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Asymptotic values of normal subharmonie functions 
By 

D. C. RuN~ 

1. The purpose of this paper is to prove, for a class of functions subharmonic 
in the open unit disk in the complex plane, a variant of a theorem of O. LErITO 
and K. I. VmTANEN. According to LEHTO and VmTA~rEN [5, p. 53] a mero- 
morphic function f ( z )  defined in a simply connected domain G in the plane 
is said to be a normal function if the family {f(S(z))} ,  where z ' =  S(z) denotes 
an arbitrary one-one conformal mapping of G onto G is a normal family 
in the sense of Montel, 

It is shown that if f ( z )  is a non-constant normal meromorphic function 
in G then G must be of hyperbolic type. Hence for brevity we state the above 
mentioned theorem in the case in which G is the unit disk D={z[[ z r<l} .  
Set C={zllzl=l }. 

If ~; is a Jordan arc in D with one endpoint zaC; andf (z )  is a function 
defined in D taking values on the Riemann sphere W such that f ( z )  tends 
to a value ~ W as z approaches "r along 7 then ~ is called an asymptotic 
value fo r f (z )  at z. 

Theorem (LEHTO and VmTANEN). Let f ( z )  be a normal function in D with 
asymptotic value c~ at re  C. In this easel(z) tends uniformly to ~ as z approaches 
within any Stolz domain at �9 [5, p.53]. 

The notion of function shall be limited to finite valued complex functions 
in this paper unless otherwise noted. 

If the definition of a normal function as given by LEHTO and VIRTANEN 
is restricted to holomorphic function, HURWITZ'S theorem gives the following 
formulation which will define in the sequel a normal (not necessarily holo- 
morphic) function. 

Definition 1. A function U(z) defined in D is said to be a normal function 
if the family F={U(S(z))} ,  where z '= S(z) is an arbitrary one-one conformal 
map of D onto D, has the property that for every sequence {fn},fn~F, there 
exists a subsequence which either converges uniformly on every compact subset 
of D, or else converges uniformily to infinity on every compact subset of D. 
For  the notion of a normal family used in this definition see e.g. [1, p. 168]. 

That this definition is not equivalent to, and in fact is more restrictive 
than, the corresponding definition obtained from the Lehto-Virtanen defini- 
tion by replacing the word "meromorphic"  by "complex-valued" in their 
definition is fairly obvious and we remark on this in w 3. We call such a com- 
plex-valued function satisfying this definition a normal function in the sense 
of LEHTO and VIRTANEN. 
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Consider the case of a non-constant normal holomorphic function f(z)  
which has a finite asymptotic value a at some point of C. The normality 
f ( z ) - a  clearly implies the normality of If(z)-c~].  Further [ f ( z ) -~a  has the 
additional property that log ]f(z)-~l is a subharmonic function in D. (For 
the definition and discussion of subharmonic functions see e.g. [7].) Thus 
the theorem of LENTO and VIRTANEN can be interpreted that if 0 (or oo) is 
an asymptotic value of g~(z)=[f(z)-~[ at , e C  then U~(z) tends to 0 (or oo) 
within any Stolz domain at , .  

It seems natural to ask if this property holds for a normal function U(z) 
in D such that log U(z) is subharmonic. We answer in the affirmative, at least 
in the case in which the asymptotic value 0 (or oe) is associated with a arc 
approaching z e C within some Stolz domain at z. 

2. If M is a simply connected domain in the plane bounded by a Jordan 
curve F and if ~ is any open arc on F let eg(z, ~, M) equal the harmonic measure 
of ~ at z ~ M  with respect to M. (For details see e.g. [6, p.26ff].) 

Consider also in D the non-Euclidean hyperbolic distance 

tl-z~z2]+lz~-z2j 
p(z l ,  z 2 ) = l l o g  I I - z l  ~ 2 ~ - i z l - z ~ l  

For further details see [3, Chap.II,  IV]. 

For  z e C  let S(~,/?)=S(/~), 0</~<~r/2, denote the open set bounded by 
the two hypercycles from z to --c making angle/~ and -/~ respectively with 
the diameter between z and - ~ .  If a non-empty set E, E c D ,  is such that the 
closure of E intersects C only at z and E is contained in some S(z,/3) we say 
E approaches z in a non-tangential manner. 

