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1, Introduction 

The theory of the iteration of a rational or entire function /(z) of the 
complex variable z treats the sequence of "i terates" {/~(z)} defined by 

/o(~) = ~ ,  I~(~) =I(~), I . ~ ( = )  =/~(L~(~)), n = o ,  I ,  2 . . . . .  

In the theory developed by FATOU !1, 21 and JULIA I3_], a fundamental 
role is played by the set ~ (/) of those points of the complex plane where 
{f~(z)} is not normal in the sense of Montel. ~(/) is a non-empty perfect set 
whose complement g (]) consists of an at most countably infinite set of com- 
ponents Gi, each of which is a maximal domain where {/~ (z)} is normal. 

The determination of 5(/) and the G i corresponding to a given f(z) is 
a problem of some difficulty, especially in the case where /(z) is entire and 
transcendental. So it is that despite the need, urged by FATOU E2~, to establish 
by numerous examples the various ways in which ~ (/) can divide the plane, 
rather few such examples have been worked out. I t  is remarkable that in 
the two cases of transcendental functions given by FATOU ~2~, as also 
in the cases sin z and cos z investigated by TOPrER [4!, all the domains G, 
are simply connected. So far as I know, no example has yet been given of 
an entire transcendental function with some of its domains Gi multiply con- 
nected. The object of this paper is to provide such an example: 

(A). The function g (z) o/ (1) (see p. 207) has at least one multiply connected 
domain G i.e. the complement g (g) o/ ~ (g) has at least one multiply connected 
component. 

A set A in the complex plane is completely invariant with respect to the 
iteration of / (z), if e ~ A implies (i) / (~) E A and (ii) fl ~ A whenever / (fi) = c:; 
in other words if /(A)=-A =/- I (A) .  I t  is well known (~1, 2, 3!) that ~ ([) and 
its complement are completely invariant in this sense. 

From now on / (z) shall always denote a non-linear entire function. T6pfer's 
paper I41 contains the following remarks Aoout the components Gi of (2 ([) 

(B). I/G1 is multiply connected, then l i~ /n , ( z  ) =o e  in G 1. 

(C). I] G~ is unbounded, then all G i other than G 1 are simply connected 
i[ in addition G1 is multiply connected, then it is completely invariant. 

If /(z) is a non-linear polynomial, there is clearly a neighbourhood of ec 
in which f .  (z) -+ o~ uniformly as n -+ 0% and this is contained in an unbounded 
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G 1. G 1 is multiply connected in the plane, although not necessarily on the 
sphere as the example / ( z ) = z  2, G~= {z / I z l> t }  shows. I t  is not difficult to 
provide examples of multiple connectivity on the sphere (see Section 3). 

If  /(z) is transcendental it seems possible that  G 1 should be multiply con- 
nected and all Gi, i = 1 ,  2 . . . .  bounded. Suppose this is the case. If  at a 
point of G 1 we fix a branch of ]-1 (z) and continue this branch throughout G I, 
it follows from the complete invariance of ~ (/) and ~ (/) that  for the chosen 
branch and its continuations within Gl: 

/-1 (G1) ( @ 

for a single component Gp. Moreover G 1 contains at most algebraic singularities 
of /_l(z), since if z = z  o were a non-algebraic singularity one would have 
/_l(z)-->oa as z-->z o in G1, with/_l(z)  c Gp, which would make @ unbounded. 
Also / (@) lies in a single component G, which must be G1 and we have 

/ (Gp) -- al. 

If w is a boundary point of @, there is a sequence {z~}, n = I, 2 . . . .  such 
that  z~ ~ @,  z~ -+w as n ---> ~ .  Then / (z~) C G1 and / (z~) -+/(w), so that  ] (w) ~G1. 
But  w C ~ (/) and hence / (w) ~ ~ (/), so that  / (w) r G1 and in fact / (w) lies in 
the boundary of G 1. Similarly, if t is a boundary point of G 1, there is a sequence 
{t,~}, n = 1 ,  2 . . . .  such that  ~ G 1 ,  t ~ t  as n-+oc.  Take u~ to be any of the 
values of /-1 (t,,) which lies in @.  Then there is a convergent subsequence 
of {u~} which we may  assume to be {u,,} itself, with limit (say) v in Cp. Clearly 
/ ( v ) ~ - t ~ ( / )  so that  v is in ~(/) and hence in the boundary of @. To sum 
up: the boundary of G 1 is the image of the boundary of @ under the con- 
tinuous mapping z-+/(z).  

