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Weak Holonomy Groups 
ALFRED GRAY 

1. Introduction 

The well-known holonomy theorem [2] implies, among other things, that 
the holonomy group G of a Riemannian manifold M determines certain 
identities satisfied by the curvature operator of M. These identities, in turn, 
are very useful for proving the theorems about the topology of compact 
Riemannian manifolds with holonomy group G. For example if M is a compact 
K~ihler manifold (that is, the holonomy group of M is U(n)) then the curvature 
operator of M satisfies identities which imply that the second Betti number 
of M is nonzero. A similar theorem for the case of holonomy group G 2 has 
been proved by Bonan [6] (see also [8]). 

The following question naturally arises: I f  a certain group G is not the 
holonomy group of M, are there some weaker conditions on G and M which 
imply tha~ the curvature operator of M satisfies useful identities? In this paper 
we show that there is indeed such a condition, namely the property that G 
is a weak holonomy group of M: We now define this notion, together with the 
auxiliary notion of special subspace. 

Let M be a pseudo-Riemannian manifold and assume the structure group 
of the tangent bundle of M can be reduced from O(p, q) to a connected Lie 
group G. For m s M  we denote by M m the tangent space to M at m. 

Definition. A subspace P ___ M,, is said to be special provided 

(i) there exists a proper subspace P ' c P  such that for all geG, gIP is 
determined by g [P'; 

(ii) if P'cP~_P" and g(P') determines g(P") for all geG, then P=P". 

Definition. We say that G is a weak holonomy group of M provided the 
following condition is satisfied: for each meM, and differentiable loop 7 in M 
with 7(0)=7(1)=m there exists geG such that z~lP=glP whenever P is a 
special subspace of M,, of minimal dimension with 7'(0)sP. Here ~ denotes 
parallel translation along 7- 

In this paper we investigate weak holonomy groups in the case when the 
group G has a compact real form which acts transitively on a sphere. Berger [3] 
has classified the holonomy groups of manifolds having an affine connection 
with zero torsion. Either from this classification or directly from Simons [12], 
it follows that the restricted holonomy group of an irreducible Riemannian 
manifold which is not a symmetric space acts transitively on a sphere. Thus 
the curvature operator of a Riemannian manifold with weak holonomy group G 
will satisfy certain identities which generalize those satisfied by the curvature 
operator of a Riemannian manifold with holonomy group G. 
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A pseudo-Riemannian manifold M does not necessarily have a unique 
weak holonomy group. Thus if M has weak hotonomy group G and H is a 
connected Lie group such that G ~_ H ~_ O(p, q), then H is also a weak holonomy 
group of M. Of course holonomy groups are unique, 

According to [11] the compact connected Lie groups which act effectively 
and transitively on spheres are the following: SO(n), U(n), SU(n), Sp(n), 
Sp(n). SO(2), Sp(n). Sp(1), G 2, Spin(7), and Spin(9). (Here Sp(n)-SO(2) and 
Sp(n).Sp(1) denote Lie groups locally isomorphic to Sp(n)xSO(2) and 
Sp(n) x Sp(1), respectively, in which (I, t) and ( - I ,  - I )  have been identified.) 

tf a Riemannian manifold has weak holonomy group U(n), then M is a 
nearly K~hler manifold in the sense of [9]. In [9] it is shown that the curvature 
operator of a nearly K~ihter manifold satisfies certain identities which generalize 
those for K~hler manifolds; consequently a great deal can be said about the 
topology and geometry of nearly K~ihler manifolds. (If G and K are compact 
Lie groups and K is the fixed point set of an automorphism of G of order 3, 
then the coset space G/K is a nearly K~hler manifold.) 

In w we prove that if SO(n), Sp(n), Sp(n). Sp(1), or Spin(7), is a weak 
holonomy group of M then the holonomy group of M is a subgroup of SO(n), 
Sp(n), Sp(n). Sp(1) or Spin(7), respectively. Furthermore we show that if M 
has weak holonomy group U(n), aM the structure group of M can be reduced 
to SU(n), then M also has weak hotonomy group SU(n). We also prove that 
if M has weak h otonomy group Sp(n). SO(2), then the hotonomy group of 
M is a subgroup of Sp(n). 

