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1. Estimates for Faber Polynomials
Let
YO =L4bo+by {4

be meromorphic and univalent in |{|>1. Thus, z=y({) maps{|{|>1} onto
the complement of a continuum K of logarithmic capacity one. The Faber
polynomials F,(z)=z"+--- are defined by

A i F.(2)

1.1 = i
(1) GRS NG

It is known [9] that

(1.2) logn<maxZ%IFV(Z)]2<4logn+8.

zeKv=1
In particular [13, p. 134]
max | F,(z)| <[nlog(n+1)]* + €.

zeK
We shall give a sharper estimate.
Theorem 1. (i) There are absolute constants A and o.<% such that
max | F,(z)| £ A n
ze kK

(ii) There exists a function W (0) such that, for each fixed z,
|F,(2)|>n%1%  for infinitely many n.

Proof of (i). This statement follows at once from the next lemma which we
will also need later on.

Lemma 1. For zeE

y(ret)—z (L=1/r)"
where Ay and a <% are absolute constants.
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The proof will use the same method as in [3]. We may assume that z=0.
Then ¥ ({)#0 for | {|>1. Let 0< < 1. We write t=re’®, p=1Jr. Thus

2z wl(t) 1+6 } 2% l/ll(l) 24
a0 {156 CFa o4 v o
Using (1.1) and (1.2) we can easily show that
2= ‘;bl(t) 2 A1 . 1
(1.5) g 10 d3g =5 log =,
where A4,, ... denote absolute constants. Let
AV 20
J(p)= j ‘,b(t) ds.

From the power series expansion of [ty (£)/y(¢)F and PARCEVAL’S formula we

obtain
2

o381
L2y o v P
=40 *wz) v | "o |

The distortion theorems imply that
W' ON D4 /(0—p), WONBISA4:/1~p).
pJ (p)£446*(1~p) 2 T (p).

J(p)SAs(1—p)™%,

Here a4, ... denote absolute constants <%. Therefore we obtain from (1.4) and

(1.5)

Hence

It follows that

2n It 1+6 —ieg

g %)l A< Ag(1—p) - u®,
Hence the Holder inequality gives

2n

Choosing 4> 0 sufficiently small we obtain (1.3).
Proof of (ii). Let
YO=C+a, 7 (IC1>1)

be the function constructed in [7/]. Then

(1.6) la,]|>n%'*"1  for infinitely many n.
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From (1.1), we can get the relation
n—1

(m+Da,=zF,@)—F (- Y a,F_(2) (n=12,..).
v=1
Suppose that, for some fixed z,
IE@IsCy  (v=1,2,..)

where §=0.138 and Cy, ... are certain constants. Then it follows that
n—1
(n+1D]a,|SC;(n+1/+C Y la, | (n—v).
v=1

ScHWARZ’s inequality and the area theorem give

n:l % n—ll 2
4 Dla|SCm+ 1 +C; (T vial) (T3 @-v)

v=1 v=1
SC,(n+ 1! +C nf (1 +logn)* < Cy(n+1)%13%,

in contradiction to (1.6).

2. The Faber Polynomials of Convex Sets
‘We shall assume now that the set X is convex. Then the function

1 d -
=G g T 1 LB~

=_;__§[t¢<z>

n=1

2.1

R@®)-r| s

is analytic in |s]|>1, [¢|>1 and has positive real part [4, Lemma 2]. The second

identity (2.1) and CARATHEODORY’S coefficient estimate together with SCHWARZ’
lemma imply

) 1y’ () 1

7]

In particular, for =1 we obtain a new proof of the inequality

F(y()~t

"< (n=1,2,...;|t]>1).

WO-1s+m  (t>1),

[t l2
due to GrOTZSCH [7] and GOLUSIN [5].

Theorem 2. If K is convex but not a segment then

[R@Q)-"1<t  (IZ)z1).