If  Gp is simply connected, then since it is also bounded, its boundary is 
a continuum and the boundary of G 1 as the continuous image of a continuum 
is also a continuum. Then G 1 is simply connected, against our original as- 
sumption. Thus @ is multiply connected. By taking the different deter- 
minations of / -1  (z) at a point z 0 in G1, such t h a t / - 1  (z0) has infinitely many  
determinations z,, with ]z~]-+oc as n-+oc,  we get for each determination a 
bounded multiply connected domain of the type @ and altogether an infinite 
set of such domains. 

Thus i/ G1 is ct multiply contacted compo~e~t o / ~  (]), then either 

(D). G 1 is unbounded and completely invariant, a~d all other G~ are simply 
com, ected, or 

(E). all G~ (including G1) are bounded and there exist in/i~il, ely many mul- 
tiply connected G~,. 

2. Construction of g (~) satisfying (A) 
L e m m a  1. There is an e~,tire /umtion g (z) given by the canonical product 

(t) g(~) = c ~ .  H t + ~  1 < r l < r ~ < . . . , c > 0  
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which satis/ies 

(2) 

(3) 

[RVINE NOEL B A K E R :  

r,,~l<g(r,,)<2r,~l_ 1 /or all n = 1 , 2 , . . . .  

Pro@ Choose q and C >  0 so that 

(4) C exp (7/)2 < 7 '"  C r l > t ' ,  r l > i ;  e.g. C - !4e ' r i > 4 e '  

ri ] 9 Define the sequence {r=} inductively by r2=Cr~(l  + ~ T / - - " C r i  and in 
general 

(5) r~+ l = C r ~ ( t + ' ; ; ) ( l  §  ; : ) ,  n = t  2 , . . . .  

Then r2=2Cr  1 �9 r l > 2 r  ~ by (4), and inductively: r~-l>2r,~, since from (5) 
rn+i~=2Cl"2n> 2 C r i  q > 2 r ~ .  

Thus t < r i < r 2 < . . .  holds and, moreover, 

(6) r~ >, 2~-lrl, n = 2 , 3  . . . .  ; r ~ k > 2 k r ~ ,  n = t , 2 ,  ... 

so that (1) is an entire function. 
Now by (t), (6), (4) 

I g(~)l<c ~+7~ <c (~+21-",,i-b<Cexp ;/  <~,  
n = i  n = l  

which establishes (2). 

Further: 

ro..=Cr  , + <g(r,,) H § 
= / ~ = n + i  

But from the second part of (6): 

/ ) ( ,  + =2 
n + l  } = i  

and (3) is proved 
Lemma 2. I /  g(z) is the/unction o / k e m m a  t ,  then 

1 1 (7) g (r~) < rg+l, n = t,  2 . . . .  and 

(8) ~ g (r~) ~rn+ 1, n = t,  2, . . . .  

Pro@ g(r) is the maximum modulus of g(z) for Izi = r .  Applying Hada- 
mard's convexity theorem to V(s)=log(g(e~)) we obtain for s > 0  

V ( 2 s ) -  v ( o ) >  2{v(s) - v(o)} 
o r  

V(2s) > 2  v(s) - v(o),  
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so that  
> g(r)2 

(9) g(r 2) g ~  > 4g (r) 2. 

Putting r=r~ in (9) and using (3) gives 

4g (r~)2< g (G) < 2 r~+~, 

which proves (7). Putting r r= in (9) and using (3) gives 

g (r~) > 4g (r,,)2> 4r~+~, 
which proves (8). 

Lemma 3. I /g(z )  is the/unction o/Lemma 1, then 

(t0) g(r)<4[g(--r)[ 

holgs in the region 

(tl) B~: 4r, ,<r<~r~+, 

/or all large enough n. 

