V.J., and N.A. LEBEDEV: Constructive theory of functions of a complex variable. Moscow: Izd. Nauka 1964.
- [14] ZYGMUND, A.: Trigonometric series, 2-nd ed. Cambridge: Univ. Press 1959.

Imperial College, Department of Mathematics, London S.W.7, England