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1.1. Summary 

Let G be a locally compact group with left Haar measure m G on the Borel 
sets I13(63 (generated by open subsets)and write [El =ma(E) .  Consider the 
following geometric conditions on the group G. 

(FC) If ~>0 and compact set KcG are given, there is a compact set U 
with 0 < 1 U [ < o o  and [xUAUI/I U[<~ for all xeK. 

(A) If 8 > 0 and compact set K c  G, which includes the unit, are given there 
is a compact set U with 0<[  U] < oo and I KU&Ui/I U[ <~. 

Here A AB = ( A \ B )  u (B\A) is the symmetric difference set; by regularity 
of m~ it makes no difference if we allow U to be a Borel set. It is well known 
that ( A ) ~  (FC) and it is known that validity of these conditions is intimately 
connected with "amenabil i ty"  of G: the existence of a left invariant mean on 
the space CB(G) of all continuous bounded functions. We show, for arbitrary 
locally compact groups G, that (amenable)e,,(FC)~(A). The proof uses a 
covering property which may be of interest by itself: we show that every locally 
compact group G satisfies. 

(C) For at least one set K, with int(K)4=0 and K compact, there is an 
indexed family {x~: ~eJ} c G such that {Kx~} is a covering for G whose covering 
index at each point g (the number of e e J  with geKx,) is uniformly bounded 
throughout G. 

1.2. Preliminaries 

Let L ~~ (63 be the Banach space (with ess. sup norm) of all bounded Borel 
functions, identifying functions which differ only on a locally ma,nult set in G 
(as in HEWITT-ROSS [3], section 11). A linear functional m on L ~~ is a mean if 

(1) 

(2) 
and 

(3) 
where 

re(f )=re(f); 

f > 0  => re(f)__>0; 

mO)=1, 

! is the constant function. Obviously Ii m [I = I and the means on L ~176 

form a weak * compact set Zc(L~ *. A mean is left fnvariant (m is a LfM) 
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if re(x f )  = m ( f )  for all xeG, where we define xf(t) =f(x -I t), and we say that G 
is amenable if there is at least one LIM on L ~. Similar considerations hold for 
other left invariant spaces X of functions on G, such as X =  CB(G), and for 
these spaces there is a corresponding notion of amenability; however, all of 
the standard variants of the definition of amenability are now known to be 
equivalent, see [2], section 1. 

In an early paper FOLNER showed that for discrete groups we have (ame- 
nable)ec-(FC); recently the same result has been proved [2] for a large class 
of locally compact groups: those which have an open normal subgroup H 
which is almost connected (H/Ho is compact, where H0 is the identity com- 
ponent), At the same time LEPTIN [7, 8] considered the group invafiant I(G): 

I(G)=supfinF~IKU[ " u ~ , [ U , > O } :  KEYf}>I ,  
( t IUI  " = 

where c/f is ali compacta in G; it is easily verified that I(G) = 1 r holds. 
In [8] LEPTIN shows that, for the class of groups just described, G is ame- 
nable e:> (A) holds. The methods in [2] and [7] depend on structure theory of 
locally compact groups and do not seem to extend to general locally compact 
groups. 

For any G we have (A)=> (FC): for if (e, K) is given let U be chosen to 
satisfy (A) for (e/2, K~) where 1<21 = K w K  -1 ~oKK -1. If keK  then 

!k U a V l = l k  U\Ul+l  U\k  Ul=lk C \Ul+ lk  -~ U\UI<21K1 U\UI 

=21K1 Uz~UI<elUI 

as required. Conversely if G is discrete we have (FC) ~ (A): let (e, K) be given, 
with K={xl, ..., XN} including the unit, and choose U to satisfy (FC) for 
(~/N, KK-  2). Then 

I I K U A U I = I K U \ U I =  g \ g )  <~lx~gAgl<elgt. 
i i=1 

One of our main theorems, based on the covering property (C), asserts: 

Theorem. If G is any locally compact group then (FC) ~ (A) (thus (FC) ~ (A)). 

We shall also include, for completeness, a proof of the following result 
which is based on some unpublished remarks of RYLL-NAgOZEWSKI. 

Theorem. If G is any locally compact group then (amenable)~ (FC). 

It will be a straightforward matter to see that (FC)~(amenable), so we 
conclude that (amenable)ee.(FC).~(A). 

Remarks. In (A) our compact set K is required to include the unit eeG; if 
we indicate by (A') the same condition with K + 0  the only restriction on K it 
is helpful to observe that (A)~(A'). Implication (~ )  is trivial; conversely let 
K-+-~ be given, let K'=Kw{e}. Then by (A) there is a compact set U with 

27* 
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0<1UI < oo and IK' UAUi =IK '  u\ui <�89 ~1Ul. Now IKUAUI =IKU\UI + 
I U\KUI, but note that 

I U ~ K U I + I U \ K U I = I U I < = I K U I = I K U \ U i + I K U c ~ U I ,  

which implies I U\KUI <IKU\UI. Thus 

IKUAUI <2 IKU\UI  <2 Ig '  U\UI < ~ l g l  
since K'  ~ K. 