Pro@ We recall (c.f. (5)) that-r  ~+-~- >CG-->az as n-->oo, so that B,, is 
f n  

non-empty for all large enough n. We note that  

log(l , ' --x)<x for x > 0 ,  

- - l o g ( l - - x ) < 2 x  for 0 < x <  1, 
so that  

(12) log < 3 x  for 0 < x <  12 . 

.Now 

(13) log = I,~ -- ~ I ,  + I~ q- I.+, q- Ik 
n = l  g=l k = n + 2  

where 

(13') 

For r satisfying (1 !) 
(ty), (t2) 

Hence 

(~4) 

z, = log - - - # 1 .  

and for k ~ n - - l ,  we have O< rk < rk  l and by 
-- r -  4rn < 8 '  

1 -F f ;  rt~ 3 rl~ 
O < I * = l ~  < 3  - <  . r 4 r n 

n--1 n - - 1  
3 ~ rk 3 r n - ~ l  ~ r~-2 ~ rn-2 

k = l  = 

~-~ + . . . }  
Y~ --  2 
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( < rn+~ < l and by For r satisfying (t t) and for k=> n + 2 we have 0 <  rk 4%+2 8 ' 
(t3'), (t2) 

Hence 

t - "  r _  

0 < I k  = log  < < -  
rk 4 r~ 

\ r/~ / 

{30 OO OO 
,~ )r 3 ~ fn+l 3 ~ rn+l . 2 n + 2 - k _ _  3 V~+l 

,~=n+2 ~=n+2 /~+n=2 rn+2  #n+2 

From (13), (14) and (t5) it follows that  for r satisfying (tt)  

log g < 3 rn 1 + 3 Yn-~ + l o g  + l o g  

3 un-1 @ 3 %+~@21og 53 ; 
4 rn 2 rn+ 2 

but as remarked at the beginning of the proof of this lemma, rn--~ + ~o 

as n-+ 0% so that  for all large enough n the right hand side of (16) is less 
than log 4 and (t0) holds. 

Theorem 1. (Proo/ o/ statement (A) o/ the introduction). I /  g(z) is the 
/unction o/Lemma I and A n is the annulus 

&. td =r<rL1, 
then there is an integer N > 0 ,  such that /or all n > N  the mapping z-->g(z) 
maps A n into A,~+I and gn(z) ->~  uniformly in A,~. For each n > N ,  A n bdongs 
to a multiply connected compomnt o~ ~ (g). 

Proo/. We note that (by (5)), for any fixed m, r,,+l/r~-+oo as n - ~ .  
Thus the annuli A,  are non-empty for sufficiently large n. If, moreover, 
r n > 4  and r ,+1>16,  then the annulus A n of (17) lies in the annulus B~ of 
(1t). For all sufficiently large n, say for n > N  and zcA n we have from (7) 

(18) l g (z)l --<--g(Izl) < g (r~+O < r~+~, 

while by (8) and, since A,~< Bn, by (t0) we have 

1 2 2 (19) lg(z)l >g(--IZl)>-}g(Izl)>~g(rn)>rn+~. 
Together (18) and (t9) show that  A n is mapped into A,, ~1 by g(z). Then A,  
is mapped into An+ p by gp(z) and, since the minimum distance of A,,+p 
from z = 0 is rn+ p, which tends to infinity with p, we have lim g (z) = oc uni- 
formly in An. p--.~o 

In the unit circle <a one has lg(~)l <l id  by (2) and Schwarz' lemma; 
hence by  iteration Ig~(z) l <4--~lzl and l i rng n(z) = o  uniformly in the unit 
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circle, which belongs to some domain of normality G~ of {g~(z)}. Similarly 
A,, belongs to some domain of normality G~ which must be different from 
G~ and thus contains no point of G~. Thus G,, is multiply connected. 

The proof of the theorem is now complete. One might ask whether the 
G,~ are different or not; some discussion on this point is given in Section 4. 

3. The construction applied to polynomials 

Let k be an integer greater than the N of the theorem of Section 2. Let 
P(z) be the partial product of (t) given by 

k 

~* = I ] Z . 

