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Asymptotic values of normal subharmonic functions

By
D. C. Rung

1. The purpose of this paper is to prove, for a class of functions subharmonic
in the open unit disk in the complex plane, a variant of a theorem of O. LE#TO
and K. I. VIRTANEN. According to LeATO and VIRTANEN [5, p.53] a mero-
morphic function f(z) defined in a simply connected domain G in the plane
is said to be a normal function if the family {/(S(2))}, where z'= S(z) denotes
an arbitrary one-one conformal mapping of G onto G is a normal family
in the sense of Montel.

It is shown that if f(z) is a non-constant normal meromorphic function
in G then G must be of hyperbolic type. Hence for brevity we state the above
mentioned theorem in the case in which G is the unit disk D={z||z|<1}.
Set C={z||z|=1}.

If y is a Jordan arc in D with one endpoint 1€ C; and f(z) is a function
defined in D taking values on the Riemann sphere W such that f(z) tends
to a value aeW as z approaches t along y then o is called an asymptotic
value for f(z) at 7.

Theorem (LEHTO and VIRTANEN). Let f(2) be a normal function in D with
asymptotic value o at 1€ C. In this case f(z) tends uniformly to o as z approaches t
within any Stolz domain at © [5, p.53].

The notion of function shall be limited to finite valued complex functions
in this paper unless otherwise noted.

If the definition of a normal function as given by LEHTO and VIRTANEN
is restricted to holomorphic function, HurRwiTz’s theorem gives the following
formulation which will define in the sequel a normal (not necessarily holo-
morphic) function.

Definition 1. A function U(z) defined in D is said to be a normal function
if the family F={U(S(z))}, where z'= S(z) is an arbitrary one-one conformal
map of D onto D, has the property that for every sequence {f,}, f,€F, there
exists a subsequence which either converges uniformly on every compact subset
of D, or else converges uniformily to infinity on every compact subset of D.
For the notion of a normal family used in this definition see e.g. [1, p.168].

That this definition is not equivalent to, and in fact is more restrictive
than, the corresponding definition obtained from the Lehto-Virtanen defini-
tion by replacing the word “meromorphic” by ‘“‘complex-valued” in their
definition is fairly obvious and we remark on this in § 3. We call such a com-
plex-valued function satisfying this definition a normal function in the sense
of LEHTO and VIRTANEN.
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Consider the case of a non-constant normal holomorphic function f(z)
which has a finite asymptotic value « at some point of C. The normality
f(z)—~ua clearly implies the normality of | f(z)—«a|. Further |f(z)—«} has the
additional property that log | f(z)—a| is a subharmonic function in D. (For
the definition and discussion of subharmonic functions see e.g. {7]) Thus
the theorem of LEHTO and VIRTANEN can be interpreted that if 0 (or o) is
an asymptotic value of U,(z)=|f(z)~«| at 7eC then U,{z) tends to 0 (or «0)
within any Stolz domain at .

It seems natural to ask if this property holds for a normal function U(2)
in D such that log U(2) is subharmonic. We answer in the affirmative, at least
in the case in which the asymptotic value 0 (or ) is associated with a arc
approaching teC within some Stolz domain at <.

2. If M is a simply connected domain in the plane bounded by a Jordan
curve I' and if o is any open arc on I' let w(z, o, M) equal the harmonicmeasure
of o at ze M with respect to M. (For details see e.g. [6, p.26ff])

Consider alsc in D the non-Euclidean hyperbolic distance

=z, 2,]+]2;—2,)
M—z1 25| =]z — 2,1
For further details see {3, Chap.II, IV}

For teC let S(t, )=S(B), 0<f<n/2, denote the open set bounded by
the two hypercycles from z to —t making angle § and — J respectively with
the diameter between t and — 1. If a non-empty set E, Ec D, is such that the
closure of E intersects C only at t and E is contained in some S(z, f) we say
E approaches t in a non-tangential manner.

Finally, for any function f(z) defined in D and any set Ec D such that
the closure of E meets teC, Cx(f, 7) will be the set of all values we W such
that there is a sequence {z,}, z,€E, and z,—71, n—o, with f(z,)—>w as n-o0,
If the equation Cs, py(f, ) =w is satistied for some we W and all 0<f<n/2,
we say f(z) has angular limit w at <.

With these preliminaries we now give

Theorem 1. Let U(z) be a non-negative normal function in D such that
log U(z) is subharmonic. If v is a Jordan arc in D approaching ©1e€C in a
non-tangential manner and U(z) has asymptotic value O (or ) along y then
U(2) has angular Timit O (or o) at .

Proof. We may suppose without loss of generality that T=1. We first
consider the case in which the asymptotic value is 0. Let 0<f <n/2 be chosen
so that y=S(1, B)=S(B,). We need only show that Cs,, (U, 0)={0}, and
we suppose the contrary.