Finally, for any function f(z)  defined in D and any set E c  D such that 
the closure of E meets z~C, Cg(f, -c) will be the set of all values w s W s u c h  
that there is a sequence {z,}, z,~E, and z,-+v, n ~o o ,  wi th f ( z , )~w as n-~oo. 
If the equation Cs(~,p)(f, z )=w is satisfied for some we W and all 0_</3<7r/2, 
we say f(z)  has angular limit w at ~. 

With these preliminaries we now give 

Theorem 1. Let U(z) be a non-negative normal function in D such that 
log U(z) is subharmonic. I f  y is a Jordan are in D approaching z~C in a 
non-tangential manner and U(z) has asymptotic value 0 (or oo) along ~ then 
U(z) has angular limit 0 (or 0o) at ,:. 

Proof. We may suppose without loss of generality that z =  1. We first 
consider the case in which the asymptotic value is 0. Let 0 < fl < ~/2 be chosen 
so that ycS(1, /~o)=S(f lo) .  We need only show that Cs(po)(U, 0)={0}, and 
we suppose the contrary. 

Let {z,}, z, eS(~o), z.-+l, n-~c~, while U(z,)~a, a>0 .  Consider the non- 
Euclidean straight line E, through z, perpendicular to the real axis. Let r,  
be the point of intersection of E.  and the real axis. Since z, eS(~o), n =1,  2 . . . .  

(2.0) p(r, ,  z , )<�89 n = l ,  2, . . . .  
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By the normality of U(z) there is a subsequence of 

f l<l, {u(s.(o)}, 

which converges uniformly on each compact subset of D;={~[]~[<I} .  To 
simplify the notation we assume {U(S.(~))} is the desired subsequence. Now 
{U(S.(~))} cannot tend uniformly to infinity on the compact subset 

e 2K 1 =-K' 

because of the presence of points (corresponding to arcs of 7 under S~ -i) 
on which {U(Sn(~)) } tends to zero. Assume therefore that {U(S.(~))} converges 

i 
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6 

Fig, 1 -Z 
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to a limit function V(0 which is uppersemicontinuous in D. This property 
follows from the hypothesis of the theorem which implies U(z) is uppersemi- 
continuous in D, and so also is each U(Sn(~)), n =  1, 2, . . . ,  in D; as well as 
the uniform limit V(~). 

For  n =  I, 2 . . . .  Iet F, and G n denote the two curves in D whose non- 
Euclidean distance from E n is one. Let F n be that curve closest to the origin. 
Let H and I be the hypercycles from - 1  to 1 with non-Euclidean distance 
one from S(flo); and Jn be the "quadrilateral" bounded by the curves F,, 
G,, H and I. Label the boundary curves of dn, f . ,  gn, hn and i n where f ,  c F,, 
etc. To conclude, set ?, equal to any arc of the curve ? which joins the sides 

f ,  and g, and otherwise is entirely contained in Jn (see Fig. 1). 
7,, splits J, into two components and we suppose that z n is contained in 

that component O n bounded by h,. The proof is similar if there is a subsequence 
of {zn} with each term contained in the "lower" component of the correspond- 
ing set jn. 

For any fixed n = 1, 2 . . . . .  let the prime superscript indicate the image in 
t 1 Dr by ~= S~ "l(z) of the appropriate point set in D, so that hn= $7 (hn) and 

SO o n .  
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! s ot  It is easily verified that each point setf~, g,,, hn, tn and thus J~ is identical 
I t t p I ! for every value of n =  1, 2, .; set f ~ = f ,  g ,=g,  h'n---h', . . . .  I n ~ l  and . .  J n ~ J  . 

In f a c t f '  and g' are subares of a pair of symmetric hypercycles from i to - i  
and h' and i' are subarcs of another symmetric pair of hypercycles joining 

1 1 to - 1 .  Observe that S n (z,)=z~ lies on the imaginary axis with I z',]<= K', 
n = 1, 2 . . . . .  See Fig. 2. 

CARLEMAN'S principle of Gebietserweiterung [6, p. 69] implies, for (~ O~, 
n=  1, 2, . . . ,  

(2,1) e)({, 2'n, 0',) > co(~, i', J ' ) .  

