Multiply connected domains of normality in iteration theory

By **IRVINE NOEL BAKER**

1. Introduction

The theory of the iteration of a rational or entire function f(z) of the complex variable z treats the sequence of "iterates" $\{f_n(z)\}$ defined by

 $f_0(z) = z$, $f_1(z) = f(z)$, $f_{n+1}(z) = f_1(f_n(z))$, n = 0, 1, 2, ...

In the theory developed by FATOU [1, 2] and JULIA [3], a fundamental role is played by the set $\mathfrak{F}(f)$ of those points of the complex plane where $\{f_n(z)\}$ is not normal in the sense of Montel. $\mathfrak{F}(f)$ is a non-empty perfect set whose complement $\mathfrak{C}(f)$ consists of an at most countably infinite set of components G_i , each of which is a maximal domain where $\{f_n(z)\}$ is normal.

The determination of $\mathfrak{F}(f)$ and the G_i corresponding to a given f(z) is a problem of some difficulty, especially in the case where f(z) is entire and transcendental. So it is that despite the need, urged by FATOU [2], to establish by numerous examples the various ways in which $\mathfrak{F}(f)$ can divide the plane, rather few such examples have been worked out. It is remarkable that in the two cases of transcendental functions given by FATOU [2], as also in the cases sin z and $\cos z$ investigated by TÖPFER [4], all the domains G_i are simply connected. So far as I know, no example has yet been given of an entire transcendental function with some of its domains G_i multiply connected. The object of this paper is to provide such an example:

(A). The function g(z) of (1) (see p. 207) has at least one multiply connected domain G i.e. the complement $\mathfrak{S}(g)$ of $\mathfrak{F}(g)$ has at least one multiply connected component.

A set A in the complex plane is *completely invariant* with respect to the iteration of f(z), if $\alpha \in A$ implies (i) $f(\alpha) \in A$ and (ii) $\beta \in A$ whenever $f(\beta) = \alpha$; in other words if $f(A) = A = f_{-1}(A)$. It is well known ([1, 2, 3]) that $\mathfrak{F}(f)$ and its complement are completely invariant in this sense.

From now on f(z) shall always denote a non-linear entire function. Töpfer's paper [4] contains the following remarks about the components G_i of $\mathfrak{C}(f)$:

(B). If G_1 is multiply connected, then $\lim_{n\to\infty} f_n(z) = \infty$ in G_1 . (C). If G_1 is unbounded, then all G_i other than G_1 are simply connected; if in addition G_1 is multiply connected, then it is completely invariant.

If f(z) is a non-linear polynomial, there is clearly a neighbourhood of ∞ in which $f_n(z) \to \infty$ uniformly as $n \to \infty$, and this is contained in an unbounded G_1 . G_1 is multiply connected in the plane, although not necessarily on the sphere as the example $f(z) = z^2$, $G_1 = \{z/|z| > 1\}$ shows. It is not difficult to provide examples of multiple connectivity on the sphere (see Section 3).

If f(z) is transcendental it seems possible that G_1 should be multiply connected and all G_i , i = 1, 2, ... bounded. Suppose this is the case. If at a point of G_1 we fix a branch of $f_{-1}(z)$ and continue this branch throughout G_1 , it follows from the complete invariance of $\mathfrak{F}(f)$ and $\mathfrak{C}(f)$ that for the chosen branch and its continuations within G_1 :

$$f_{-1}(G_1) \subset G_p$$

for a single component G_p . Moreover G_1 contains at most algebraic singularities of $f_{-1}(z)$, since if $z=z_0$ were a non-algebraic singularity one would have $f_{-1}(z) \to \infty$ as $z \to z_0$ in G_1 , with $f_{-1}(z) \in G_p$, which would make G_p unbounded. Also $f(G_p)$ lies in a single component G, which must be G_1 and we have