Hence all zeros of F,(z) lie in the interior of K.
14+
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Proof. The function h(z, 5) is continuous in |z]>1, [s|=1. Let s be fixed,
|s|=1. Then Rek(t, s)>0, h(c0, s)=%. Hence the first identity (2.1) and
CARATHEODORY'’S coefficient estimate show that

2.2) |F,(¢(s))—s"|121,

and equality can hold only if

2.3) h(t, s)—l_gﬁii (mz1, |a]=1).
—a

Suppose that m=2. Using (2.1) and integrating, we obtain
YO=Y () +=)[L~ar™+ -]
as
=t+..+__.t 4 e
m

and therefore
ty' ()=t+ - —ast™ "+

Since ty(¢) is starlike in {7]>1 it follows [2] that |as|=2/{(m+1)<2/3, in
contradiction to |as|=1. Hence m=1, But in this case integration of (2.3)
shows that K is a segment. Therefore equality cannot hold in (2.2).

3. Faber Expansions, General Remarks

Let first X be a closed Jordan domain, and let the function f(z) be analytic
in the interior of K and continuous on K. Let again

3.1) Y(O=L+bo+by [T+ -

map | {|>p onto the exterior of K. Then y/({) is continuous in |{|= 1.
The Faber coq‘ﬁcients of the function f(z) are defined by

32 Cn= f f(‘//( 1) TRFT (m=0,1,...).

The formal series

27::

S 0 Fa(2)

is the Faber series or Faber expansion of the function f(2).

One can easily extend this definition to the more general case when K is
any continuum whose complement is connected. Using FATOU’s theorem about
the radial limits of bounded analytic function, one can define Y ({) almost
everywhere on |{|=1 as a bounded integrable function. Therefore f(y({)) is

also a bounded integrable function.
In the remaining sections of this paper we shall consider the following

question: Under what conditions does the Faber expansion of f(z) converge
uniformly on K, and represent the function f(z)?
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AL’PER has shown [1] that if the boundary I' of K is a smooth rectifiable
Jordan curve, which satisfies a certain smoothness condition?, then, as far as
uniform convergence is concerned, the Faber series behaves very much like a
Fourier series.

It will be shown that the situation is rather similar if we assume that I" is a
Jordan curve of bounded rotation. We recall the definition of such curves [§].

Let I': z(7) be a smooth Jordan curve, and let 3(z) denote the angle between
the positive real axis and the tangent of I'* at the point z(z). Then

dd
rj*IdSI—jIW dt
is the total rotation of I'.

Now let I' be an arbitrary Jordan curve, let (3.1) map |{|>p onto the ex-
terior of I', and let I, (r> p) denote the level curves of the mapping. V(r), the
total rotation of I, is a decreasing function of r. If V(r) is bounded, I' is said
to be of bounded rotation, and

V=sup V(r)=lim V(r)
r>p r=2p
1s called the tozal rotation of I'. A curve of bounded rotation has a right and left
tangent at every point, and a proper tangent outside a countable set.

In section 4 we shall compare the approximation provided by the partial

sums of the Faber-expansion of f(z) with the best polynomial approximation

of f(z). In section 5 we shall give necessary conditions for the uniform con-
vergence of the Faber expansion.

4. Faber Expansion and the Best Polynomial Approximation
It is known that if X is any continuum, and that if f(z) is any function
continuous on K and analytic in the interior of K, there exists a polynomial
7,(z) of degree » (the polynomial of best uniform approximation) such that
for every polynomial P,(z) of degree n
max | f(2) —P,(z)| zmax | f(z)—7,(2)|=p,(f, K),

zek zek
and p,(f, K) is the best (uniform) polynomial approximation of the function
f(z) on K.

Theorem 3. If »
S,@)= 3 aFi(@)

! Let 5 be the arc length parameter on I, and let $(s) denote the angle between the positive
real axis, and the tangent of the curve. Let 2(%) denote the modulus of continuity of the func-
tion 9(s). Then Al’per requires that the condition

< Q(h
{ ]S)!Ioghldh<oo
o]

should be satisfied for some ¢> 0.
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then for any continuum K whose complement is connected and for any function
f(2) analytic in the interior of K and continuous on K we have

(4.1) [ f@)=S.(D=4n"- p,(f, K)
where A and o<+ are absolute constanis.
We shall need:
Lemma 2.
@2 L RO _ {1 if n=m
2ni =y T 0 if n&m, m=0.
For |{}=1, ¥ ({) is defined by its radial limits.