1.3. A Localization Problem 

Present methods of proving (amenable)=~ (FC) for general groups demon- 
strate only the existence of a set U satisfying (FC) for a pair (e, K) if G is 
amenable, but provide no hint of how such sets U are located in G or how 
they may be constructed. Various "localization problems" dealing with such 
questions are considered in [10] for condition (FC) and there are similar 
problems for condition (A). If (P) is one of the conditions (FC), (A) the 
simplest localization problem asks whether we may choose U to satisfy (P) 
and simultaneously include a prescribed compact set E: 

(P~oc) Let (~, K) be given, as in (P), along with any other compact set E c  G. 
Then there is a compact set U satisfying (P) for (e, K) such that U~E. 

This localization problem is resolved as follows. 

Lemma 1.3.1. For any locally compact group, (P)~ (Ploo)for either of the 
conditions (P)= (A), (FC). 

Proof. We deal the case (P)=(A),  the proof for (FC) is much the same. 
Let e > 0 and compact set K, including the unit, be given along with a compact 
set E. If G is compact we may take U= G and obviously satisfy (A~o:), so 
assume G is not compact. Suppose we can find compacta {U,: n = l ,  2,...} 
with I U, I > n such that 

IKU.AU.I<21U.I for n = t ,  2. . . ;  

then for large n we may take U= U, ~ E =  E and satisfy (A) for (e, K). In fact 
we have I UI>I GI ,  so 

IKU,,AU.I I G A U t  IKUAUI <IKUAUI <IKUAKU, I ~ 
I U l  = IU,,l = lt_S,,t IU,,l IU,,I ' 

where 

while 

IKU,'XKGI _ I (KGuKE) \KGi  <IKE! ~0, 
IU.[ IGI = IGI 

! U A U , , I  < IE i  --->0, 
IU,,I = 1U,,i 

]KU, AU, I<21Un[ for all n. 
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To see we can find such a sequence { U,} let U be any compact set satisfying 
(A) for the pair (e/2, K). As G is non-compact there is some gl s G such that 
g g  1 (3 K - 1 K  U =  f). We may assume A (gl)> 1 where A is the modular function 
on G: this is trivial if G is unimodular, otherwise let H={x~G: A ( x ) = l } - a  
closed normal subgroup with G/H identified as a subgroup in IR (the real 
numbers). If :r: G ~ G/H is the quotient homomorphism, 7r(K-1KU) is com- 
pact and there is some gl ~ G with A (gl) > 1 [i.e. rc(g 0 > 0 if we identify G/Hc IR] 
such that ~ (U)~(ga)c~rc (K-1KU): r  which implies Ug~ n K - I K U = O .  Let 
U1 = Uu Ugl, so 

I Ud=l Ul+! Ug~l=[l+A(g~)][UI >2 / UI; 

then K U n  Ug~ =r  and KUg~ c~ U=f) so that 

!K U1A U~[ = I (K  U u K U gO\(U w U gOl--IK U\  UI + I(K U\  U) g~[ 

= [ l + A ( g l ) ]  I K U \ U I < 2 ] U I .  [ I+A(gl )]=2IU1] .  

Next take g2eG so that Ulg2c~K-*KUI =0 and A(gz)> 1, and define U 2 = 
UI u Ulg2, so that [ U21 = [1 +A (g2)] I U,[ >2el U[. The same computations 
show 

8 
Ig s2A g21<-il S~l. 

Continuing inductively we get the desired sequence { U,} with I U,,I > 2"1 UI. 
Q.E.D. 

1.4. Amenability and (FC) 
Theorem 1.4.1. For any locally compact group G, (amenable)<=>(FC). 

Proof. To see that (FC)~  (amenable): direct the system J =  {(~, K)} in the 
obvious way, pick Uj to satisfy (FC) for the pair j = (e, K), and write ~0j for 
the normalized characteristic function of Uj. For each xe  G we have [I x~0j- ~Pj If 1 
= Ix Uj A Uj[/I Uj[ ~ 0; but each (pj determines a function (q~j, f )  = S ~oj f dm~ 
which is a mean on CB(G) and, since the set Z of all means on CB is weak- �9 
compact, there is at least one weak �9 limit point m for the net {q)~}cS. It is 
trivial to check that m is left invariant. 

We prove the converse in two lemmas: the first is adapted from [10] and 
the second is an unpublished result due to RYLL-NARDZEWSKI. 

Lemma 1.4.2. Any amenable locally compact group satisfies the following 
measure theoretic Folner condition. 

(FC*) Let e>0,  6 > 0  and a compact set K c G  be given. Then there is a 
compact set U with 0<l  UI < 0% and a Borel set N c K  with I Ni <6, such that 
lx UAUI/I UI <e for all x e K \ N .  

