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Let  
I. Estimates for Faber Polynomials 

O ( ~ ) = ~ + b o + b ,  ~-1 + ... 

be meromorphic  and univalent in I CI > 1. Thus, z = O ( ~ )  maps{I ~1 > 1} onto 
the complement  of a cont inuum K of logarithmic capacity one. The Faber  
polynomials  F,(z)= z"+. . ,  are defined by 

(1.1) ~'({) _ ~ F.(z) 
~(~)-z .% ~.+1 �9 

It is known [9] that  
" 1 

(1.2) log n < max ~ - -  [ F~ (z) I z < 4 log n + 8. 
z ~ K v = l  12 

In part icular  [13, p. 134] 

log (n + 1)-1- + e . max IF, (z) [ < In ~ 
z e K  

We shall give a sharper estimate. 

Theorem 1. (i) There are absolute constants A and c~ < �89 such that 

max ] F, (z) [ < A nL 
z ~ K  

(ii) There exists a function ~(~) such that, for each f i xed  z, 

IF.(z) l>n ~ for infinitely many n. 

Proof of (i). This statement follows at once f rom the next lemma which we 
will also need later on. 

Lemma 1. For z ~ E  

(1.3) o q)(r e i ~ ) - z  ( 1 -  l / r )  ~ 

where Ao and c~ < �89 are absolute constants. 
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The proof will use the same method as in [3]. We may assume that z=0.  
Then r (~) + 0 for [ ~[> 1. Let 0 < 6 < 1. We write t = r e *~, p = 1/r. Thus 

~2n @t(t)1+~d~}2 < i n O'(t) 2 O'(l) 2ad0 
o "oi  

Using (1.1) and (1.2) we can easily show that 

in ~'(t) 2 A1 .log 1 - p  ' 1 
(1.5) 7 ~  dO<- l -P  

where At, ... denote absolute constants. Let 

~n I r 12' 

From the power series expansion of [tO' (t)/r (t)] a and PARC~VAL'S formula we 
obtain 

pJ"(p)+J'(p)=4 o if-if-{ " 0'(t)]o [' o--OYJ a s  

=482 0 )= +-~ O"(t)o'(t) O,(t )O(t) 2 t ~ O'(t) 2ad,9. 

The distortion theorems imply that 

IO"(t)/O'(t)l<A2/(l-p), Ir <Aa/ ( l -p ) .  
Hence 

p J"(p) <= A4 6 z (1 - p)- 2 j (p) .  
It follows that 

S(p)<=As(1-p)-"o2. 
Here ~1, -.. denote absolute constants <�89 Therefore we obtain from (1.4) and 
(1.5) 

]~ O,(t ) 1+0 
o ~ dS<=A6(1-P)-~-~a2 

Hence the HSlder inequality gives 

I-O2V I 
Choosing a > 0 sufficiently small we obtain (1.3). 

Proof of (ii). Let 
r  -.. (1~i>1) 

be the function constructed in [11]. Then 

0.6) la, l > n  ~ for infinitely many n. 
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From (1.1), we can get the relation 
/1- -1  

(n+ 1)a,=zF,(z)-F,+~(z)-  2 a,~',_,(z) 
v = l  

Suppose that, for some fixed z, 

1F~(z)I<C~v p (v= a, 2, ...) 

( n = l ,  2, . . .).  

where fl = 0.138 and C~, ... are certain constants. Then it follows that 

l l - - 1  

(n+ l)[a,,l<Ca(n+ l)P +Cl Y. [av[(n-v) ~. 
v = i  

SCHWARZ'S inequality and the area theorem give 

n-1 ~ (/1-I 1 

< C2 (n + 1) p + C 1 n p (1 + log n) ~ < C 3 (n + 1) ~ 138 s, 

in contradiction to (1.6). 