$$f(G_{\phi}) = G_1.$$

If w is a boundary point of G_p , there is a sequence $\{z_n\}$, n = 1, 2, ... such that $z_n \in G_p$, $z_n \to w$ as $n \to \infty$. Then $f(z_n) \in G_1$ and $f(z_n) \to f(w)$, so that $f(w) \in \overline{G_1}$. But $w \in \mathfrak{F}(f)$ and hence $f(w) \in \mathfrak{F}(f)$, so that $f(w) \notin G_1$ and in fact f(w) lies in the boundary of G_1 . Similarly, if t is a boundary point of G_1 , there is a sequence $\{t_n\}$, $n = 1, 2, \ldots$ such that $t_n \in G_1$, $t_n \to t$ as $n \to \infty$. Take u_n to be any of the values of $f_{-1}(t_n)$ which lies in G_p . Then there is a convergent subsequence of $\{u_n\}$ which we may assume to be $\{u_n\}$ itself, with limit (say) v in \overline{G}_p . Clearly $f(v) = t \in \mathfrak{F}(f)$ so that v is in $\mathfrak{F}(f)$ and hence in the boundary of G_p . To sum up: the boundary of G_1 is the image of the boundary of G_p under the continuous mapping $z \to f(z)$.

If G_p is simply connected, then since it is also bounded, its boundary is a continuum and the boundary of G_1 as the continuous image of a continuum is also a continuum. Then G_1 is simply connected, against our original assumption. Thus G_p is multiply connected. By taking the different determinations of $f_{-1}(z)$ at a point z_0 in G_1 , such that $f_{-1}(z_0)$ has infinitely many determinations z_n with $|z_n| \to \infty$ as $n \to \infty$, we get for each determination a bounded multiply connected domain of the type G_p and altogether an infinite set of such domains.

Thus if G_1 is a multiply connected component of $\mathfrak{C}(f)$, then either

(D). G_1 is unbounded and completely invariant, and all other G_n are simply connected, or

(E). all G_n (including G_1) are bounded and there exist infinitely many multiply connected G_n .

2. Construction of g(z) satisfying (A)

Lemma 1. There is an entire function g(z) given by the canonical product

(1)
$$g(z) = C z^2 \cdot \prod_{n=1}^{\infty} \left(1 + \frac{z}{r_n} \right), \quad 1 < r_1 < r_2 < \cdots, C > 0,$$

which satisfies

(2) $|g(e^{i\vartheta})| < \frac{1}{4}, \quad 0 \leq \vartheta \leq 2\pi,$

(3)
$$r_{n+1} < g(r_n) < 2r_{n+1}$$
 for all $n = 1, 2, ...$

Proof. Choose r_1 and C > 0 so that

(4)
$$C \exp\left(\frac{2}{r_1}\right) < \frac{1}{4}; \quad Cr_1 > 1; \quad r_1 > 1; \quad e.g. \quad C = \frac{1}{4e}, \quad r_1 > 4e.$$

Define the sequence $\{r_n\}$ inductively by $r_2=C\,r_1^2\left(1+\frac{r_1}{r_1}\right)=2\,C\,r_1^2$ and in general

(5)
$$r_{n+1} = C r_n^2 \left(1 + \frac{r_n}{r_1} \right) \left(1 + \frac{r_n}{r_2} \right) \cdots \left(1 + \frac{r_n}{r_n} \right), \quad n = 1, 2, \dots$$

Then $r_2 = 2Cr_1 \cdot r_1 > 2r_1$ by (4), and inductively: $r_{n+1} > 2r_n$, since from (5) $r_{n+1} \ge 2Cr_n^2 > 2Cr_1 r_n > 2r_n$.

Thus $1 < r_1 < r_2 < \cdots$ holds and, moreover,

(6)
$$r_n > 2^{n-1}r_1, \quad n = 2, 3, ...; \quad r_{n+k} > 2^k r_n, \quad n = 1, 2, ...$$

so that (1) is an entire function.

Now by (1), (6), (4)

$$|g(e^{i\vartheta})| \leq C \prod_{n=1}^{\infty} \left(1 + \frac{1}{r_n}\right) < C \prod_{n=1}^{\infty} \left(1 + 2^{1-n} r_1^{-1}\right) < C \exp\left(\frac{2}{r_1}\right) < \frac{1}{4},$$

which establishes (2).