Proof. If [K] =0  there is nothing to prove (take N=K)  so assume ]KI >0.  
It is well known (see [4]) that G is amenab le~for  every (e', K') there is some 
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(p~P(G)={f~LI(G):f>=O, j fdm~=l} with IIxr all x~K'. Choose 
q~P(G) corresponding to K'=K, e'=5~/IK[. We may assume that q0 is a 
simple function of the form 

N N 

q) = Z 2i ~OAi where 2 t > O, ~ 2i = 1, 
i = 1  i=1  

the A i are compacta with 0<iA~I and A 1 ~ . . .  ~AN, and (pA~aP(G) is the nor- 
realized characteristic function of A i. I t  is a straightforward matter to see that 

s N [xAiAAi] 55 
i=l ~=1 IA~l = I / I  

since A1 ~ ... =AN. Integrating over xsK we get 

N 

and since this is a convex sum we must have 

56> ~ IxAz~AIIA1 draG(x) 

for at least one A =A t. The integrand can be >__e only on a set N c K  with 
I N I < 6 ,  so we have [xAAAI/IA]<~ all xsK\N. Q.E.D. 

Lemma 1.4.3. For any locally compact group, (FC *)~ (FC). 

Proof (RYLL-NARDZEWSKI, unpublished). I t  suffices to prove (FC) for (e, K) 
with I K l > 0 .  Let A=KwKK so lkAc~AI>IkKI=IK 1, all keK. If  5=�89 [KI, 
then for any subset N~A with IA\N[ <5  we have KcNN-1; in fact if ksK 
we have 

25=[KI<IkAc~AI<[kNc~NI+IA\NI+Ik(A\N)]<IkNc~ N 1 + 2 5 ,  

so that kNc~N:t:O and keNN -1. Apply (FC*) to (5/2, A) and 5=�89 ]KI. 
There is a compact  set Uwith 0<[  UI < oo, and Borel set NcA with I A'\NI <6, 
such that IxS/\Sl<�89 all xeN. For  xl,  x 2 e N  this means 

Ixt x21g A gl=ix~ ~ U A x ;  ~ giN]U Ax21Ul+lU Ax;  t i t  

= [ x 2 U A U I + I x ~ U A U I < s I U t ,  

so lxVzXal<5 t a I  forallxaK CNN-1. Q.E.D. 

2.1. The Covering Property (C) 
The sets K considered in (C) are precisely the relatively compact sets with 

interior. I t  suffices to consider K which are relatively compact neighborhoods of 
the unit, for if Kis such a set and Y" = {x~} makes {Kx~} a covering whose index is 
uniformly bounded by n < oo, and if p s Gis given, then the neighborhood Kp ofp 
and translations {p-1 x~} give a similar covering. If K and ~Y ={x~} are given, 
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with {Kx~} a covering of G, we denote the index of this covering at yeG by 
I(K, 3;, y). Finally, we may replace the phrase " F o r  at least one set K . . . "  in 
our definition of property (C) with " F o r  every set K . . .  ", as the following 
lemma shows. 

Lemma 2.1.1. Let K and YC ={x~: c~eJ} be given with in t (K)+0 ,  K compact, 
and {Kx,} a covering of G with covering index uniformly bounded throughout G. 
Let K' be any other set with in t (K ' )+  ~), K '  compact. Then there is a family 
~/={yp: fieI} such that {K' yp} is a covering whose covering index is uniformly 
bounded throughout G. 

Proof. Assume I(K, :Y, x) < N< oo in G. Choose {gi . . . .  , g,} c G so 

n 

K " =  U K ' g i ~ K ;  
i = 1  

then i n t ( K " ) + 0  and K ~'' is compact so we may choose {hi, ..., hm}cG such 
that 

m 

U h j K ~ K " .  
j = l  

Let I={(i ,  ~): i =  1, 2, . . . ,  n; ~eJ}  and define indexed family N ={Y(i,~)=g~x,}. 
We assert that {K' y(~,~)} is a covering whose index is < N .  m �9 n throughout G; 
evidently 

U K'  y(i, ~) = U K'  gi x~ ~ U K x~ = G. 

Assume there is some x~G with I(K', {y(,,~)}, x ) > N m n = N ' .  Then for 
more than N '  indices (i, a) we have x~K'  y(~.~)=K'g~x~; but there are only n 
choices of i, so there is some l< io<n such that xeK'g,ox ~ for more than 
N'/n =Nm choices of index a~J. For  these a we have 

1// 

x~K'g lox~cK"x~  ~ U hjKx~,  
j = l  

and there are only m choices for j ,  so there is some l<=jo<=m such that 
x ~ hjo Kx~ for more than Nm/m = N choices of c~ ~ J. This implies that h)- ol x ~ Kx~ 
for more than N choices of c~J :  i.e. I(K, {x~}, h)-olx)>N, which is a contradic- 
tion. Q.E.D. 

Remark. By using the inversion symmetry x ~ x - 1  of G we see there is a 
one to one correspondence between coverings by right translates {Kx,} and 
coverings by left translates {x~i K-~}. For  convenience we consider only the 
right handed situation. 