Bonan [6] has proved that a Riemannian manifold with holonomy group 
G2 has vanishing Ricci curvature. We generalize this result by proving in w 3 
that a Riemannian manifold with weak holonomy group G 2 is an Einstein 
manifold. We conjecture that a compact Riemannian manifold with weak 
holonomy group G 2 which has positive sectional curvature is a spherical space 
form. The corresponding results for U(n) [4, 9], and Sp(n)-Sp(1) [7] are 
known to be true. 

We have been unable to say anything about Riemannian manifoIds with 
weak hotonomy group Spin (9) except that we have computed the dimension 
of a minimal special subspace (relative to Spin(9)). Alekseevskij [ t ]  has stated 
without proof that if Spin(9) is the holonomy group of a Riemannian manifold 
M then M is locally symmetric (and hence an open submanifold of the Cayley 
plane). Probably if Spin(9) is a weak holonomy group of M, the same con- 
clusion holds. 

tn w we define the notion of special curvature; this is a generalization of 
the notion of holomorphic sectional curvature, Three theorems concerning 
Riemannian manflblds with constant special curvature are proved. 

2. Special Subspaces Associated with Weak Ho|onomy Groups 
Suppose M is a pseudo-Riemannian manifold with weak holonomy 

group G where G has a compact form which acts transitively on some sphere. 
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In this section we determine which subspaces of a tangent space M,~ to M 
are special with respect to G. 

Theorem 1. Let M be a pseudo-Riemannian manifold with weak holonomy 
group U(p, q). Then: 

(i) a hoIomorphic section of a tangent space M,~ (i.e., a subspace spanned 
by x and J x for some nonzero x e M,~) is a special subspace r minimal dimension. 

(ii) M has weak hoIonomy group SU(p, q) if and only if the structure group 
of the tangent bundle of M can be reduced to S U (p, q) (p + q > t). 

Proof (i) and the necessity of (ii) are obvious, For the sufficiency of (ii) 
let zr be parallel translation along a loop 7. By hypothesis if y'(0) is in the 
holomorphic section P, then there exists ge U(p, q)such that %[P=g[P, It is 
easy to see that there exists g'eSU(p, q) such that g ' tP=gIP=r~lP, tlence G 
has weak holonomy group SU(p, q). 

Special subspaces associated with other groups can be regarded as gen- 
eralizations of the notion of holomorphic section. 

Next we consider pseudo-Riemannian manifolds with weak holonomy 
group Spin(7) or Spin(4, 3). If M is an 8-dimensional pseudo-Riemannian 
manifold such that the structure group of the tangent bundle can be reduced 
to Spin (7) or Spin (4, 3), then this reduction gives rise to a 3-fold vector cross 
product on M in the sense of [8]. 

Theorem Z Let M be an (8-dimensional) pseudo-Riemannian manifold with 
weak holonomy group Spin(7) or Spin(4, 3). Then: 

(i) the holonomy group of M is a subgroup of Spin(7) or Spin(4, 3); 
(ii) any 4-dimensional subspace of a tangem space M,, of M which is closed 

under the 3-fold vector cross product is a special subspace of minimal di,wnsion. 

Proof. This is a consequence of [8, Theorem (4.6)J. 
Next we turn to the groups Sp(n), Sp(n)-SO(2), Sp(n). Sp(I), and their 

nonc0mpact forms. If M is a pseudo-Riemannian manifold such that the 
structure group of the tangent bundle of M can be reduced to G where 
Sp(p,q)c_Gc_Sp(p,q). Sp(1), then it is possible to define, at least tocalty, 
almost complex structures I, J, and K which preserve the metric of M such 
that IJ = - JI = K (see [7]). 

Theorem 3. Let M be a 4(p+q)-dimensionat pseudo-Riemannian manifold 
with weak holonomy group G where Sp (p, q) c_ G c_ Sp (p, q). Sp (1). Then: 

(i) A quaternionic section of a tangent space M,, (i.e,, subspace spanned 
by x, Ix, Jx, Kx  for nonzero xeMm) is a special subspace of minimal dimension. 

(ii) I f  G=Sp(p, q). Sp(1), then the holonomy group of M is a subgroup o f  
Sp(p, q). Sp(1). 

(iii) I f  G=Sp(p, q) or Sp(p, q). SO(2), then the holonomy group of M is a 
subgroup of Sp(p; q). 