Further:

$$r_{n+1} = C r_n^2 \prod_{k=1}^n \left(1 + \frac{r_n}{r_k} \right) < g(r_n) = r_{n+1} \cdot \prod_{k=n+1}^\infty \left(1 + \frac{r_n}{r_k} \right).$$

But from the second part of (6):

$$\prod_{n+1}^{\infty} \left(1 + \frac{r_n}{r_k}\right) < \prod_{k=1}^{\infty} \left(1 + \frac{1}{2^k}\right) = 2$$

and (3) is proved

Lemma 2. If g(z) is the function of Lemma 1, then

(7)
$$g(r_n^{\frac{1}{2}}) < r_{n+1}^{\frac{1}{2}}, \quad n = 1, 2, ... and$$

(8)
$$\frac{1}{4}g(r_n^2) > r_{n+1}^2, \quad n = 1, 2, \ldots$$

Proof. g(r) is the maximum modulus of g(z) for |z| = r. Applying Hadamard's convexity theorem to $V(s) = \log(g(e^s))$ we obtain for s > 0

$$V(2s) - V(0) > 2\{V(s) - V(0)\}$$

 $V(2s) > 2V(s) - V(0)$,

or

so that

(9)
$$g(r^2) > \frac{g(r)^2}{g(1)} > 4g(r)^2$$

Putting $r = r_n^{\frac{1}{2}}$ in (9) and using (3) gives

$$4g(r_n^{\frac{1}{2}})^2 < g(r_n) < 2r_{n+1}$$

which proves (7). Putting $r = r_n$ in (9) and using (3) gives

 $g(r_n^2) > 4g(r_n)^2 > 4r_{n+1}^2$,

which proves (8).

Lemma 3. If g(z) is the function of Lemma 1, then

(10)
$$g(r) < 4|g(-r)|$$

holds in the region

(11)
$$B_n: 4r_n < r < \frac{1}{4}r_{n+1}$$

for all large enough n.

Proof. We recall (c.f. (5)) that $\frac{r_{n+1}}{r_n} > Cr_n \to \infty$ as $n \to \infty$, so that B_n is non-empty for all large enough n. We note that

$$\log(1+x) < x$$
 for $x > 0$,
 $-\log(1-x) < 2x$ for $0 < x < \frac{1}{2}$,

so that

(12)
$$\log\left(\frac{1+x}{1-x}\right) < \Im x \quad \text{for} \quad 0 < x < \frac{1}{2}.$$

Now

(13)
$$\log \left| \frac{g(r)}{g(-r)} \right| = \sum_{n=1}^{\infty} I_n = \sum_{k=1}^{n-1} I_k + I_n + I_{n+1} + \sum_{k=n+2}^{\infty} I_k$$

where

(13')
$$I_n = \log \left| \frac{1 + \frac{r}{r_n}}{1 - \frac{r}{r_n}} \right|.$$

For r satisfying (11) and for $k \le n-1$, we have $0 < \frac{r_k}{r} < \frac{r_k}{4r_n} < \frac{1}{8}$, and by (13'), (12)

$$0 < I_k = \log \left| \frac{\frac{1 + \frac{r_k}{r}}{r_k}}{\frac{1 - \frac{r}{r_k}}{r_k}} \right| < 3 \frac{r_k}{r} < \frac{3r_k}{4r_n}$$

Hence

(14)
$$\begin{cases} \sum_{k=1}^{n-1} I_k < \frac{3}{4} \sum_{k=1}^{n-1} \frac{r_k}{r_n} = \frac{3}{4} \frac{r_{n-1}}{r_n} \left\{ 1 + \frac{r_{n-2}}{r_{n-1}} + \frac{r_{n-2}}{r_{n-1}} \cdot \frac{r_{n-3}}{r_{n-2}} + \cdots \right\} \\ < \frac{3}{4} \frac{r_{n-1}}{r_n} \left\{ 1 + \frac{1}{2} + \frac{1}{2^2} + \cdots \right\} < \frac{3}{2} \frac{r_{n-1}}{r_n} \,. \end{cases}$$