Proof. It is known that F,(y(0))={"+ H,({) where H,({) is regular and
bounded in |{|>1 and H,(c0)=0. Thus, it follows from the theorem of
GOLUBEV-PRIVALOV [12, p. 144] that

[ 2D 50 (m=0,1,2,..),

+1
=1 t"

and (4.2) follows now immediately.

Proof of the theorem. We can write the polynomial of best approximation
in the form

T(@)= Y, (" Fy(2).
k=0
Using (4.2) we obtain

1 dt P
(43) 27C i |t|£ " ﬂ"(lp(t)) tm+ m¥l Z
From (3.2) Ind (4.3) we obtain for ze K

F@=5,)|=| @)= T 4@

jBO®) 4

2751 =1 tm+1

<1 @ -1+ RO 3 6 hE)

= /(@)= +]| ¥ (" —c) F(2)

N‘Mx

[
(=

FRUZORITORNO s

WRYORITONE-

=lf(Z)—ﬂn(Z)|+

gM=
“l
=

N‘H

=1/ (Z)—m(2) |+

1 : Fk(Z)
= n+ nA_
=Put P |t|'£1 kzo 1

[dtl;

(4.4) | f(2D) =S8, £p,(1+Ly)
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where
n F -
@s) L y, 1D

k=0

|dt]

1
27 g2y

is the “Lebesgue-constant™ of the system of Faber polynomials.

Using (1.2) we could easily prove L,<2 ]/n(log n+5). To get a sharper
estimate we shall use Lemma 1. By (1.1) and (4.5), with 1 <r<2,

Fdd L
"T2n S ey =) ds| |dt
27 =1 |[¥=0 271 |s|j=, y(s)—z \t |dt]
1 l/'/’(S) (s/t)n+1__1 ‘
= ‘ dsjldt|.
= @n? 1121 jsf=r| ¥ (s)—2 sjt—1 lds||dt|

Exchanging the orders of integration, we obtain from Lemma 1

v'(s)
Y(s)—z

<4, log —17117; (=P <A, -1

lds]

L,<A, 7" 'log 1—11/r [}

[sf=r

(4.6)

where A, ... and ay<a<% are absolute constants, Choosing r=1+1/n in
(4.6) we obtain

4.7 LA n"
By (4.4), this implies (4.1).

Theorem 4. Suppose that K is a closed Jordan domain whose boundary I'
is of bounded rotation. Then for any function f(z) analytic in the interior of K
and continuous on K we have that

(4.8) 1/ (2)=58,(2)| =(4 - log n+B) p,(f, K).

Here the constants A and B depend only on the domain K.
We shall need:

Lemma 3 {70, Lemma 1]. Let I be a closed Jordan curve of bounded rotation,
and let

o(s, H=arg(y (@) —¥(e'?).
Then

4.9 @ [ldo@E RV,
0
where V denotes the total rotation of I'.

(4.10) (i) Fe(y(e 9))=-i— zj"e“” d,v(s, 9).
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Proof of the Theorem. Using (4.10), and (4.9), we estimate the constant
L, of (4.5):

1 2z n
L,=—~ e€®) e ¥ dg
1 2n {2=m
=57 |{ (Ze”‘“ ”) dsv(s,S)(ds
"9 |o
1 2n2mn n
= 5 = Ze"‘(s N dsv(s, 9)|d9
2 0 0 k=0
w2 | G n+
R -9
(4.11) 277 ) | s—.9 ldo(s, H1d3
Fa sin
2
1 271 2% | sin 21(s—-S\)
=57 J J —— 5§ dd; |dsv(s, 3|
s |8 sin —
2 2m

§ (logn+C)j |d, v(s,.9)|<—-(logn+C)
From (4.4) and (4.11) we immediately obtain (4.8).

5. Uniform Convergence of Faber Expansions

Given any complex Fourier series:

+ o0 .
S= 2 ck el kS
k=—o
its conjugate series is the series:
- +
6 = Ek el k ‘9,
k=-o

where
)i, if k=0
T 4ic, if k<O0.