Proof That (i) holds amounts to checking that a quaternionic section 
satisfies the definition of special subspace. We prove (ii); we first show that 
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if Sp(p, q) is a weak holonomy group, then the holonomy group of M is a 
subgroup of Sp(p, q). If the structure group of the tangent bundle of a pseudo- 
Riemannian manifold M can be reduced to Sp(p, q), then M has globally 
defined almost complex structures I, J, and K which preserve the metric of 
M and such that I J  = - J I  = K. Denote by V the Riemannian connection of M. 
The condition that M has weak holonomy group Sp(p, q) is equivalent to the 

conditions V x (I) (x) = g x (J) (x) = ~ (K) (x) = 0 (1) 

for xetvI,,. Furthermore we have 

F x (I)(I y) = - I V~ (I) (y), (2) 
17~(I)(J y)= V~,(K)(y)-IVx(J)~), etc. 

From (1) and (2) we obtain 

qx( I ) ( ly )=  Vsx(t)(ay ) = g~x(I)(Ky)= - Vx(I)O,), etc. 

On the other hand we have 

gxcx(I)(Ky)= FXsx(I)(IJy)= - Vsx(I)(Jy), etc. 

It follows that V~(I)(y)=V~(J)(y)=Vx(K)(y)=O for all x ,y~M, , ,  and so the 
holonomy group of M is a subgroup of Sp(p, q). 

If a pseudo-Riemannian manifold M has weak holonomy group 
Sp(p, q)- SO(2), it can be proved in a similar fashion that the holonomy group 
of M is a subgroup of Sp(p, q). SO(2). According to Berger [5] this implies 
that the holonomy group of M is a subgroup of Sp(p, q). 

The proof that if Sp(p, q)-Sp(1) is a weak holonomy group then the 
holonomy group of M is a subgroup of Sp(p, q)- Sp(1) is similar to that for 
Sp(p, q), but more complicated. If the structure group of the tangent bundle 
of a pseudo-Riemannian manifold M can be reduced to Sp(p, q). Sp(1), then 
there is a tensor field Q globally defined on M as follows [7]. Each point 
m E M  has a neighborhood on which there are defined three almost complex 
structures I, J, and K which preserve the metric of M such that IJ  = - J I  = K. 
Set Q x = I x / x  J x  ,x K x  for xeM,~. Then Q can be linearized so that it becomes 
a tensor field of type (3, 3). Further Q is independent of the choice of I, J, 
and K so that it is globally defined on M. If M has weak holonomy group 
Sp(p, q). Sp(1), then for x~M,n 

0 = t7 (Q) (x) (3) 
= V~(I)(x) A J x  A K x + I x  A V~(J)(x) A K x  +Ix /~  J x  A V~(K)(x) 

for x e M  m. From (3) it follows that 

V:,( t ) (x)=OmodJx and K x ,  etc. (4) 

Eq. (2) still holds, and so from (2) and (4) we obtain 

Vx(I)(y)=0 mod Jy  and K y  for all x, y ~ M  m. (5) 

From (5) it follows easily that V:c(Q)=0 for xsMm,  and so the holonomy 
group of M is a subgroup of Sp(p, q). Sp(1). 

Finally we consider Spin (9). 
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Theorem 4. Let M be a 16-dimensional Riemannian manifold and assume 
that the structure group of the tangent bundle of M can be reduced from O(16) 
to the 16-dimensional irreducible representation of Spin(9). Let meM. I f  
P ~_M m is a special subspace of minimal dimension, then dim P = 8. 

Proof Let x e M  m, x+O. The subgroup of Spin(9) which leaves x fixed is 
isomorphic to Spin(7). The induced representation of Spin(7) on {x} • is the 
sum of an 8-dimensional faithful irreducible representation of Spin(7) and a 
7-dimensional 2-fold irreducible representation of Spin(7). Thus the subspace 
of M~ which is the sum of {x} and the image of the 7-dimensional representation 
of Spin(7) is a special subspace of M R . It has minimal dimension. Also, since x 
is arbitrary and Spin(9) is transitive on S iS, it follows that any special subspace 
of dimension 8 must arise in this fashion. 