Since that segment of the imaginary axis in J '  from i' to the point iK' is 
bounded away from that part of the boundary of J '  on which co=O, (2.I)and 
the properties of harmonic measure yield, for a suitably small O<o)o< 1, 

(2.2) 

If 

(2.3) 

o ) ( ~ ; ,  ~',, o ' )  > COo, n = 1, 2, . . . .  

e ,=max  U(S~(~)), 

the hypothesis implies e,--.0 as n--.oe. 

The upper semicontinuity of V(~) in D~ guarantees the existence of a posi- 
tive constant T such that V(~)<_T, ~eJ'; and the uniform convergence of 
{U(S,(~))} on J' gives 

(2.4) U(S,(~))<T+I, ~eJ' ,  n>No. 

We can apply the two-constant theorem of F, and R. NEVANLINNA [6, 
p.42] (based on the Phragmen-LindelSf maximal principle for subharmonic 
functions) to the domain O'n if we observe that log U(S,(~)) is subharmonic 
and by (2.4) bounded above in O',. In this manner for n > No, we obtain, 
after referring to (2.2), 

t p < , , 

log U(S.(z.))=co(z., Y,, 0,) log e ,+  

(2.5) + (1 -co (z',, 7',, O',)) log (T+ 1) 

< co o log e, + (1 - COo) log (T+ 1). 

With e,--+0 as n~oo,  this implies log U(Sn(z'n))'-+-oo or U(z,,).-+O as n--+oo, 
which is the desired contradiction. 

For the case in which the sequence {z,} is such that each z, belongs to the 
"lower" component of J, we simply apply the two-constant theorem to the 
domain bounded by 7;,f ' ,  g' and i' with the harmonic minorant a)(~, h', J'). 

To conclude the theorem we consider the situation in which U(z) tends 
to + oo on 7- The limit function V(~) must be identically infinite. Otherwise 
U(S,,(ff)) is uniformly bounded in J '  for n > No. But J '  contains each ~/'n and 
U(S,,(~)) is certainly not uniformly bounded on 7'n for all values n. This con- 
cludes the proof. 
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If the function U(z) is bounded in D we may dispense with the hypothesis 
of normality, which was only utilized to insure the existence of an upper 
bound for U(S.(~)) in J', and obtain 

Theorem 2. Let U(z) be a non-negative function in D such that log U(z) 
is subharmonie in D and further let U(z)<__M in D. Suppose ~ is a Jordan are 
in D which tends non-tangentially to a point zeC with 

lim U(z)<=K<M, z-+z, z s  7. 

I f  esCs(~,p)(U , z), 0<f l<~ /2 ,  there is a real number 2=2(fi) ,  0 < 2 <  1, with 
2(fl)-+0 as fl-+n/2, such that e<__K~M 1-~. 

Proof. Let {z.} be a sequence in S(z, fl) for which f(z.)-+e.  Proceed as 
in Theorem 1 except in (2.3) replace e,, by K+e. and in (2.4) replace T +  1 
by M, obtaining as in (2.5), 

log U(z.)<=coolog(K+e.)+(1-coo)logM , n = l ,  2 . . . . .  

o r  

U (z,)<(K + e,)oo M(1 -o,o). 

As n-+oo, U(z,)-+c~ and e,-+0 so c ~ K ~ ~  1-~176 

The value co o depends upon the domain J '  and the point iK' both of which 
are functions only of the angle ft. Thus we may set COo=2=2(fi), and a further 
analysis shows that 2( f i )~0 as fl-+~z/2. 

Briefly Theorem 2 states that if f2* is the set of all Jordan arcs approach- 
ing z in a non-tangential manner either 

C~(W,z)n{Iwl=M},O, all ~a*; 
o r  

C~(U,v) n { l w [ = M } = # ,  all ~ag2*. 

Clearly the Theorem also remains true if we require, instead of U(z)< M, 
zeD, that for any 0 < f i < ~ / 2  there is a constant M, independent of fl, such that 

lira U(z)<_M, z ~ z ,  z ~ S('r, fl). 