209

For r satisfying (11) and for $k \ge n+2$ we have $0 < \frac{r}{r_k} < \frac{r_{n+1}}{4r_{n+2}} < \frac{1}{8}$, and by (13'), (12)

$$0 < I_k = \log\left(\frac{1 + \frac{r}{r_k}}{1 - \frac{r}{r_k}}\right) < \frac{3r}{r_k} < \frac{3}{4} \frac{r_{n+1}}{r_k}$$

Hence

(15)
$$\sum_{k=n+2}^{\infty} I_k < \frac{3}{4} \sum_{k=n+2}^{\infty} \frac{r_{n+1}}{r_k} < \frac{3}{4} \sum_{k+n=2}^{\infty} \frac{r_{n+1}}{r_{n+2}} \cdot 2^{n+2-k} = \frac{3}{2} \frac{r_{n+1}}{r_{n+2}}.$$

From (13), (14) and (15) it follows that for r satisfying (11)

(16)
$$\begin{cases} \log \left| \frac{g(r)}{g(-r)} \right| < \frac{3}{2} \frac{r_{n-1}}{r_n} + \frac{3}{2} \frac{r_{n+1}}{r_{n+2}} + \log \left(\frac{1 + \frac{r_n}{r}}{1 - \frac{r_n}{r}} \right) + \log \left(\frac{1 + \frac{r}{r_{n+1}}}{1 - \frac{r}{r_{n+1}}} \right) \\ < \frac{3}{4} \frac{r_{n-1}}{r_n} + \frac{3}{2} \frac{r_{n+1}}{r_{n+2}} + 2 \log \frac{5}{3}; \end{cases}$$

but as remarked at the beginning of the proof of this lemma, $\frac{r_{n+1}}{r_n} \to \infty$ as $n \to \infty$, so that for all large enough *n* the right hand side of (16) is less than log 4 and (10) holds.

Theorem 1. (Proof of statement (A) of the introduction). If g(z) is the function of Lemma 1 and A_n is the annulus

(17)
$$A_n: r_n^2 < |z| = r < r_{n+1}^2,$$

then there is an integer N > 0, such that for all n > N the mapping $z \rightarrow g(z)$ maps A_n into A_{n+1} and $g_n(z) \rightarrow \infty$ uniformly in A_n . For each n > N, A_n belongs to a multiply connected component of $\mathfrak{C}(g)$.

Proof. We note that (by (5)), for any fixed m, $r_{n+1}/r_n^m \to \infty$ as $n \to \infty$. Thus the annuli A_n are non-empty for sufficiently large n. If, moreover, $r_n > 4$ and $r_{n+1} > 16$, then the annulus A_n of (17) lies in the annulus B_n of (11). For all sufficiently large n, say for n > N and $z \in A_n$ we have from (7)

(18)
$$|g(z)| \leq g(|z|) < g(r_{n+1}^2) < r_{n+2}^2$$
,

while by (8) and, since $A_n \in B_n$, by (10) we have

(19)
$$|g(z)| \ge g(-|z|) > \frac{1}{4}g(|z|) > \frac{1}{4}g(r_n^2) > r_{n+1}^2$$

Together (18) and (19) show that A_n is mapped into A_{n+1} by g(z). Then A_n is mapped into A_{n+p} by $g_p(z)$ and, since the minimum distance of A_{n+p} from z=0 is r_{n+p}^2 , which tends to infinity with p, we have $\lim_{p\to\infty} g(z) = \infty$ uniformly in A_n .

In the unit circle $|z| \leq 1$ one has $|g(z)| < \frac{1}{4}|z|$ by (2) and Schwarz' lemma; hence by iteration $|g_n(z)| < 4^{-n}|z|$ and $\lim_{n \to \infty} g_n(z) = 0$ uniformly in the unit

210

circle, which belongs to some domain of normality G_1 of $\{g_n(z)\}$. Similarly A_n belongs to some domain of normality G_n which must be different from G_1 and thus contains no point of G_1 . Thus G_n is multiply connected.