If both series converge uniformly, then so does the series:
~ hd .
1@+iG)=Y ¢ e'*?
k=0

Theorem 5. Let K be a closed Jordan domain, whose boundary I' is of bounded
rotation. Let f(z) be analytic in the interior of K and continuous on K. Suppose
that the Fourier series of f((e'®) together with its conjugate series converges
uniformly. Then the Faber expansion of f(z) converges uniformly on K to f(2).
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We shall need the following lemma:

Lemma 4. Let K be a closed Jordan domain bounded by a rectifiable Jordan
curve, and let the function f(z) be analytic in the interior of K and continuous
on K. If the Faber series of f(z) converges uniformly on K, then its sum is f(z).

Proof. We write:
kZOCk F(z)=f *(2)

f*(2) is regular in the interior of K, and continuous on K, Let

sty | SO ek | 5o B0,

27i 521 ¥=0 EEE
Integrating term-by-term, and using Lemma 1, we obtain

[ BOO)

277:1 =1 tm+1

0
=2 G
k=

The function g(z)=f(z)—f *(z) is regular in the interior of K, continuous on K,
and all its Faber coefficients are zero:

(5‘1) j (lp(t)) n+1 =0 (n':O: 19 25 )

27'Cl It)=

Also, g(¥(0)) is continuous on |{|=1. By the theorem of GOLUBEV-PRIVALOV
[12, p. 144] it follows from (5.1) that there exists an analytic function G({),
regular in | {|> 1, continuous in |{| =1, and such that

G(0)=0,
GO=g () for |¢{|=1.

If we denote the inverse function of z=1/({) by {=¢(z), then G(¢(2)) is regular
in the exterior of I', continuous on the closed exterior, vanishes at z= o0, and
satisfies

G(p(2))=g(z) for zel.
Thus the function

%, )82 for zeK

§ (Z)_{G(go(z)) for z¢K

is continuous on the extended plane, and regular in the interior and exterior of
I'. Hence, since I’ is rectifiable, by a well-known theorem g*(z) is regular on I

also. By LiouviLLE’S theorem: g*(z) is a constant, g(z)=g*(o0)=0. Hence
f(@=f*(z) which was to be proved.
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Proof of Theorem 5. We note that the Faber coefficients (3.1) of f(z) are
also Fourier coefficients of the function F(8)=7(y(e'®) for £=0. Applying
(4.10):

. n X n P
S.(WE )= T AR )= 3 o | €+ doos,0)

(5'2) 1 2n n . 1 2w
— ] (Zaet) dot =1 [ @ e 0)
T o k=0 Ty
where
(5.3) si(®=Y ¢, ">
k=0

By the assumptions of the theorem and the remark made at the beginning of
section 5, 57 (1) converges uniformly to a continuous function F*(9):

(5.4) max | sy (9)—F*(H|=¢, 0.
3

From (5.2), (5.3) and (4.9), we obtain

2z
Sn(d’(eiq’))—%‘g F*(T)drl;(‘ta q’)l

LT 0 o))

A

127

;(J: [sy (1)~ F*(@)|[dZv(z, 9)]

<e -izjnld b(5, )| 2 50 (n - o0)
= n TE O T s p— TE .

Then S,(¢(e'¢)) converges uniformly for 0S¢ <27, i.e. S,(z) converges uni-
formly on I'. Hence, by the maximum principle, S,(z) converges uniformly on
K. By Lemma 3 its sum is f(z). This completes the proof of theorem 3.

Before stating the next theorem, we shall formulate some lemmas:

Lemma 5 [8, Nr. 28]. Suppose that I' is of bounded rotation. Then there
exists a function u(3) such that:

5.5 G f|du(9)|=v.

(il) At every point y(e'®) of T where there is a tangent, u(9) gives the
angle between the positive real axis and the tangent.

5.6) (i) logyo'(():-]lt—(j;nlog(l—eis/C)du(S) Sor |C}>1.
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Lemma 6. If I is of bounded rotation, and all its exterior angles are = o
(0<aZ1) then, for every e>0:

57 ()] S

Proof. Since u(9) (cf. Lemma 5) is of bounded variation, we can write:

u@®=u"(®H-u" (9,

2w 2x 2%

fldu®|= [ du*(H+ | du™($

] 0 0

where ©*(9) and u~(9) are increasing functions. We also write:
ut(@+0)—uT(e-0)=1T; uT(p+0)—u (p—0)=h";
u(p+0)—u(p—-0)=h=h"—h".