If G is a vector group (G=IR ") or a toroid ( G = ~  ") for n ~  1 the covering 
property (C) is evidently valid; moreover it is also clear for such G that there 
are relatively compact neighborhoods of the unit {K,: i=  1, 2, ...} which form 
a neighborhood basis, and corresponding families of translations Y',= 
{x~: aeJ~}, which give coverings of index I(Ki, YCi, y ) = l  for all yeG - i.e. 
{Kix~} is a non-overlapping partition of G by translates of the increasingly 
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small neighborhoods K~. All discrete groups have this stronger property 
(take K={e}). If G is compact it obviously has property (C) and in fact the 
trivial choice of K=G, ~={e}  gives a partition; however it is not at all clear 
that there are arbitrarily small neighborhoods K of the unit which partition G 
for a suitable family of right translates - the three dimensional real orthogonal 
group G =S0(3, IR) presents an interesting unsolved problem in this respect. 
With these examples in mind we define the group invariant p(G), the infini- 
tesimal covering index of G by directing the family o ~ of all relatively compact 
neighborhoods of the unit downwards by inclusion and defining 

I(K,~Y)=sup{I(K,Ys yeG},  all K , ~  c, 

p (K, G)=inf{l (K,  ~r): translates of K by 3f cover G}, all K ,  

p (G) = lim inf{p (K, G): K e o~}. 

We shall inquire which groups have p(G)= 1; note that p(G) is integer valued 
(possibly + oo) and that, by the above remarks, all discrete groups, toroids, 
and vector groups have p(G)= 1. Although p(G)< ov ~ (C) it seems possible 
that p(G)= + oo even if G has property (C). We shall demonstrate that (at 
least) all solvable Lie groups have p(G)= 1, in the course of proving the 
lemmas which establish the main theorem of this section: 

Theorem 2.1.2. Every locally compact group has property (C). 

Lemma 2.1.3. If G is a locally compact group, K a compact normat subgroup 
such that G/K has property (C), then G has property (C). 

Proof. Let VcG/K be a compact neighborhood of the unit e'eG/K and 
select {~,} so {V~,} covers G/K with covering index _<n< ov at every point 
~eG/K. Pick x~eG so 7c(x~)=~, where n: G~G/K is the quotient map, and 
set U=n-I(V), a compact neighborhood of the unit in G. Then n(Ux,)= V~  
all c~eJ and I(U, {x,}, x)=I(V, {~,}, r~(x)) for all xeG. Q.E.D. 

Lemma 2.1.4. Let G be locally compact and H an open (not necessarily 
normal) subgroup with property (C). Then G has property (C) and p (G) =p (H). 

Proof. Let K c  H and :g" ={x,} c H satisfy (C) for the group H with covering 
index I~(K, Yf, y)<n<oe. Let {y~} be a (discrete) transversal for the right 
cosets G/H={Hy: yeG} - a set with one element in each coset, an let z(,,~) = 
x, yr Then 

G = U H y ~ = U K x ,  yp 
fl ~,tl  

so {Kz(~,r covers G and its covering index at any point xeG is <n.  Slight 
modifications show p(G)=p(H). Q.E.D. 

Lemma 2.1.5. Let G be a Lie group and N a closed normal subgroup. If N 
and GIN have property (C), so does G; furthermore p (G) <= p (G/N) �9 p (N). 

Proof. The estimate on p(G) will be clear from our constructions. Let 
n: G-~ G/N be the (continuous, open) canonical homomorphism. AS we are 
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dealing with Lie groups it is clear that there is a continuous (indeed analytic) 
local cross section for the cosets of N; i.e. if we consider any sufficiently small 
(compact) neighborhood/(1 of the unit e'eG/N, there is a continuous "cross 
section ma p"  z: Kt ~ G [~ can be taken analytic, but is not a homomorphism] 
such that ~o z=id. Write T=v(K1)cG; evidently the maps ~, z are homeo- 
morphisms between the compact set T c  G and KI ~ G/N, T meets each coset 
of re-i(K1) precisely once, and ~-i(K1) is a closed N-saturated neighborhood 
of the unit eeG with ~z-l(Ka)=T-N. Obviously we may assume T ~  {e}. 

As GIN has property (C) we may choose {~,: ~eJ} cG/N such that{Kj ~,} 
covers GIN with covering index < n <  oo throughout GIN [we may take 
n=p(G/N) if K~ is very small and suitably chosen]. We may assume, by 
making slight alterations of K1, {~} which do not affect the bound on the 
covering index, that the unit e'e{~,}, say ~o=e '. For  each c~eJ take x, eG 
with zc (x , )=  ~ (take Xo = e). Next let U1 be any compact neighborhood of the 
unit in N; as N has property (C) we may find {yp:/~eI} c N such that { U1 yp} 
covers N with Is(U1, {yp},y)<m<oo at each point y e n  [if U~ is small we 
may arrange that m =p(N)] .  