2. The Faber Polynomials of Convex Sets 

We shall assume now that the set K is convex. Then the function 

( 2 . 1 )  

tO'(t) 1 t+s 1 b ~ [F,(O(s))-s/1] t-" 
h( t , s )=~(t)_~(s)  2 t - s - 2  /1=1 

oo 

is analytic in ] s ] > 1, [ t [ > 1 and has positive real part [4, Lemma 2]. The second 
identity (2.1) and CARATn~ODOR'Z'S coefficient estimate together with SCHWARZ' 
lemma imply 

I T F ~  -t/1 1 ( n = l , 2 ,  " [ t [>X).  ( t )  , :<ltl . . . .  

In particular, for n = 1 we obtain a new proof of the inequality 

1 
1 0 ' ( t ) - l l <  [ - ~  - ( I t / > l ) ,  

due to GROTZSCI~ [7] and GOLUSIN [5]. 

Theorem 2. I f  K is convex but not a segment then 

IF/1(r <a 

Hence all zeros of F,(z) lie in the interior of K. 
14"  
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Proof. The function h(t, s) is continuous in I t l> 1, l s l~ l .  Let s be fixed, 
[ s [ > l .  Then Re h(t,s)>O,h(ov, s)=�89 Hence the first identity (2.1) and 
CARATH~ODORY'S coefficient estimate show that 

(2.2) 

and equality can hold only if 

1 
(2.3) h(t,s)= 2 

IF~(~&(s))-s"l~X, 

~" + a 
(m>_l, tat=l). 

Suppose that m > 2. Using (2.1) and integrating, we obtain 

~b(t)=O(s)+(t-s) [1 - a t-"-t- ...]aim 

as 
= t +  " '"  + t - m + " "  

m 

and therefore 
tO'(t)=t + . . . .  ast-r"+ .... 

Since tO'(t ) is starlike in [ t [ > l  it follows [2] that lasl<_2/(m+l)<=2/3, in 
contradiction to lasl > 1. Hence m =  1. But in this case integration of (2.3) 
shows that K is a segment. Therefore equality cannot hold in (2.2). 

3. Faber Expansions, General Remarks 

Let first K be a closed Jordan domain, and let the funct ionf(z)  be analytic 
in the interior of K and continuous on K. Let again 

(3.1) ~(~)=~ + bo+b 1 ~-1 + ... 

map I (1 > P onto the exterior of K. Then ~ ( 0  is continuous in [ ( t > 1. 

The Faber coefficients of the function f(z) are defined by 

1 
I f (O(t)) t ,d: l  (re=O, 1, . . .).  (3.2) %- -  2rci [tl=l 

The formal series 

cmFm(z) 
m=O 

is the Faber series or Faber expansion of the function f(z). 
One can easily extend this definition to the more general case when K is 

any continuum whose complement is connected. Using FATOU'S theorem about 
the radial limits of bounded analytic function, one can define 0 ( ( )  almost 
everywhere on 1~1= 1 as a bounded integrable function. Therefore f ( 0 ( O )  is 
also a bounded integrab!e function. 

In the remaining sections of this paper we shall consider the following 
question: Under what conditions does the Faber expansion of f(z) converge 
uniformly on K, and represent the function f(z)? 



On Faber Polynomials and Faber Expansions 197 

AL'PER has shown [1] that if the boundary F of K is a smooth rectifiable 
Jordan curve, which satisfies a certain smoothness condition 2, then, as far as 
uniform convergence is concerned, the Faber series behaves very much like a 
Fourier series. 

I t  will be shown that the situation is rather similar if we assume that F is a 
Jordan curve of bounded rotation. We recall the definition of such curves [8], 

Let F:  z (z) be a smooth Jordan curve, and let 0 (~) denote the angle between 
the positive real axis and the tangent of F* at the point z(~:). Then 

IIdOl=I d~_ dT 
F* 

is the total rotation of F. 

Now let F be an arbitrary Jordan curve, let (3.1) map [~ [>p  onto the ex- 
terior of F, and let F,. (r > p) denote the level curves of the mapping. V(r), the 
total rotation of F, is a decreasing function of r. If V(r) is bounded, F is said 
to be of bounded rotation, and 

V= sup V(r) = lira V(r) 
r > p  r"*p 

is called the total rotation of F. A curve of bounded rotation has a right and Ieft 
tangent at every point, and a proper tangent outside a countable set. 