For all z with lz] <rk+ 1 we have 

r g(-lzJ)J--< ] P(-!zJ)[ ~ IP(z)t =<v(Izi)=<g(lzl), 
whence it follows that  for n = N + t ,  N ~ 2  . . . .  , k the annulus A,, of (t7) 
is mapped by z-->P(z) into A~+ 1. In particular A k is mapped into a region 
where ]z I >rk+ 1 .~  On the boundary circle ]z] =r~ of A, one has 

and 

Since the zeros of P(z) have modulus at most rk<r~, we can conclude that  
for all ]z I > r~, and in particular for I~1 > 

iP(z)] >4)1~>41~1 
and 

[P~ (z)] >4~lzl .  

Thus as ~r P,~(z)->oc uniformly in ]z I >r~+ 1 and also in A~ for 
n = N + l ,  N + 2 ,  . . . ,  k. 

Now P(r)/r is an increasing function for r>O, so that there is a unique 
R > 0  for which P ( R ) ~ R  holds, while for any f > R  one has P(r)>r. Thus 
if r > R  the sequence P~(r) is increasing and divergent (since its convergence 
to s would imply P (s) = s, s > R). From a certain value of ~ onwards P~ (r) >r~+ 1 . 
Thus since {z I lz I > r~+~} = K is in ~ (P), it follows from the complete invariance 
of fg(P) that  the ray r > R  of the real axis belongs to f~(P), and indeed to 
the same component as K. Comparing (20) with (5) we see that 

P(r~)>=2Cr~> 2r~ 

so that  R<r~. Then A~, n = N + t , N + 2  . . . . .  k, must all belong to the 
same component G t of ~(P)  as K, being connected by the ray r>R.  As 
in the case of g(z) we have ]P(e'e)] < ~  and the unit circle belongs to a region 
of normality G O 4= G~. Each of the zeros --r~ of P(z) is contained in a region 
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of normality G'n where lira P,~ (z)--0, i.e. in a region other than G I. Thus 
~ - + o o  

G1 is multiply connected, in fact at least (k -- N)-fold connected; for the 
regions G~v+~, G~+a, . . . ,  G'k, Go are all different. The region G 1 is comp!etely 
invariant and it follows from results of [1~ that its boundary is the whole 
set ~ (P). 

We conclude this section by remarking that  the connectivity of G~ is 
infinite. Suppose this is not the case: then the boundary of G 1 consists of 
a finite number of disjoint components, each compact and connected. Let 
d > 0  be the minimal distance between different components. Since ~(P)  is 
a perfect set, each of its finite number of components contains an infinity 
of points. Let C1 be any such boundary component. Now it is shown in ~11 
that for any s ~ ( P ) ,  any disc D: Iz--s  t <o~, ~o>0, and any bounded set E 
of the plane not meeting neighbourhoods of two possibly exceptional points 
which depend on P(z), there is an n o such that  P~(D) contains E for n > n  o. 
We take E to be C 1 with neighbourhoods N~, Nz of the two exceptional points 
subtracted if necessary to give E : C  1 -  (NI~N2):4:0. We take the radius 
of D so small that o < d .  Then for n>no ,  .P~(D) meets C 1 so that  D contains 
points of P_~(C1), and these, belonging to the boundary ~(P) ,  must belong 
to the same boundary component C~ as s. Thus P~(C2) meets C1 for n > n  0, 
and since P~ (C2) is a connected subset of ~ (P) we have P~ (C2) contained in 
C 1 for every n > n 0, Now, since s is arbitrary and G 1 is multiply connected 
we may assume C 14=C 2. A result of Ill  or i31 states that every s ~ ( P )  
is a point of accumulation of fixpoints in ~(P) ,  i.e. points z ~ ( P )  such that  
P~(z)-~z for some integer m. But this implies that P~(C2)=C~ for some 
arbitrarily large m, which contradicts P,~ (C2) ---- C1, n > no, C1 4= Co. Thus the 
connectivity of G~ is not finite. 

4. A difference between the transcendental  and polynomial  cases 

It  is interesting to note that, in contrast to the case of P(z) in (20), it 
is not true for the g(z) of (1) that  the annuli A~ (17) are connected by a 
segment of the real positive axis belonging to (~ (g). 