Let {z,}, z,€S(Bo), zz—1, n—00, while U(z,)—a, a>0. Consider the non-
Euclidean straight line E, through z, perpendicular to the real axis. Let r,
be the point of intersection of E, and the real axis. Since z,eS(Bo), n=1,2, ...

(2.0) p(ry, z)<jlogcot(nfd—Bo/2)=K, n=12,....

p(zy,72) = log
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By the normality of U(z) there is a subsequence of
_ C+ry
{U(Sn(C))} ] Sn(C)"‘ 1+C rn
which converges uniformly on each compact subset of D§={C[|Ci<1}. To
simplify the notation we assume {U(S,(())} is the desired subsequence. Now
{U(S,(0)} cannot tend uniformly to infinity on the compact subset
51
—62 K +1 =

> <1,

!

=

because of the presence of points (corresponding to arcs of y under S;Y)
on which {U(S,())} tends to zero. Assume therefore that {U(S,(())} converges

Fig. 2

to a limit function V({) which is uppersemicontinuous in D. This property
follows from the hypothesis of the theorem which implies U(z) is uppersemi-
continuous in D, and so also is each U(S,,(C)), n=1,2,...,in D; as well as
the uniform limit V(7).

For n=1,2,... let F, and G, dencte the two curves in D whose non-
Euclidean distance from E, is one. Let F, be that curve closest to the origin.
Let H and I be the hypercycles from —1 to 1 with non-Euclidean distance
one from S(f,); and J, be the “quadrilateral” bounded by the curves F,,
G,, H and I. Label the boundary curves of J,, f,, &, &, and i, where f,cF,,
etc. To conclude, set y, equal to any arc of the curve y which joins the sides
f, and g, and otherwise is entirely contajned in J, (see Fig.1).

v, splits J, into two components and we suppose that z, is contained in
that component O, bounded by 4,. The proof is similar if there is a subsequence
of {z,} with each term contained in the “lower” component of the correspond-
ing set J,.

For any fixed n=1, 2, ..., let the prime superscript indicate the image in
D, by {=S;!(2) of the appropriate point set in D, so that k,=S;"(h,) and
S0 on.
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It is easily verified that each point set £, g5, %, I, and thus J;, is identical
for every value of n=1,2,...; set fo,=f", g.=g’, h,=F, i,=i’ and J,=J".
In fact f’ and g’ are subarcs of a pair of symmetric hypercycles from 7 to —i
and &' and i’ are subarcs of another symmetric pair of hypercycles joining
1 to —1. Observe that S;!(z,)=z, lies on the imaginary axis with |z,|<K’,
n=1,2,.... See Fig.2.

CARLEMAN’s principle of Gebietserweiterung [6, p.69] implies, for {0,
n=1,2,...,

2.1) o, v, Oz, i, J).
Since that segment of the imaginary axis in J’ from i’ to the point iK' is

bounded away from that part of the boundary of J on which w=0, (2.1) and
the properties of harmonic measure yield, for a svitably small 0<wy<1,

(22) O)(Z,",’));, Or’t)ng, n=12,....
If
2.3) g,=max U(S,(0),
L€y,

the hypothesis implies g,—0 as n—c0.

The upper semicontinuity of V({) in D, guarantees the existence of a posi-
tive constant T such that V({)<T, {eJ'; and the uniform convergence of

{U(S,(0))} on J' gives
2.4) USO)ST+1, (el n>N,.

We can apply the two-constant theorem of F. and R. NEvANLINNA 6,
p.42] (based on the Phragmen-Lindeldf maximal principle for subharmonic
functions) to the domain O, if we observe that log U(S,(!)) is subharmonic
and by (2.4) bounded above in O,. In this manner for n > N,, we obtain,
after referring to (2.2),

log U(S,(zz))S @ (z;, 7, On) log e, +
(2.5 +(1—w(z,, 7, 0))log (T+1)
Lwgloge,+(1—wy)log(T+1).

With &,—0 as n—oo, this implies log U(S,(z,))—— or U(z,)—0 as n—c0,
which is the desired contradiction.

For the case in which the sequence {z,} is such that each z, belongs to the
“lower” component of J, we simply apply the two-constant theorem to the
domain bounded by y,, f', g’ and i’ with the harmonic minorant w({{, ', J").

To conclude the theorem we consider the situation in which U(z) tends
to +oo on 7. The limit function V({) must be identically infinite. Otherwise
U(S,(0) is uniformly bounded in J' for n>N,. But J' contains each y, and
U(S,(0)) is certainly not uniformly bounded on y, for all values #. This con-
cludes the proof.



Asymptotic values of normal subharmonic functions 13

If the function U(z) is bounded in D we may dispense with the hypothesis
of normality, which was only utilized to insure the existence of an upper
bound for U(S,(0)) in J’, and obtain

Theorem 2. Let U(z) be a non-negative function in D such that log U(z)
is subharmonic in D and further let U(z2)<M in D. Suppose y is a Jordan arc
in D which tends non-tangentially to a point 1€ C with

limU@)SK<M, z-1, ze€y.