In section 4 we shall compare the approximation provided by the partial 
sums of the Faber-expansion of f(z) with the best polynomial approximation 
of f(z). In section 5 we shall give necessary conditions for the uniform con- 
vergence of the Faber expansion. 

4. Faber Expansion and the Best Polynomial Approximation 
It  is known that if K is any continuum, and that if f(z) is any function 

continuous on K and analytic in the interior of K, there exists a polynomial 
rc~(z) of degree n (the polynomial of best uniform approximation) such that 
for every polynomial P,(z) of degree n 

max I f  (z) - P ,  (z) l>  max I f ( z ) -  n, (z) l = p,(f, K), 
z e K  z e K  

and p, (f, K) is the best (uniform) polynomial approximation of the function 
f(z) on Ko 

Theorem 3. If 
n 

s .  (z) = y, ck Fk(z) 
k = O  

* Let s be the arc length parameter on F, and let ,9(s) denote the angle between the positive 
real axis, and the tangent of the curve. Let g2(h) denote the moduIus of continuity of the func- 
tion ,9(s). Then Al'per requires that the condition 

i a(h) o ~ [log h[ dh<co 

should be satisfied for some e > 0. 
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then for any continuum K whose complement is connected and for any function 
f(z) analytic in the interior of K and continuous on K we have 

(4.1) I f ( z ) -  S,(z) I < A n ~ . p,(f, K) 

where A and ~ < �89 are absolute constants. 
We shall need: 

Lemma 2 .  

(4 .2 )  2 ~ i  It[=l if  n + m ,  m>O. 

For ]~t = 1, ~(~) is defined by its radial limits. 
Proof. It is known that F , ( ~ ( 0 ) = ~ " + H , ( 0  where H , (0  is regular and 

bounded in ]~[>1 and H,(c~)=0. Thus, it follows from the theorem of 
GOLtmEV-PRIvALOV [12, p. 144] that 

H(t) 
f l T ~ - f - d t = O  (m=0, 1, 2, ...), 

Ttl = 

and (4.2) follows now immediately. 
Proof of the theorem. We can write the polynomial of best approximation 

in the form 
c(: ) Fk(z). 

k=O 

Using (4.2) we obtain 

dt ~ c~,, ) 1 itll 1 Fk(O(t)) dt=c(~). (4.3) 1 I ~n(O(t)) tm+l-  ~ tm+l 2rci Itl=l k=o = 

From (3.2) lnd (4.3) we obtain for zeK  

I f ( z ) -S . ( z ) l=  f(Z)--k~=oCkFk(z) [ 

I 

= [ f ( z ) -  ~.(z) I + k~=O~-f I,IS ~ {f(O (t)) - ~z. (~b (t))} Fk(z ) 

=lf(z)_~Zn(z)l + 1 1 t t "~ Fk(z) dt ~-~it l  ~ {f(O( ))--~Zn(~9( ))}k~O--~T-= 

~Pn+Pn 2~ ltlS 1 k~=o t k+l i ldt[; 

(4.4) If(z)-S.(z)l<-_p.(1 +L.) 
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where 

_ 1 f 1 , 3  Fk(z) 
(4.5) L"---2-~ l,t~=l lk~o t k+~ I Idtl 

is the "Lebesgue-constant" of the system of Faber polynomials. 

Using (1.2) we could easily prove L, < 2 ]/'n (log n+5).  To get a sharper 
estimate we shall use Lemma 1. By (1.1) and (4.5), with 1 < r < 2 ,  

1 " l ..slSr @'(s) ( t ) k d s  ,dr, 

< 1  I I ~t'(s) I](s/t)"+'--ll Idsl Idtl. 
= (2~z) z = ~t(s)--z s/t--1 I t l = l  I~l , 

Exchanging the orders of integration, we obtain from Lemma 1 

(4.6) 

1 f O'(s) Idsl L"<Alr"+ll~ 1-1 / r  i~f=,l O(s)-z  ] 

1 �9 (1 - r ) -~~  <Aa r'+ 1 ( l - r )  -~ _-<A21 "+1 log 1 - 1 / r  

where A1, ... and a o < e < � 8 9  are absolute constants. Choosing r=l+l /n  in 
(4.6) we obtain 

(4.7) L, __< A 4 n e. 