Define U = T. U~ c G. This is evidently a compact set in G; it is actually 
a neighborhood of the unit [so int(U)4:0]:  in fact we have U=TU1 =TN= 
~z-l(K1) and for every x e T . N  there is a unique factorization x=o-(x) �9 q(x) 
with ~r (x) e T, ~ (x) e N. These maps o-, t /are  continuous: in fact o-(x) = v (~ (x)), 
which is continuous since ~: K i n g  is continuous, and so q(x)=~(x)-lx is 
also continuous, giving a continuous bijection 

~-~(K1)=TN ~• -~T x N  (Cartesian product space). 

If ~: G x G ~ G is the (continuous) product mapping, we have ~o (a x ~I)=id, 
so a and a x t/ are homeomorphisms between T- N and T x N. Now T x Ut is 
clearly a neighborhood of (e, e)eTxN,  so a ( T x  Ui)=TU1 =U is a neigh- 
borhood of the unit in G. Finally, note that ~z-~(Ki)= TN~ U {T U 1 y~: fl el} c 
TN, so these sets are equal. 

Let x~,~)=ypx~ for all (fi, a ) e l x  J. We assert that {Ux(~,,)} covers G with 
covering index < m  �9 n throughout G. To see this is a covering, let xeG; then 
there is some c~eJ with ~(x)eKi  ~.,, which implies 

x e n - ~ ( K i ) . x ~ = T N x ~ = U  {T Ui y~ x~: fleI}= U {U yp x~} 

as required. For  xeG there are at most n indices c~eJ, say J~={el  . . . . .  ~,}, 
such that ~(x)eKx ~ ,  and these are precisely the indices a e J  for which 

x e ~ - ~ ( g l  ~ )  = ~ - l ( K 1 )  x , =  U {T U1Y~ x~}. 

If, for each aeJ~,  there are at most m indices fleI with xeTU~y~x~= Ux(~,~) 
then the covering index at x is <=mn as required; otherwise there is some 
xeG and some c~J~ with x~TU~y~x~ for more than m indices fleI, and this 
happens if and only if z = x x2 ~e T U1 yr for more than m indices fle L Writing 
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the unique factorization z = ~ (z). ~ (z) this means r/(z) e U 1 yp for more than m 
indices fleI, contradicting the definition of m. Q.E.D. 

Proof (2.1.2). If G is any locally compact group there is an open (not 
necessarily normal) subgroup H c  G which is almost connected (H/H o compact), 
see [9], pp. 56 -58 ,  and by 2.1.4 it suffices to show any almost connected 
group G has property (C). But connected, and even almost connected, groups 
are known to be approximable by Lie groups; there exist arbitrarily small 
compact normal subgroups K c  G with G/K a Lie group (see [9]). Let K be 
any one of these subgroups: in view of 2.1.3 it suffices to show that Lie groups 
have property (C), and another application of 2.1.4 reduces our considerations 
to connected Lie groups. 

As is well known, every connected Lie group G has a unique maximal 
solvable connected normal subgroup; this subgroup r(G) (the radical of G) is 
closed, G is semi-simple~r(G) is trivial, and G/r(G) is a connected semi- 
simple Lie group. In any connected solvable Lie group H there is a sequence 
of closed subgroups H = H , ~ . . . ~ H o = { e }  with H~-I normal in Hz and 
HJH,_I either a vector group or a toroid (see [9], section 3); applying 2.1.5 
several times we see that such groups satisfy (C) and in fact have p(H)= 1. 
Applying the remark and 2.1.5 to the exact sequence e -~r(G) ~ G ~ G/r(G) -~e 
we are reduced to considering connected semi-simple Lie groups. We may also 
assume G is center free, for if Z is the (discrete) center of G we may apply 
2.1.5 to the sequence e - ~ Z ~ G - - * G / Z ~ e  (it is well-known that the semi- 
simple group G/Z is center free). 

If qi is the Lie algebra of a center free semi-simple Lie group G and lg is 
the group of invertible linear operators on the real vector space t5 generated 
by the operators {Exp (a dx): Xe 15}, where a d x (Y) = IX, Y] for X, Ye 15, there 
is a natural Lie group structure on Ig and there is an analytic isomorphism 
G ~  Ig. It is a basic consequence of the structure theory of semi-simple Lie 
algebras such as (5 (see [9], 3.11) that tg, and hence also G, has maximal 
compact subgroups, all of which are connected and conjugate under inner 
automorphisms of G; furthermore if a maximal compact subgroup Kis specified, 
there is a closed solvable simply connected subgroup S c G  such that every 
xeG has a unique factorization x=k(x ) s (x )  with k(x)~K, s(x)~S, and the 
map k • s: G ~ K x S (Cartesian product space) is bicontinuous (although not 
an isomorphism). In particular we have G =KS. Now S has property (C), so 
if V c  S is a compact neighborhood of the unit in S there is a family {s~} c S 
such that { Vs~} covers S with index Is (V, {s,}, t) < n < oo on S. Let U = K V c  G; 
since k xs:  G-~Kx S is bicontinuous, the compact set U is a neighborhood 
of the unit in G. Evidently G=KS=U{KVs~: ~ J } ,  so {Us~} covers G. 
Furthermore if x = k (x) s(x) ~ G then x~ Us~ = K V s ~ s ( x )  e Vs~, and there are 
at most n indices c ~ J  for which this happens. Thus I(U, {s~}, x ) < n  all x~G. 
This proves 2.1.2 in full. Q.E.D. 