The proof of the theorem is now complete. One might ask whether the G_n are different or not; some discussion on this point is given in Section 4.

3. The construction applied to polynomials

Let k be an integer greater than the N of the theorem of Section 2. Let P(z) be the partial product of (1) given by

(20)
$$P(z) = C z^2 \prod_{n=1}^{k} \left(1 + \frac{z}{r_n} \right).$$

For all z with $|z| < r_{k+1}$ we have

$$|g(-|z|)| \leq |P(-|z|)| \leq |P(z)| \leq P(|z|) \leq g(|z|),$$

whence it follows that for n=N+1, N+2, ..., k the annulus A_n of (17) is mapped by $z \to P(z)$ into A_{n+1} . In particular A_k is mapped into a region where $|z| > r_{k+1}^2$. On the boundary circle $|z| = r_k^2$ of A_k one has

and

$$\left|\frac{P(z)}{z^2}\right| \ge \left(\frac{r_{k+1}}{r_k}\right)^2 \ge 4$$

 $|D(x)| > x^2$

Since the zeros of P(z) have modulus at most $r_k < r_k^2$, we can conclude that for all $|z| > r_k^2$, and in particular for $|z| > r_{k+1}^2$:

$$|P(z)| \ge 4|z|^2 \ge 4|z|$$
$$|P_n(z)| > 4^n|z|.$$

Thus as $n \to \infty$, $P_n(z) \to \infty$ uniformly in $|z| > r_{k+1}^2$ and also in A_n for $n = N+1, N+2, \ldots, k$.

Now P(r)/r is an increasing function for $r \ge 0$, so that there is a unique R > 0 for which P(R) = R holds, while for any r > R one has P(r) > r. Thus if r > R the sequence $P_n(r)$ is increasing and divergent (since its convergence to s would imply P(s) = s, s > R). From a certain value of n onwards $P_n(r) > r_{k+1}^2$. Thus since $\{z \mid |z| > r_{k+1}^2\} = K$ is in $\mathfrak{C}(P)$, it follows from the complete invariance of $\mathfrak{C}(P)$ that the ray r > R of the real axis belongs to $\mathfrak{C}(P)$, and indeed to the same component as K. Comparing (20) with (5) we see that

$$P(r_1) \ge 2Cr_1^2 > 2r_1$$

so that $R < r_1$. Then A_n , n = N + 1, N + 2, ..., k, must all belong to the same component G_1 of $\mathfrak{C}(P)$ as K, being connected by the ray r > R. As in the case of g(z) we have $|P(e^{i\vartheta})| < \frac{1}{4}$ and the unit circle belongs to a region of normality $G_0 \neq G_1$. Each of the zeros $-r_n$ of P(z) is contained in a region

and

of normality G'_n where $\lim_{n\to\infty} P_n(z) = 0$, i.e. in a region other than G_1 . Thus G_1 is multiply connected, in fact at least (k-N)-fold connected; for the regions $G'_{N+2}, G'_{N+3}, \ldots, G'_k, G_0$ are all different. The region G_1 is completely invariant and it follows from results of [I] that its boundary is the whole set $\mathfrak{F}(P)$.