3. Pseudo-Riemannian Manifolds with 2-fold Vector Cross Products 

Let M be a 7-dimensional pseudo-Riemannian manifold such that the 
structure group of the tangent bundle of M can be reduced from 0(7) or 
0(4, 3) to G 2 or its non-compact form G*. This reduction on M is equivalent 
[8, 10] to the existence on M of a globally defined 2-fold vector cross product P. 
(In this section P does not denote a special subspace.) Denote by ( , )  the 
metric tensor of M. Then on each tangent space M m, P is a map P: M m • M~--+M m 
characterized by the conditions P(x , y )=-P(y , x ) ,  (P(x,y) ,y)=O, and 
(P(x,y), P(x, y)) = (x  A y, x A y)  for x, y~M,,,. The following theorem follows 
easily from the definition of weak holonomy group. 

Theorem 5. Let  M be a 7-dimensional pseudo-Riemannian manifold with a 
2-fold vector cross product P. Then M has G 2 or  G~ as a weak holonomy group 
if and only if Vx(P)(x, y)=O for all x, yeM,, for all meM. A special subspace 
of M m of minimal dimension is any 3-dimensional subspace closed under P. 

We shall need the following formulas. Let Rxy(x, yeM,~) be the curvature 
operator of M. 

Theorem 6. Let M be a 7-dimensional pseudo-Riemannian manifold with a 
2-fold vector cross product P, and assume that G 2 or  G* is a weak holonomy 
group of M. Then for x, y, z e M  m we have 

(i) V~(P)(y, P(x, y))=0; 
(ii) V~(P)(P(x, y), P(x, y))= - ( x ,  x)  V~(P)(y, z); 

(iii) (gx(P)(y, z), V~(P)(y, z)) =(Rxyx, y) (z, z)  - (R~yx ,  z)  (y, z)  
- (P(x, e(y, z)), (&yP(X, z), P(y, z)); 

(iv) 3 (V~(P)(y, z), V~(P)(y, z)) +2 (R,~x, z) (y, x )  - 2  (R,zx,  y)  (z, x )  
= ~ {(Ryzy, z)  (x, x)  - (R,zP(x, y)o P(x, z))}, 

where ~ denotes the cyclic sum over x, y and z. 

Proof In [8] it is shown that for any 2-fold vector cross product P on a 
Riemannian manifold M we have 

(vx(e)(y, z), P(y, z)) =0  (6) 
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for x, y, z~M,~. Then (6) together with Theorem 5 implies (i). Linearization 
of (i) yields V~ (P)(y, P(x, z))= Vx(P ) (P(x,y), z). (7) 

For any 2-fold vector cross product  P we always have 

P ( x , P ( y , z ) ) + P ( P ( x , y ) , z ) = 2 ( x , z )  y - ( x , y )  z - ( y , z )  x.  (8) 

In (7) we replace y by P(x, y). Using (8) we obtain 

V,~ (P) (P(x, y), P(x, z))= V,: ( P) ( P(x, P(x, y)), z) 

= r~(p)(<x, y> x -  <x, x> y, z) 

= -- (x ,  x )  Vx(P)(y, z). 

(iii) is a special case of [8, Theorem 5.7]. (iv) follows from a calculation 
from (iii) which we omit. 

We shall also need the following fact. 

Lemma, Let M be a pseudo-Riemannian manifold such that the structure 
group of the tangent bundle of  M can be reduced to G 2 or G~. Then the com~ 
plexification M,~| C of each tangent space M,, has an orthonormal basis e o . . . . .  e6 
such that P(ei+t, e~+2)=e~+ 4 where we take is  ZT. 

For  a w o o f  see [8]. 
We are now ready to prove the main result of this section. Denote by ~?r 

the curvature forms and by e2~ the I-forms dual to the % and write R~ik~= 
g2~j(e k, e~), K~j = R~j~. Also, let k denote the Ricci curvature of M. 