3. The condition of normality is obviously necessary in Theorem 1. Select 
any holomorphic function f(z) in D which tends to, say 0, along some recti- 
linear segment terminating at a point of C, but which does not have angular 
limit 0 at this point. The U(z)= ]f(z)r is the desired Gegenbeispiel. (There 
are many such examples of holomorphic functions of the above type. One 
interesting example is given in [2, pp .287-288] . )  

Before investigating the requirement that log U(z) be subharmonic we 
contrast the two definitions of a normal function. To this end we recall a 
criterion that a continuous function f(z) from D into the extended plane be 
normal in the sense of L~HTO and VIRTANZN. This criterion was noted by 
LAPJ'AN in [4], and states that f (z )  is normal on D if and only if given any 
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two sequences {z.}, {z,~}, in D such that p(z.,z~)--.O as n-~oo then 
z(f(z .) , f(z .))~O as n~oo.  Here X(Wl, w2) is the chordal distance between 
w t and w2 in the extended plane. 

Of course a function f(z)  in D, which is normal according to Definition 1, 
is also normal in the sense of LEHTO and VIRTANEN while the converse state- 
ment is not true. While this is fairly obvious we construct such a function 
which also serves to investigate the necessity of the subharmonic condition 
in Theorem 1. 

For z = x + iy, x > 0, define 

argz, y>O, 0 < a r g z < n / 2 ;  

a r g * z = [ _ a r g z ,  y < 0 ,  - r c / 2 < a r g z < 0 ;  

and for zeD set U(z)=arg*(z+l)+(x+l).  U(z) is a positive, bounded, 
continuous function in D. Employing the criterion of LAPPAN let {z,} and 
{z~,} be two sequences in D with 

(3.0) p ( z . ,  z'.)--,O, n ~ o o .  

Suppose I U(z,)-U(z~)l does not tend to zero as n ~  oo. Without loss of 
generality we assume, for e > O, 

(3.1) I u ( z 3 - U ( z ' , , ) i > _ ~ ,  all n.  

Let a subsequence {z,,k} be chosen so that z , ~ b o ,  k-.oo. Necessarily z~-+b o 
as k~oo .  We consider several cases. 

Case L boeD w C, bo4: - 1. In this circumstance (3.1) is not compatible 
with the continuity of U(z) at b o. 

CaseII. b o = - l .  Setting Ok=arg*(z,~+ l), ' --  * ' Ok--arg (znk+ I), we claim (3.0) 
implies IOk--O~l--*O as k- ,oo,  which would again show (3.1) is untenable. 
Indeed, if Igk-O~,l did not tend to zero as k ~ o o ,  we could find subsequences 
{Ok,} and {0kl } with Oki ' -+a , Oki"'+fl, 0____ct__<u/2, O<fi<u/2, e4:fl. If say ~=7c/2, 
the corresponding subsequence of { z j  approaches - 1  in a tangential manner 
while its companion subsequence of {z'~} approaches - 1  non-tangentially, 
and this clearly contradicts (3.0). The case fl = re/2 is similar. For the remaining 
possibility, (3.0) is also not satisfied for the appropriate subsequences and in 
fact the non-Euclidean distance between corresponding terms is greater than 

[ log cot (re/2 - ill2) - log cot (n/2 - ~/2) [ g 

for all but a finite number of terms. 
A definition of normality according to LEHTO and VmTANEN implies 

V(z)=(U(z)) -1 is also normal whereas V(z) is not normal according to 
Definition 1. Indeed if V(z) were normal the family 
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would  contain a uniformly convergent subsequence which would  converge 
to the identically infinite funct ion on account  of Vn(0)~oo as n ~ o o .  But 
each compact  subset of D contains points for  which V, (~) is uniformly bounded  
for  all n. 

To return to the normal  funct ion U(z) we observe that  it is subharmonic  
in D. Hence U(z) is a normal ,  positive, subharmonic  (and even bounded),  
funct ion which tends to  0 as z - ~ - 1  along the real axis yet does not  have 
angular  limit 0 at - 1 .  Thus  Theorem 1 is not  valid if the condi t ion that  
log U(z) be subharmonic  is omit ted and is replaced by t h e  weaker condit ion 
that  U(z) itself be subharmonic .  
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