By (4.4), this implies (4.1). 

Theorem 4. Suppose that K is a closed Jordan domain whose boundary 1" 
is of bounded rotation. Then for any function f(z) analytic in the interior of K 
and continuous on K we have that 

(4.8) I f ( z ) -  S,(z) [ < (A. log n + B) p,(f ,  K) .  

Here the constants A and B depend only on the domain K. 

We shall need: 

Lemma 3 [10, Lemma 1]. Let F be a closed Jordan curve of bounded rotation, 
and let 

v (s, 0) = arg(~b (e' s ) -  ~ (e i a)). 
Th en  

2~ 

(4.9) (i) I id, v(z,O)[<V, 
o 

where V denotes the total rotation ofF. 
1 z~ 

(4.10) (ii) F~(($(e'a))=-~ 5o e 'kS d~v(s,O). 
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Proof of the Theorem. Using (4.10), and (4.9), we estimate the constant 
L, of (4.5) : 

1 2~  ] n kg I dO 
L":-2-~ So k~=o Fk(q~(e'~)) e-' 

i 

= 2~ '~-~  0 \ k = O  

(4.11) 

= 2 7 Z 2  0 0 

2r~ 2~  

1 

0 0 

• e ~k(~-a) IGv(s ,O)l  dO 
k = 0  

�9 n + l  , . ,  
sm ~ t s -  ~) 

s-O 
sin - -  

2 

Idly(s, 0)1 dO 

. n + l ,  ^. 
sm - - 7 -  t s -  ~) 

s-O 
sin - -  

2 

dO] IGv(s, 0)I 

< 2 2~ 2V 
= ' ) T  (log n + C) I [d~ v(s, 0) [ =<-~- (log n + C). 

0 

From (4.4) and (4.11) we immediately obtain (4.8). 

5. Uniform Convergence of Faber Expansions 

Given any complex Fourier series: 

+oo 
~ = E Ck ei k ~t' 

k= -0o 

its conjugate series is the series: 

Z 
k= -- ~O 

where 
,~k={;ick, if k>O 

ick, if k<O. 

If both series converge uniformly, then so does the series: 

k = 0  

Theorem 5. Let K be a closed Jordan domain, whose boundary F is of bounded 
rotation. Let f(z) be analytic in the interior of K and continuous on K. Suppose 
that the Fourier series of f (~  &is)) together with its conjugate series converges 
uniformly. Then the Faber expansion of f(z) converges uniformly on K to f(z). 
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We shall need the following lemma: 

Lemma 4. Let K be a closed Jordan domain bounded by a rectifiable Jordan 
curve, and let the function f(z)  be analytic in the interior of K and continuous 
on K. If the Faber series o f f (z )  converges uniformly on K, then its sum is f(z). 

Proof. We write: 

ck Fk(z) = f *  (z) 
k = O  

f *  (z) is regular in the interior of K, and continuous on K. Let 

k•=o Fk(~(t)) dt.  , 1 S f * ( ~ ( t ) )  d t  _ 1 I ck tm+l 
% - - 2 n i  ltl=l ~ 2ni ltl=l 

Integrating term-by-term, and using Lemma 1, we obtain 

�9 oo 1 Fk(~k(t)) dt=cm. 

The function g ( z ) = f ( z ) - f *  (z) is regular in the interior of K, continuous on K, 
and all its Faber coefficients are zero: 

dt - 0  .. . (5.1) 1 I g(~(t))-~-~--- (n=0,  1,2, .) 
2 h i  [t[=l 

Also, g(~ (~)) is continuous on [~[= 1. By the theorem of GOLUBEV-PRIVALOV 
[12, p. 144] it follows from (5.1) that there exists an analytic function G(~), 
regular in ] ~] > 1, continuous in ] ~] __> 1, and such that 

G(~)=o, 
G(O=g(~(O) for I~1=1. 