Theorem'].  Let M be a 7-dimensional pseudo-Riemannian manifold with 
weak holonomy group G 2 or G*. Then 

(i) there exists a constant tl such that for i~ Z 7 

~"~i+l, i+ 3 -~ ~ i+  2, i+6 -~ ~i+4,  i+5 = ~  (('Di+ I A (Di+ 3 -~" (Di+ 2 A (Di+ 6 "3t- (Di+4 A f29i+ 5) ; 

(ii) we have k ( x , y ) = @ ( x , y )  for all x, y e M ~  and m ~ M ;  thus M is an 
Einstein maniJbld ; 

(iii) we have 

g i + I ,  i+3 + Ki+ 2,i+6 - gi+4, i+ 5 =t t  ~ 2Ri+ t,i  + 3,i+ 2, i+6, 

Ki+~,i+3 - Ki+ z,i+6 + K~+4,i + 5 = t l -  2Ri+ t,i+ a,i+4,i+ 5, 

- K i +  Li+ 3 + Ki+ 2,i+6 + Ki+.r 5 = t l ~  2Ri+ 2,i+6,i+4,i+ 5 
for ie ZT ; 

(iv) we have for ie Z7 

Ki+l.,i+ 3 + Ki+ 2, i+6--Ki+4,1+ 5 + Ki+l,i+ 2 + gi+3,  i + 6 - K i ,  i+ 5 

+ Ki+ z,i+ s + Ki+ l,~+6-Ki,~+4 = 3rl . 

Proof Suppose that % ej, e k, and P(e~, e2) are tineafly independent. Write 
~isk= (17 (p )%,  ek), V~, (P)(ej, ek) >. Because of Theorem 5 and Eq. (6) there exist 
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numbers Pi, Pa, and P3 such that Vr ez)=ples, Veo(P)(e 3, e6)=p2es, 
and Vr Repeated applications of these equations and 
Theorem 6 (ii) show that 

~ 0 1 2  ~ 0~036 : ~ 0 3 4  ~ 0(025 = ~(046 : ~ 0 3 5  ~--- 0~014 : ~ 0 5 6  "~- ~ 0 2 4  = ~ 0 1 6  ~ ~ 0 2 3  ' 

A similar argument works for any ~jk with % ej, ek, and P(ei, ej) linearly 
independent and 0 <  iN 6. Let ~/ be the common value of the eijk . On the 
other hand if e~, ej, ek, and P(e~, ej) are linearly dependent then by Theorem 6(i), 
V~, (P)(e~, ek)= 0. It follows from Theorem 6 (iii) that both sides of Theorem 7 (i) 
have the same value on all tangent vectors to M. 

The proof of (ii) is similar to the proof of the corresponding resuk for 
Riemannian manifolds with hotonomy group G z due to Bonan [6]. We have, 
using part (i) and the Bianchi identities, that 

k(e0, eo) = Kol +Ko2 +Ko3+Ko,~+Ko5 +Ko6 

= 6 t / -  Ro 146 - Ro152 -R0215 -Ro234-R3024-R3056 

- R0461 - Ro423 - R5063 - R5012 - R6041 -R6035 
=6r/.  

Similarly k (% e~)---6 t/for i=  I . . . . .  6. Linearization of these equations yields (ii). 
Part (iii) is proved by using part (i) twice. Finally (iv) follows from (iii) 

and the Bianchi identities. 

4. The Special Curvature of  a Riemannian Manifold 
with Respect to a Weak Holonomy Group 

In this section we limit ourselves to Riemannian manifolds, although some 
of our results also hold for pseudo-Riemannian manifolds. 

In view of the importance of the concept of holomorphic sectional curvature 
for Kiihler manifolds, it is natural to seek a corresponding curvature for other 
Riemannian manifolds whose holonomy group or weak holonomy group has 
a compact form which is transitive on some sphere. There are probably several 
generalizations of the notion of holomorphic sectional curvature, but we 
choose the folIowing. 

Definition. Let M be a Riemannian manifold with weak holonomy group G. 
Let meM and let Pc__M m be a special subspace (not necessarily of minimal 
dimension). The special curvature r(P) of P is �89 the Ricci scalar curvature 
of P, i.e., 

r(P) = ~ K~j 
i<j  

where {e 1 . . . . .  ep} is an orthonormal frame spanning P and K~j is the sectional 
curvature of the plane spanned by e~ and ej. It is easy to prove that this 
definition is independent of the choice of {e 1 . . . . .  ep}. 

Thus if M has weak holonomy group SO(n), then r(P) is �89 the ordinary 
Ricci scalar curvature of M. Similarly if M has weak holonomy group U(n) 
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(or SU(n)) and dim P = 2 ,  then r(P) is the holomorphic sectional curvature 
of P. More generally if dim P = 2 q (1 < q < n), then 

q 

r (P)= ~ K . , +  Z (K/j+ K/j,) 
/=1 i < j  

where {el, ..., eq, e 1 . . . . . .  eq,} is a unitary frame spanning P and Je/=ei,. 