Corollary 2.1.6. If G is any locally compact group, there is a set K with 
int(K)4:O and K compact and a corresponding set {x~}cG such that {Kx~} 
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partitions G; i.e. 
I(K,{x~},y)=l for all yeG.  

Note. It may not be true that G has arbitrarily small sets K which may be 
translated to the right to partition G [this is the same as saying p(G)= 1]. For  
example if G=SO(3, R), then K=G satisfies 2.1.6, but we conjecture that 
p(G) + 1. We comment on this at the end of this section. 

Proof. This follows from the discussion of 2.1.2 if we strengthen 2.1.5 as 
follows. 

Lemma 2.1."/. If  G is a connected Lie group and N a closed normal subgroup 
and if G/N, N have relatively compact neighborhoods of the unit which may be 
right translated to give partitions, then G has this property too. 

Proof (Sketch). Let K 1 c G/N be a compact neighborhood of the unit with 
boundary of measure zero and continuous cross section map z~: K ~ G .  By 
covering GIN with translates of K 1 we get a sequence of local cross sections 

oo 

{ ( K , , z ~ ) : i = l , 2 , . . . }  with U K ~ = G / N ,  
i = I  

each compact set in GIN meets only finitely many K~, and we may define a 
"piecewise continuous" global cross section z: GIN ~ G inductively: 

{ z(~)=zl(~) ~eKa  i - t  

1:(~) = ' h ( ~ ) ~ e ( K i \ y l K j  ) �9 

It is a straightforward matter to see that if U is a compact neighborhood of 
the unit in N and if K is a relatively compact neighborhood of the unit in G/N, 
then z(K)U is a relatively compact neighborhood of the unit in G. Further- 
more, if U, K may be translated on the right to partition N, GIN respectively, 
the same arguments as in 2.1.5 show that ~(K) U has the same property in G. 
Q.E.D. 

Remark. We obtain another group invariant 2(G) which we might call the 
covering index in the large by directing the relatively compact neighborhoods 
of the unit 5 upwards rather than downwards and defining 

2 (G) = lim inf {p (K, G) : K e ~ } .  

Now it is trivial that 2 (G)=  1 for compact G, and the considerations in 2.1.2 
(and combinatory Lemma 2.1.7) may be adapted with little difficulty to show 
2(G) = 1 for almost connected groups G, but it is not at all clear which discrete 
groups have 2(G)= 1 [although this is easily seen true for abelian G]. 

Remark. If S is the unit sphere in IR 3 with G =SO(3 ,  IR) acting transitively 
let a pointp  s S be fixed. Then the action G x S --* S is equivalent to the canonical 
action G x G/H-* G/H where H = {x e G: x (p) =p} (a 1-dimensional toroid) and 
G/H={xH: xEG} is the left coset space with its usual topology [which makes 
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G/H homeomorphic to S under ~o: x H ~ x ( p ) ] .  We may ask whether there 
are arbitrary small neighborhoods V of p, and corresponding families W = 
{x,} c G, such that {x~(V)} partitions S. Since p ( H ) =  1, an affirmative answer 
to this implies an affirmation answer to the corresponding question for  G: i.e. 
p(G) = 1; however, we conjecture that the answer is negative in both cases. 
Even the simpler question for transformation group (G, S) seems difficult to 
resolve. 

3.1. Property (A) and Amenable Groups 
We use property (C) to establish 

Theorem 3.1.1. In any locally compact group G, (FC)~(A) .  

This is an immediate consequence of the following result. 

Proposition 3.1.2. Let G be a locally compact group and K c  G any compact 
set which includes the unit and int(K)~=O, and let K' = K K K - 1 ;  then there is 
an 5o > 0 (depending only on K) with the.following property. For any 0 < 5 < eo 
and any Borel set U~ G which satisfies (FC) relative to (z, K'), so that 

0 < ] U [ < o o  and ] x U A U [  <e f o r a l l x e K ' ,  [gl 

there is a corresponding Borel set U' c U such that 

(i) 0< l  U ' l < o o ,  

(ii) I g \ s ' l  <V~IUt, 
(iii) [KS'AUG ]K'l 

Ig'l <4MNI/~ l / l "  

Here N=p(K,  G) [as in the definition of the infinitesimal covering index p(G)] 
and M=max{A(x):  x6K} where A is the modular function of G. 