If we denote the inverse function of z = ~ (0  by ~ = ~p (z), then G(q~ (z)) is regular 
in the exterior of F, continuous on the closed exterior, vanishes at z =  m, and 
satisfies 

~(~(z))=g(z) for z ~ r .  
Thus the function 

*(z" f g(z) for z e K  
g )=~.G(~p(z)) for z•K 

is continuous on the extended plane, and regular in the interior and exterior of 
F. Hence, since F is rectifiable, by a well-known theorem g* (z) is regular on F 
also. By LIOUVmL~'S theorem: g*(z) is a constant, g(z)=-g*(oo)=O. Hence 
f (z)  =-f*(z) which was to be proved. 
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Proof of Theorem 5. We note that the Faber coefficients (3.1) of f(z)  are 
also Fourier coefficients of the function F( ,9)=f(  0 (ei~)) for k>O. Applying 
(4.10): 

n 
r i k ~  r S,(g)(ei~~ ~ CgFk(O(e'~~ 1 Z~ k=o = T o  J e a~vtz,~p) 

(5.2) 1 z~ , 2~ 
=-~ ! (~=oCk e 'k,) d, v(v, qO= 1 ! s *  (z)d,v(z, q~) 

where 

(5 .3)  s .  (0 )  = ~ cke' ~ 
k=O 

By the assumptions of the theorem and the remark made at the beginning of 
section 5, s*(z) converges uniformly to a continuous function F*(0):  

(5.4) max ] s* (O) - F* (0) l = e, --+ O. 

From (5.2), (5.3) and (4.9), we obtain 

1 2 ~  ~o) S,(O(J~')) - ~ F*(z)d,v(z, 
0 

<1 2[~1 s*(0 -f*(~)l I d~v(T, e) l 
7C 6 

1 2 ~ Ve , ,  
< e . . -  j" ld~v('c, q0[__< - , 0  

7~ 0 7Z 
( n  ~ o o ) ,  

Then S,,@(ei~')) converges uniformly for 0 < 9 < 2 r c ,  i.e. S,(z) converges uni- 
formly on F. Hence, by the maximum principle, S,(z) converges uniformly on 
K. By Lemma 3 its sum is f(z). This completes the proof of theorem 3. 

Before stating the next theorem, we shall formulate some lemmas: 

Lemma 5 [8, Nr. 28]. Suppose that F is of bounded rotation. Then there 
exists a function u(O) such that: 

2 g  

(5.5) (i) S Idu(O)l=V. 
0 

(ii) At every point ~(e ia) of F where there is a tangent, u(O) gives the 
angle between the positive real axis and the tangent. 

(5.6) (iii) l o g ~ ' ( O =  S log(1-ei~/~)du(O) for I~1>1. 
0 
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Lemma 6. l f  F is of bounded rotation, and all its exterior angles are > ~a 
( 0 < a <  1) then,for every ~>0:  

K, 
(5.7) [0 ' (~)I< { 1 i t -=+ ,  �9 

~1 -]~-! 
Proof. Since u(O) (cf. Lemma 5) is of bounded variation, we can write: 

u ( o )  = u + ( o )  - u -  ( o ) ,  

2~ 2re 2z~ 

Idu(O)l= ~ du+(O)+ ~ du-(O) 
0 0 0 

where u+(0) and u-(g) are increasing functions. We also write: 

u+(~o+O)-u+(q~-O)=h+; u-(~o+O)-u-(~o-O)=h-; 
u(~o+O)-u(q) -O)=h=h + - h - .  

If h > 0  then h + =h,  h-  =0 ;  if h<0 ,  then h + =0,  h -  = - h <  1 -c~ by assumption. 
Let z = r .  e ~'. Applying Lemma 4: 

l o g l O ' ( r e ' e ) [ = ~  -o~ log 1 - 1 e  '(~-~) du(O) 

(5.8) 1 2~ 1 1 2~ I 1 
=-~-o~ log 1- r e ~(~-~) du+(O)--i~ ~ log 11-r e~(a-~) du-(O). 