If A=0then h*=h, h~ =0;if A<0, then At =0, 1~ = —h <1 —u by assumption.
Let z=r- '?. Applying Lemma 4:
il ei $—9)

2n
log |/ (re'")| = { Tog 1 au(®)

(5.8)

=—1—2j’ Io 1——i gt du+(9)——1—2§ulog {—Lgo-0 du”(8)
T} r T g r )
For the first integral, we have the estimate
2z
(59) _]:_j‘log ei(9—<p) +(3)<10g2 jd (8)<10g2 V.

Using the monotonicity of #~ and the compactness of the unit circle it is easy
to show that there exists a fixed 6 >0 such that

u_(¢+6)—u"(q)-5)=1—o¢+—;—

for every ¢. Hence

127:

-jlog e"(‘“_“’) du™ (9
1 @+ . 1 2rnt+tp—9o 1 X
=— [log[1-=&“"?du (9)+= | log|l—=€®"?| du™(9)
Teis T pts r
_ _ 1 1 . 2anto—9o
2(u (p+08)—u” (p—0))log (1——)+log 1—-=¢° | du=(®
r r @+

= (1—-oc+ ) log (1—-»—)+Vlogsm§
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If
.. 2 1
- < & =] =
1 r=(s1n5) 1 .
then
g 1 .
~2—10g (1——,;) <Vlogsind
and
L 0g 1L d@-o| 44 o)
AR r
fi 1 € 1
>11— — [ —_ —
(5.10) =(1 a+2) log (1 r)+210g (1 r)

=(1—a+e)log (1—%) .

The inequalities (5.8), (5.9) and (5.10) yield:

log2 1
T V—(I”OC'I‘E)lOg (1——7‘") .

27:V

7 q\I-ate
=)
r
for r<r,.

The class of the derivatives of functions (3.1) univalent in |{|>1 is uni-
formly bounded in [ {|=r,> 1. Hence, with a suitable constant K, (5.7) holds
for every {(|{]|>1).

Lemma 7 (HARDY-LIiTTLEWOOD, [6, p. 361]). If Y ({) is regular in |{|>1,
continuous in | {|=1 and

W' Ql=

log |¥'(r- ¢ 9=

[ (r- &)<

M

(o)

then Y ({) satisfies a Lipschitz-condition (with exponent ) on |{|=1:

() =y (@ ™)<K 9.~ 1"

(¢i>1)

Lemma 8. If I' is of bounded rotation and has no zero exterior angles, then
VW (0) satisfies on |{| =1 a Lipschitz-condition

(5.11) [y (¢*)— Y (¢*)I<K 19— %I
for some §>0.

Proof. Since I is of bounded rotation, the number of exterior angles which
are <2 is finite. Let the smallest of these angles be equal to mo. By hypo-
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thesis, a>0. Applying lemma 6 with ¢=«/2, we obtain that

’ M [0
)
I
and (5.11) is now a consequence of Lemma 7.

Theorem 6. Let K be a closed Jordan domain, whose boundary T is of bounded
rotation and has no zero exterior angles. Suppose that f(z) is analytic in the
interior of K, continuous on K, and moreover that it satisfies DINUS condition:

(5.12) fﬂﬁﬂ dx <o
0 x

or some h>0. Here wsf is the modulus of continuity of f(z) on K:

w;(9)= max |f(z;)—f(z2)|.

z1,z2€ K
|z1—z2] <8

Then the Faber expansion of f(z) converges uniformly on K to f(z).
Proof. By Lemma 8, there exists 6 >0, and #>0 such that:

W) -y ()19~ 9, "
for |9, —9,|<8. Hence, if F(9)=7(0/(e%):

|F@)=F@)|=1f W (e ™) ~f ()]
Lo (1¥E ) -y ()< w,(19.—9,1"

ie.
wp(x)So,(x")  for x<90.
Hence
é P 5
wp(x) dx 1 dy
L) gxg [, =o)L <t
(!. X t')[ f( ) X %o f(y) y

Hence F(9)=/f((¢'*) satisfies DInr’s condition (5.12), and thus, by a well-
known result [14, p. 54], the Fourier series of f((e'*)) and its conjugate series
converge uniformly. Theorem 6 is therefore a corollary of Theorem 5.
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