We conclude this section by remarking that the connectivity of G_1 is infinite. Suppose this is not the case: then the boundary of G_1 consists of a finite number of disjoint components, each compact and connected. Let d>0 be the minimal distance between different components. Since $\mathfrak{F}(P)$ is a perfect set, each of its finite number of components contains an infinity of points. Let C_1 be any such boundary component. Now it is shown in $\lceil 1 \rceil$ that for any $s \in \mathfrak{F}(P)$, any disc $D: |z-s| < \varrho$, $\varrho > 0$, and any bounded set E of the plane not meeting neighbourhoods of two possibly exceptional points which depend on P(z), there is an n_0 such that $P_n(D)$ contains E for $n > n_0$. We take E to be C_1 with neighbourhoods N_1 , N_2 of the two exceptional points subtracted if necessary to give $E = C_1 - (N_1 \cup N_2) \neq \emptyset$. We take the radius ϱ of D so small that $\varrho < d$. Then for $n > n_0$, $P_n(D)$ meets C_1 so that D contains points of $P_{-n}(C_1)$, and these, belonging to the boundary $\mathfrak{F}(P)$, must belong to the same boundary component C_2 as s. Thus $P_n(C_2)$ meets C_1 for $n > n_0$, and since $P_n(C_2)$ is a connected subset of $\mathfrak{F}(P)$ we have $P_n(C_2)$ contained in C_1 for every $n > n_0$. Now, since s is arbitrary and G_1 is multiply connected we may assume $C_1 \neq C_2$. A result of [1] or [3] states that every $s \in \mathfrak{F}(P)$ is a point of accumulation of fixpoints in $\mathfrak{F}(P)$, i.e. points $z \in \mathfrak{F}(P)$ such that $P_m(z) = z$ for some integer m. But this implies that $P_m(C_2) = C_2$ for some arbitrarily large *m*, which contradicts $P_n(C_2) = C_1$, $n > n_0$, $C_1 \neq C_2$. Thus the connectivity of G_1 is not finite.

4. A difference between the transcendental and polynomial cases

It is interesting to note that, in contrast to the case of P(z) in (20), it is not true for the g(z) of (1) that the annuli A_n (17) are connected by a segment of the real positive axis belonging to $\mathbb{G}(g)$.

Theorem 2. There is a unique R > 0 such that g(R) = R, and for r > Rwe have g(r) > r. There is also R' > 0 such that $|g(re^{i\frac{\pi}{2}})| > 2r$ for r > R'. Then for any $r_1 > Max(R, R')$, the interval $[r_1, g(r_1)]$ contains a point of $\mathfrak{F}(g)$.

Proof. The function $\frac{1}{r} \left| g\left(re^{i\frac{\pi}{2}}\right) \right|$ increases monotonely from 0 to ∞ as r increases from 0 to ∞ . This establishes the existence of R'. Similarly for R.

Define the function $\varphi(\vartheta)$ to be

$$\varphi(\mathbf{r},\vartheta) = \arg g(\mathbf{r}e^{i\vartheta}) = 2\vartheta + \sum_{n=1}^{\infty}\arg\left(1 + \frac{re^{i\vartheta}}{r_n}\right) > 2\vartheta$$

with all the arg functions normalized to zero at $\vartheta = 0$. For fixed r, $\varphi(r, \vartheta)$ is monotone increasing in $0 \leq \vartheta \leq \frac{\pi}{2}$, while for fixed ϑ in $0 \leq \vartheta \leq \frac{\pi}{2}$, $\varphi(r, \vartheta)$

increases steadily to ∞ as *r* increases to ∞ . For fixed $\alpha > 0$ put $\vartheta(r) = \vartheta(\alpha, r)$ equal to the smallest positive solution ϑ of $\varphi(r, \vartheta) = \alpha$. Then $\vartheta(r)$ is defined for all sufficiently large *r* and decreases steadily to 0 as $r \to \infty$.

We note also that $|g(re^{i\vartheta(r)})| \to \infty$ monotonely as $r \to \infty$, since if $r_1 < r_2$, $\vartheta < \frac{\pi}{2}$, then

$$\left|g\left(r_{1}e^{i\vartheta(r_{1})}\right)\right| < \left|g\left(r_{2}e^{i\vartheta(r_{1})}\right)\right| < \left|g\left(r_{2}e^{i\vartheta(r_{2})}\right)\right|.$$

We make two applications of the function $\vartheta(\alpha, r)$:

(i) $\alpha = \pi$. As $r \to \infty$, $g(re^{i\vartheta(r)})$ runs to ∞ along the negative real axis and runs through the values $-r_n$ for all large enough *n*. Since $\vartheta(r) \to 0$ as $r \to \infty$, we conclude that for any $\varepsilon > 0$ the angle:

$$\{0 \leq \arg z < \varepsilon, 0 \leq r < \infty\}$$

which we denote by A_{ε} , contains the curve $z=re^{i\vartheta(r)}$ for all sufficiently large r; hence A_{ε} contains points w_n (with $|w_n| \to \infty$ as $n \to \infty$) such that $g(w_n) = -r_n$, $g_m(w_n) = 0$ for all $m \ge 2$.