For the first integral, we have the estimate 

I 1 j log e~(S_~) du+(g)<= log2 ~ du+(O)<= V. 
(5.9) -~- o r ~ o z~ 

Using the monotonicity of u -  and the compactness of the unit circle it is easy 
to show that there exists a fixed 5 > 0 such that 

u-  (~o + 5 ) -  u -  ( 9 - 5 ) =  l - ~  + 2 

for every ~o. Hence 

1 2~ e i ( a - ~ )  

I I ~- J ' l  e+~ 1 - l e  i(~-e~ d u - ( O ) + - -  S log e i(~-el du- (O)  

> ( u - ( ~ o + ~ ) - u - ( ~ o - ~ ) ) l o g  1 -  + log  1 -  e '~ �9 .[ du-(O) 
~o+~ 
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If 

then 

and 

(5.10) 

2v 1 
1-1_-< (sin 6 ) ~ - -  - 1 - - -  

/" t'~ 

1 2 u  ] 1 e~(a_~) ~- ! log 1---r du- (0) 

The inequalities (5.8), (5.9) and (5.10) yield: 

I o g l O ' ( r ' e ~ ) l < l ~  V - ( 1 - c ~ + e ) l ~  , 

2 ~ v 
10'(r-d~)l < (, _1)..+. 

for r <r, .  
The class of the derivatives of functions (3.1) univalent in I C I> 1 is uni- 

formly bounded in [ ( [ > r, > 1. Hence, with a suitable constant K,, (5.7) holds 
for every ~(1 (I > 1). 

Lemma 7 (HARDY-LITTLEWOOD, [6, p. 361]). I f  ~b(~) is regular in ]~]>1, 
continuous in I ( [ > 1 and 

M 
IO'(OI < (131>1) = [ 1 \ l -p 

then ip (() satisfies a Lipschitz-condition (with exponent fl) on [ (I = 1 : 

Ir % - r  I-<g 10~ -Oz f. 

Lemma 8. I f  F is of  bounded rotation and has no zero exterior angles, then 
~k(~) satisfies on I ~] = 1 a Lipschitz-condition 

(5.11) [O(e '~ - O ( e  ~ ~2) l =< K [81-82 f 

for  some fi > O. 

Proof. Since F is of bounded rotation, the number of exterior angles which 
are __<re/2 is finite. Let the smallest of these angles be equal to roe. By hypo- 
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thesis, c~ > 0. Applying 1emma 6 with 8 = ct/2, we obtain that 

B =  , 

\ Iffi] 

and (5.11) is now a consequence of Lemma 7. 

Theorem 6. Let K be a closed Jordan domain, whose boundary F is of bounded 
rotation and has no zero exterior angles. Suppose that f ( z )  is analytic in the 
interior of K, continuous on K, and moreover that it satisfies DINI'S condition: 

(5.12) i-c~ dx  < oo 
o x 

or some h > O. Here coyf is the modulus of continuity o f f ( z )  on K: 

cos(6)= max ] f ( z O - f ( z z ) [ .  
~ b z 2 ~ K  

Iza-z2]-<~ 

Then the Faber expansion o f f ( z )  converges uniformly on K to f (z ) .  

Proof. By Lemma 8, there exists 6>0,  and ~/>0 such that: 

l r  n 

for [ 01 - 021 < 6. Hence, if F(O) =f ( f f  (ei~)): 

[ V (01) - F (02) [ = I f (r (e' ~1)) _ f  (4 (e' ~=)) [ 

< co:([ ~ (e' o,) _ r (e' a,)1) < co: (101 - 02 I") 
i.e. 

coF (x) < co: (x ~) for x < 6. 
Hence 

' ' dx  1 ' :  dy  
f coF(x) dx<- Icoy(x ~) = col(y) < + o o .  
o x --o x ~1o J y 

Hence F(O)=f(~(e~~ satisfies DINFS condition (5.12), and thus, by a well- 
known result [14, p. 54], the Fourier series of f ( ~  (eta)) and its conjugate series 
converge uniformly. Theorem 6 is therefore a corollary of Theorem 5. 
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