Not much else of a general nature can be said about the special curvature 
of Riemannian manifolds with weak holonomy group SO(n) or U(n), and so 
we turn our attentions to other groups. We investigate the situation when 
r(P) is constant. 

First we consider the case of Sp(n). Sp(1). By Theorem 3 we may assume 
that M is a Riemannian manifold whose holonomy group is a subgroup of 
Sp(n). Sp (1). The next theorem is essentially due to Berger [-3], but our proof 
is perhaps a little simpler. 

Theorem 8. Let M be a Riernannian manifold whose holonomy group is a 
subgroup of Sp(n).Sp(1) where n > l .  Let m~M and denote by x , y ~ M  m unit 
tangent vectors which lie in different quaternionic sections. Then 

(i) M has constant special curvature r(P)=r for any (4-dimensional) 
quaternionic section P; 

(ii) Kx,x+ (Rxi ~, Jx, K x )  =6~r; 

(iii) K.v = Klulv = K sus~ = KK.K~ for linearly independent u, v ~ Mm; 
( i v )  _ 1 . 

( v )  _ 1  . K~y + Kxly + Kxjy "4- KxKy--~ r, 
r 

(vi) m is an Einstein manifold with Ricei curvature k(u, v ) = ~ - ( n + 2 ) ( u ,  v} 
for u, ve M.,; 

r r 
(vii) [R~x, J]  = ~ - g ,  [R~j ~, K] = r I  [R~K~, I] 6 ' = 6 - J ;  

(viii) ([R,~, I] x, y)  = (JR,  v, J]  x, y} = ([R,~, K] x, y} =0;  

(ix) [ R ~ ,  I] = [R~j x, J] = [R~K x, K] =0 .  

Proof For u, veM,, we may write 

R,~=ct(u, v)I+fl(u, v) J + y(u, v)K+A,,, 

where A,~ commutes with I, J, and K and c~, fl, and 7 are 2-forms defined on 
a neighborhood of m. Then 

[R,~, I] = 7 (u, v) J -  fl (u, v) K,  

[Ruv, J]  = - 7 (u, v) I + ~ (u, v) K,  

[R,v, K] = f l (u,v)I-~(u,v)J.  

(9) 
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Now (viii) is immediate from (9). Furthermore by (viii) we have 

([ Rx~ , J ]  y, Iy )  = (Rx,xJY, Xy) - (R~,~ y, Ky)  

= - (R:,1rlx, Jy)  - (R~syly, Ix)  + (RxKJX, y) + (RxyKY, tx )  

= (Rx~rx, Ky)  + (R~xyx, Ky)  + (R:,yx, Jy) + (R~,yJy, x)  

= 0 .  

Hence 7(x, Ix)=7(x, Jx)=0 ,  and similarly a(x, Jx)=~(x ,  Kx)=-fi(x, l x )=  
fl (x, Kx)= 0. This proves (ix). Therefore (9) becomes 

[RxKx, I] -~F(x, Kx)J ,  

[Rxi~, J] = ,  (x, Ix) K,  (I0) 

[Rxs~, K] -=fi(x, Jx) I. 
Moreover, we have 

(x, Ix)-- <[R~i~, J] x, K x )  = <R~I ~ Jx, K x> + K~ix, (11) 

and 

a(x, Ix)= ([R~ix, J] y, K y> 

= <Rx~xJy, Ky> + <Rxi~, y, Iy> 
(12) 

= -- (RxKy  Ix, Jy)  - (Rxay  Ky, Ix )  - (Rxly Ix, y ) -  ( R x y  ray, [ x )  

= K~y + K~I ~ + gxjy q'- KxKy , 

by (viii). Thus c~ (x, Ix) = fl (x, Jx)  = ? (x, Kx) = e (y, Jy), etc. Hence c~ (J x, K x) = 
fl(x, Jx)=~ (x, Ix), etc. From (11) it follows that 

gxlx-=KjxKx, KxJx=K~Kx, KxKx=KI:,Jx . (13) 

Then (13) and (viii) imply (iii). Furthermore from (11) and the first Bianchi 
identity we have 