(ii) We now suppose that for some $r_1 > Max(R, R')$, the interval $[r_1, g(r_1)]$ belongs to $\mathfrak{C}(g)$. Since $\mathfrak{C}(g)$ is open, it must contain the set

$$W\{r_1, g(r_1), \varepsilon\} = \{z \mid r_1 \leq |z| \leq g(r_1), 0 \leq \arg z < \varepsilon\},\$$

where $\varepsilon > 0$. Take $\alpha = \varepsilon < \frac{\pi}{2}$ in defining $\vartheta(r) = \vartheta(\varepsilon, r)$. Now $\varphi(r, \vartheta) > 2\vartheta$, so that $\vartheta(\varepsilon, r) < \frac{1}{2}\varepsilon$. Thus for $r_1 < r < g(r_1)$ the segment S_r : $0 \leq \arg z < \vartheta(r)$ of the circle |z| = r belongs to $W\{r, g(r_1), \varepsilon\}$. Further, since $|g(re^{i\vartheta})|$ is a decreasing function of ϑ , we see that $g(S_{r_1}) < W\{r_1, g(r_1), \varepsilon\}$. For $r_1 \leq r \leq g(r_1)$ $g(S_r)$ is a simple arc, whose minimum distance from the origin occurs at the upper end-point; for $r = g(r_1)$ the minimum occurs at

$$g\{g(r_1)\exp(i\vartheta(g(r_1)))\}$$

and has a value $> 2g(r_1)$ since $\vartheta(g(r_1)) < \frac{\pi}{2}$. As r increases from r_1 to $g(r_1)$ the arc $g(S_r)$ sweeps out a region which includes

$$W\{g(r_1), 2g(r_1), \varepsilon\},\$$

and since S_r is contained in $\mathfrak{C}(g)$ the same is true of the region swept out by $g(S_r)$. Thus $\mathfrak{C}(g)$ includes

$$W\{r_1, 2g(r_1), \varepsilon\}.$$

By an inductive repetition of the above argument we find that $\mathfrak{G}(g)$ includes the whole angle A_{ε} . Therefore the angle A_{ε} combines with the A_n of the Theorem 1 to form part of the multiply connected completely invariant domain of normality G in which $\lim_{n\to\infty} g_n(z) = \infty$ holds. But by (i) A_{ε} contains the points w_m at which $\lim_{n\to\infty} g_n(w_m) = 0$. This contradiction shows in fact the interval $[r_1, g(r_1)]$ must contain points of $\mathfrak{F}(g)$. 214 IRVINE NOEL BAKER: Multiply connected domains of normality in iteration theory

The proof of Theorem 2 is now complete. It shows that if the domains A_n of Theorem 1 do belong to a single multiply connected domain G, then this domain is connected in a more complicated way than in the polynomial case. One might conjecture that the A_n belong to different components G_n so that alternative (E) of the introduction applies. However, I have not been able to prove this.

References

- [1] FATOU, P.: Sur les équations fonctionelles. Bull. Soc. Math. France 47, 161-271 (1919); 48, 33-94, 208-314 (1920).
- [2] Sur l'itération des fonctions transcendantes entières. Acta Math. 47, 337-370 (1926).
- [3] JULIA, G.: Mémoire sur l'itération des fonctions rationelles. J. de Math. pures et appliquées (8) 1, 47-245 (1918).
- [4] TÖPFER, H.: Über die Iteration der ganzen transzendenten Funktionen, insbesondere von sin z and cos z. Math. Ann. 117, 65-84 (1939).

Imperial College of Science and Technology, University of London (England)

(Received December 14, 1962)