Proof. Let 5 > 0 be given and consider a set U which satisfies (FC) relative 
to (5, K'). For  any0 < 8 < oe define E(8) = {x e U: I fx l  > a}, where Kx = K ' \  Ux-  1, 
and define U(8)= U\E(6). We regard 6 >0  as a parameter independent of 
5 > 0 for the time being and prove several estimates which are valid for any U 
satisfying (FC) with respect to (e, K') if (e, 6) lies in the region D c ]R g deter- 
mined by: 

0 < 5 < m i n  , M2 [g,I 2 

* [ / ' [ < 8 < [ g l  

Then we shall demonstrate that if we require 0 < e < eo (5o to be chosen) and 
take 6(5)--�89 IK'l (5+]/~, the set U(6(e)) satisfies (i)...(iii) as required. 

For  xEK', 6 > 0  define S(x, 6)={y~E(8): xeKy}. Then S(x, 8 ) c U  and 
xS(x,  8 )n  U=0,  for teS(x,  8 ) ~  x e K ~ = K ' \ U t - 1 ,  which~  x t~K'  t \  U, which 
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is disjoint from U. Now Ix Uz~ Ur <e IU]  for all xEK', by hypothesis, so we 
have 2 [ U[ =2 Ix Uc~ U] + ]x UA U[, which implies 

IxU n U l > ( 1 - 2 )  lu].  

Therefore IS(x, 6)[<�89 ~ ] UI since 

By FUBINI'S Theorem we see 

S ] Kt [ d t = I [ I )~K,(x) d x] d t = ~ [ I 7~K,(X) d t] d x = f [ S (x, 6) j d x,  
E(~) E(6) K' K' E(~) K' 

where X~ is the characteristic function of any set E c  G. By definition of E(6), 
IKtl >6 for all teE(6), so that 

(,) 6 ie(6)l___< ~ IK, I at= [. IS(x,6)l ax<�89 IK'I. 
E(6) K' 

If 6>�89 e [K'] we see that rE(6) <1 gl ,  which ~ ]  u(6)l=l UI-IE(6)[>0, so 
condition (i) is satisfied for any set U(6) if (e, 6)eD. 

Let Y" = {x~: e e J} be chosen so {Kx~} covers G with sup {I(K, Y(, y): y e G} = 
p(K, G)=N< o% and for each 6 > 0  let 5~(6) ={x~eW: Kx~c~ U(6)40}, which 
we write as Y'(6) ={x~: c~EJ(6)cJ}: then U(6)c U{Kx~: cceJ(6)}. Next pick 
p~eKx~ c~ U(6) for each eeJ(6)  and observe that for all x~eY((6) we have 

peKx~c~ U(6) =~ ~A(p)<MA(x~) 
(IK' p \ U l < 6  A(p). 

In fact, 
p~Kx~ ~ p=kx~ ~ A(p)=A(k)A(x~)<MA(x~),  

and 

p~g(6)  ~ [K:,r=lK'\gp-:~l<6 ~ [ K ' p \ g l = A ( p ) l g ' \ g p - 1 ] < 6 A ( p ) .  

Furthermore 

peKx~  =z,. x~ .K-~  p => Kxo~cKK- l  pc:zK' p 

=~ ]Kx~\U]<IK'p\UI<6A(p)<=6MA(x~),  

which implies that ]Kx~nU]>[[KI-6M] A(x,) for all x, eYC(6). For any 
Borel set Vc  G with [ V[ < oo we have ~,{] Kx~ c~ VI: c~EY} < N .  I V] since {Kx~} 
covers G; in fact for any finite collection {xl, ..., x,,} c2~" we have 

]Kxic~ V]= ~ ~ )~v(t))~,(t)dt  
i = 1  i = 1  

= f )~v(O [ Z z/, ~, (t) d t] ~ N I x~ (t) ,r t = N I v I, 
i = 1  
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since the covering index of {Kx,} is, by hypothesis, =<N at each point t~G. 
Therefore we conclude, taking V= U, that 

N[Ul>~{lKx~r~ U]: ~eJ}  

(**) >E{lKx~r~ Ui: c~eJ(6)}>[IKI-~M] 2 {A(x~): ~ed(6)} .  

Now if (8, 6)aD we have, in particular, b<IK[/M so [ K ] - ~ M > 0 .  

By definition of {p~: c~J(fi)} with p~Kx~a U(~) we have 

a(a)~ U {Kx~: ~sJ(6)} ~ U {KK -~ p~: ~J(a)}  

which implies that 

K u(a)~ U { K K K  -1 p=: ~ a ( a ) } =  U {~'p~: ~ ~.,'(a)} 

= ~" ,-, (U {K' p , \ v :  ~, ~ J(6)}) 
hence by (**) we see that: 

i K U ( O ) I < I U I + Z { I K ' p ~ \ U I :  ~J(~)}  

<1 UI+aMZ{A(x=): ~eY(6)} 

~SM N 
----lUll' I K I - a M  IUl. 