3~(x, I x)= Kx~x + Kxsx + Kx~ x. (14) 

From (12) and (14) we get 

k (x, x) = (n + 2) c~ (x, I x), (15) 

and so M is an Einstein manifold. Thus we may write k(u,v)=2(u,v)  for 
all u, v~M,,, where )v is a constant. Moreover by (t2), (13), (14), and (t5) we have 

62 
r(P)=6~(x, Ix)= n + 2  " (16) 

Therefore (i) and (vi) follows from (16), (ii) follows from (11) and (t6), (iv) 
follows from (14) and (16), (v) follows from (12) and (16), and (vii) follows 
from (10) and (16). This completes the proof. 

We also have the following result about the special curvature of Riemannian 
manifolds with weak holonomy group G 2. 
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Theorem9. Suppose M is a Riemannian manifold with weak holonomy 
group G 2 and assume that for all m ~ M  the special curvature r(P) of M has 
the same value r on all special subspaces P G M m. Then 

(i) r = 3 t/, where tl is defined in Theorem 7, and so r is a constant function 
on M;  

(ii) Ki+ l,i+ 3-l- Ki+ 2,i+6 + Ki+4, i+ 5=r, for i~ Z 7. 

(iii) Ki+ l,i+ 3=rl 4- 2Ri+ 2, i+6,i+4, i+ 5, 

Ki+2, i+6 = r / + 2 R i +  2, i+3, i+4, i+ 5 '  

Ki+r 5=tl q- 2 Ri+ l,i+ 3,i+ 2,i+6, for iE Z 7. 

Proof. By assumption for i t  ZT, we have 

Ki, i+ t q-Ki, i+ 3 q-Ki+l,i+ 3 =r. (17) 

(We use the same notation as that of Theorem 7; since the metric of M is 
assumed to be positive definite, the frame {eo, ..., e6} used in Theorem 7 may 
be taken to be a basis of M m, m~M.) From (17) and Theorem 7(ii) we get (i) 
and (ii). Also (iii) follows from (ii) and Theorem 7 (iii). 

Finally we consider the special curvature of a Riemannian manifold whose 
holonomy group is a subgroup of Spin(7). 

Lemma. Let M be a pseudo-Riemannian manifold such that the structure 
group of the tangent bundle of M can be reduced to Spin(7) or Spin(4, 3). Then 
the complexification Mm|  of each tangent space Mm has an orthonormal 
basis %, ..., e 7 such that P(eT, ei+ 1, ei+2)=ei+4, where P is the 3-fold vector 
cross product determined by the reduction to Spin(7) or Spin(4, 3). 

For a proof see [8]. 

Theorem 10. Let M be a Riemannian manifold whose holonomy group is a 
subgroup of Spin(7). We use the basis of a tangent space M m described by the 
preceding lemma. Then 

(i) ~'-2i, 7--t-~i+1, i+ 3--~-~'2i+ 2, i+6-[-~'~i+4, i+ 5 = 0  for ieZT;  
(ii) M has zero Ricci curvature; 

(iii) if M has constant special curvature r, then r = O. 

Proof. (i) and (ii) are due to Bonan I-6]. For (iii) we have for each i~Zv,  

Ki, 7 + Ki+ 1, 7 + Ki+ 3, 7 + Ki, i+ 1 +Ki, i+3 +Ki+ 2, i+3 = r ,  

Ki, 7 -k g / +  2, 7 - t - g / +  6, 7 q-gi, i+2 if- Ki, i+6 q-Ki+2, i+6 = r ,  

Ki, 7 +gi+4,  7 + K i +  5, 7 -]-Ki, i+4t-gi ,  i+5 + K i + 4 , / + 5  = r .  

Upon adding these three equations and using (ii) we obtain 

2Ki, 7 + Ki+ l,i+ 3 + Ki+ 2,i+6 + Ki+4,i+ 5 =3r .  
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Thus 
6 

i=O 

6 
= 

O<i<j<7 i=0 

Each of the sums on the right hand side of this equation vanishes and so r =  0. 

Remark. It is easy to see that analogs of Theorems 7 and 8 hold for the 
covariant derivative of the curvature operator. In the statements of these 
theorems one replaces the curvature operator by its covariant derivative and 
the Ricci scalar curvature by 0. 
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