Theorem 2. There is a unique R > 0  such that g ( R ) : R ,  and /or r > R  

we have g(r)>r. There is also R ' > O  such that tg(re ~ ;)I > 2 r / o r  r> R'. Then 
/or any r l>Max(R ,  R'), the interval Erl, g(rl) ~ contains a point o/ O(g). 

g ~ Pro@ The function * (re'-~) increases monotonely from 0 to oo as 
r 

r increases from 0 to oo. This establishes the existence of R'. Similarly for R. 

Define the function ~(0) to be 

~(r ,O)=argg(re  i ~  arg t + - -  > 2 d '  
n = l  / ' n  ] 

with all the arg functions normalized to zero at # = 0 .  For fixed r, 9(r,  t~) 

is monotone increasing in O_<v~<_ ~2 ' while for fixed v~ in O ~ v ~ 2 - ,  ~(r, ~) 
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increases steadily to e~ as r increases to c~. For fixed ct> 9 put  .~(r)= ~(cz, r) 
equal to the smallest positive solution 0 of cp(r, ~)=~ .  Then 0(r) is defined 
for all sufficiently large r and decreases steadily to 0 as r - + ~ .  

We note also that  Ig(rei~ monotonely as r-->ec, since if ~k<rz, 

va<-} ,  then 

< [ l < t I . 
We make two applications of the function ~(~, r): 

(i) e=zr .  As r-->oo, g(re ia(~l) runs to o0 along the negative real axis 
and runs through the values --r~ for all large enough n. Since v~(r)-~0 as 
r--->oo, we conclude that for any e > 0  the angle: 

{0< a rgz<  e, 0 < r <  o~}, 

which we denote by A~, contains the curve z = r e  io(~l for all sufficiently 
large r; hence A~ contains points zv~, (with Iw~]-- ,~ as n-+~o) such that 
g (w~) = -- r,~, g,,, (w~) -~ 0 for all m ~ 2. 

(ii) We now suppose that  for some r~>Max(R, R'), the interval It1, g(r~) 1 
belongs to ~ (g). Since ~ (g) is open, it must contain the set 

W{y I,  g (re), e} = {z I r 1 ~ Izl ~ g (re) , 0 ~ a rg  z < F~}, 

where e > 0 .  Take ~ = e < - ~ -  in defining O (r) =O (e, r). Now ~v(r,v~)>20, 

so that # ( e , r ) < ~ e .  Thus for r t<r<g(r l )  the segment S,.: 0 < a r g z < # ( r )  
of the circle [z I = r  belongs to W{r,g(rl), e}. Further, since Ig(rei~ is a 
decreasing function of 0, we see that  g(S~l ) ( W { r  1, g(rl), e}. For r~<:r~g(rl) 
g(S~) is a simple arc, whose minimum distance from the origin occurs at the 
upper end-point; for r = g(rl) the minimum occurs at 

and has a -value >2g(r l )  since O(g(rl)) < ~ .  As r increases from r~ to g(r~) 
2 

the arc g (S~) sweeps out a region which includes 

W{g(r~), 2g(r~), e}, 

and since S~ is contained in ~(g) the same is true of the region swept out by 
g (S~). Thus ~ (g) includes 

W{r , 

By an inductive repetition of the above argument we find that (~ (g) includes 
the whole angle A,. Therefore the angle A~ combines with the A,  of the 
Theorem t to form part of the multiply connected completely invariant 
domain of normality G in which lira g,~ (z)= ~ holds. But by (i) A, contains 

n ----~ oG 
the points %, at which lim g~(w,,)=0. This contradiction shows in fact 

n---~ oo 
the interval jr1, g(rl) ~ must contain points of ~ (g). 
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The proof of Theorem 2 is now complete. I t  shows tha t  if the domains  
A n of Theorem t do belong to a single mul t ip ly  connected domain  G, then 
this domain is connected in a more complicated way than  in the polynomial  
case. One might  conjecture tha t  the A,~ belong to different components  G,~ 
so tha t  a l ternat ive  (E) of the in t roduct ion  applies. However,  I have no t  
been able to prove this. 
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