Defining el as above, let 0 < e 2 < el be chosen so (~, 6 (e)) e D for all 0 < e < ~2 : 
this choice depends only on K (through the parameters M, N, [KI, I K '  l) and 
the above estimates are valid for 6 = c5 (e), 0 < ~ < e 2 . In particular if 0 < e < e2 
we have [ U(3 (e)) [ > 0, so (i) holds, and 

[ u\u(6(~))l = 1E(6(8))1_-<�89 ~ �9 6(~)-x 1 gl  IK'i 

=~(~+ l/-~)- l l Ul=l/- i( l  + VZ)- * l u i <=l/-~ i ui  , 

which proves (ii) for U(3(~)). Write U ' =  U(3(e)); then 

I K U ' A U ' i  IKU' \U ' I  IKU'I 
IU'i IU'I IU'I 

since K includes the unit, and 

]KU'I_]KU'[ IF] < ( 1  + 3(e)MN ] [UI 
IU'l lCl [ u ' l = \  IKI-~(a)MJ IUl-lE(a(e))l  

( ( e + ] / ~ ) M N I K ' I )  
< 1+ = O + I A ) .  
= 2 1 K I _ ( ~ + V e ) M I K ,  I 

Note that the right side of this inequality depends only on (e, K) and not on 
the particular set U which we started with. We now demonstrate that if 0 < ~ < z o 
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for suitably chosen so > 0, then 

so that 

tKu'I IK'I 
I U ' ~  < I + 4 M N V - ~  IK] ' 

I K U ' A U ' I  < 4 M N V ~  ]K'} 
]U'[ [K] " 

Hence (i)...(iii) hold for all 0 < s < e  o if we take U ' =  U(g(e)). 
For small s>0,  say 0<e<e3_-__e2, the denominator in the first term of the 

above estimate is > ]K[ (recall I KI >0 by hypothesis), so for these values of 
s > 0 we have 

l + s  g- MN-~-K-V~-I +~ M N  [ K t j + e  ~- M N  ~ ~ g~  ~ IKI]" 

But for all small s>0,  say 0 < s < s 4 < s  3 we have: (s ~ term)>(sum of higher 
order terms), giving 

{KU', [ [K'] , ] I K'I 
[U'] _<1+ 2 M N  - IKI  

Take 80 =e4- Q.E.D. 

3.2. Amenable e-Compact Groups 

Using the result of the preceding section and our earlier comment that 
(P)=>(PIo~) for (P)=(A) or (FC) we may prove a strong characterization 
theorem for amenable a-compact groups. 

Theorem 3.2.1. A a-compact group G is amenable<:> there is a sequence { U,} 
of compact sets with 0 <  I Unl < oo and 

(i)  g .  ~ Or.+ 1, 

oo 

(ii) G= l) U,, 

and for every nonempty compact set K c  G we have 

(iii) lira l g U, A U, [ = 0. 

Proof. Implication ( ~ )  trivially gives (A), hence amenability; conversely, 
let {K,} be an increasing sequence of compact neighborhoods of the unit which 
fiI1 up G and have K, c in t (K,+ 1). We construct { U,} inductively using the fact 
(amenable) => (A) => (A~o~) : choose Us to satisfy (Aloe) for (1, K1) with K1 c Us, 
and for 17> I chose U,, to satisfy (Aloe) for (1/n, K,) with K,w U,_ 1 ~ U.. Since 
any compact set K c  G lies within one of the K,, then Km ~ K for m > n. Then, 
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as in R e m a r k s  at  end of 1.2, [U\KU[<IKU\UI ,  so for  re>n: 

]K U,,A Um] = [K Um\U,~[ + ] U,~\K Urn] <=2 ]K Um\Uml <2 Ig~ Um\Um] 

= 2  ]Kin Urea U,,.[ <=2/m. [U,,l, 

as required.  Q.E.D.  

F r o m  the cons idera t ions  in 3.1.2 we could  derive the fol lowing resul t ;  for  
a deta i led p roof  of this and  o ther  proper t ies  of a - c o m p a c t  amenab!e  g roups  
we direct  the reader  to [1]. 

Theorem 3.2.2. Let {Un} be a sequence of compacta in locally COmpact 
group G with positive measure such that 

F , ( x ) - l x U ,  AU,[ --~0 
Iunl 

uniformly on compacta in G. Then there exist compacta U" c U~ such that 
] U" [ > 0 for large n and 

(i) l im [U,\U,:[ 
. ~ o  Iv . I  = 0 .  

(ii) For every nonempty compact subset K c  G 

lira IK UT' A UT'I - 0 .  
,,-~| IV,;I 

Note. We are assuming tha t  {U,} eventual ly  satisfies (FC) for  every pa i r  
(e, K) ,  and  conclude  tha t  we m a y  ob ta in  a sequence {U~} which eventual ly  
satisfies the  (formally)  s t ronger  condi t ion  (A) for  every pa i r  (e, K)  by  doing  
minor  surgery on the sets U,.  
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