If 0€Cs, py(U, 1), 0<B<7[2, there is a real number A=2A(B), 0<A<1, with
A(B)—=0 as f—-nj2, such that a < K*M1~2,

Proof. Let {z,} be a sequence in S(z, f) for which f(z,)—a. Proceed as
in Theorem 1 except in (2.3) replace ¢, by K+¢, and in (2.4) replace T+1
by M, obtaining as in (2.5),

log U(z,)Swylog (K+¢,)+(1—wy)log M, n=1,2,...,
or
U2) S(K +2)° MU,

As n-oom, U(z)—-a and g-0 so aSK*®M!™*,

The value w, depends upon the domain J’ and the point iK’ both of which
are functions only of the angle 8. Thus we may set wy=A=A.1(f), and a further
analysis shows that A(f)—0 as f—r/2.

Briefly Theorem 2 states that if Q¥ is the set of all Jordan arcs approach-
ing 7 in a non-tangential manner either

C,(U,)n{lw|=M}+0, al yeQl;
or
C,U,)n{lw|=M}=0, all yeQ.

Clearly the Theorem also remains true if we require, instead of U(z)< M,
ze D, that for any O< f<n/2 there is a constant M, independent of B, such that

limU(z)EM, z-t, zeS(f).

3. The condition of normality is obviously necessary in Theorem 1. Select
any holomorphic function f(z) in D which tends to, say 0, along some recti-
linear segment terminating at a point of C, but which does not have angular
limit O at this point. The U(z)=|f(z)] is the desired Gegenbeispiel. (There
are many such examples of holomorphic functions of the above type. One
interesting example is given in [2, pp.287—288].)

Before investigating the requirement that log U(z) be subharmonic we
contrast the two definitions of a normal function. To this end we recall a
criterion that a continuous function f(z) from D into the extended plane be
normal in the sense of LEHTO and VIRTANEN. This criterion was noted by
LaPPAN in [4], and states that f(z) is normal on D if and only if given any
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two sequences {z,}, {z,}, in D such that p(z,,z)—0 as n—o then
x(f(z), f(z,))~0 as n—~oo. Here y(w,, w,) is the chordal distance between
w, and w, in the extended plane.

Of course a function f(z) in D, which is normal according to Definition 1,
is also normal in the sense of LEHTO and VIRTANEN while the converse state-
ment is not true. While this is fairly obvious we construct such a function
which also serves to investigate the necessity of the subharmonic condition
in Theorem 1.

For z=x-+iy, x>0, define

arg* z= {

and for zeD set U(z)=arg*(z+1D+(x+1). U(z) is a positive, bounded,
continuous function in D. Employing the criterion of LappAN let {z,} and
{z,} be two sequences in D with

3.0) o(z,,2)—~0, n—o0,

Suppose | U(z,) — U(z,)| does not tend to zero as n—oco. Without loss of

generality we assume, for ¢>0,

3.1 (U —Uznize, all n.

Let a subsequence {z,} be chosen so that z, —b,, k—co. Necessarily z, —b,
as k—o0. We consider several cases.

CaseI. boeD vy C, by —1. In this circumstance (3.1) is not compatible
with the continuity of U(z) at b,.

Case II. by= —1. Setting 9, =arg*(z,, + 1), d=arg*(z, + 1), we claim (3.0)
implies |8, — 9| =0 as k-0, which would again show (3.1) is untenable.
Indeed, if |9, — 9% did not tend to zero as k—c0, we could find subsequences
{9, and {9} with & —a, 9: =, 0<a=<n/2, 0S <72, a+p. If say a=n/2,
the corresponding subsequence of {z, } approaches —1 in a tangential manner
while its companion subsequence of {z; } approaches —1 non-tangentiaily,
and this clearly contradicts (3.0). The case f=n/2 is similar. For the remaining
possibility, (3.0) is also not satisfied for the appropriate subsequences and in
fact the non-Euclidean distance between corresponding terms is greater than

llogcot(n/2 — B2) —log cot(n/2 —a2)|
for all but a finite number of terms.
A definition of normality according to LEHTO and VIRTANEN implies

V(z)=(U(z))""' is also normal whereas V(z) is not normal according to
Definition 1. Indeed if V(z) were normal the family

argz, yz0, O0Zargz<n/2;

—argz, y<0, —n/2<argz=0;
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would contain a uniformly convergent subsequence which would converge
to the identically infinite function on account of V,(0)— oo as n—o0. But
each compact subset of D contains points for which ¥V, ({) is uniformly bounded
for all n.

To return to the normal function U(z) we observe that it is subharmonic
in D, Hence U(z) is a normal, positive, subharmonic (and even bounded),
function which tends to 0 as z——1 along the real axis yet does not have
angular limit O at —1. Thus Theorem 1 is not valid if the condition that
log U(z) be subharmonic is omitted and is replaced by the weaker condition
that U(z) itself be subharmonic.
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