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Abstract. In 1987, Negeffil and ROdl [4] claimed to have proved that the problem of finding whether a 
given graph G can be oriented as the diagram of a partial order is NP-complete. A flaw was discovered 
in their proof by Thostrup [11]. Negetfil and R6dl [5] have since corrected the proof, but the new version 
is rather complex. We give a simpler and more elementary proof, using a completely different approach. 
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In 1984, the Editorial Board of Order drew up a list of  the leading problems in the 
theory of ordered sets. One problem on the list, posed in Ore's book [6]~ was that 
of characterising the undirected graphs which can be oriented as the diagram of  an 
ordered set. No real progress has been made on any such characterisation, and, in the 
opinion of  many, none is likely. The principal reason for this pessimism was that, in 
1987, Ne~effil and ROdl [4] claimed to have shown that the problem of  determining 
whether a graph G can be oriented as a diagram is NP-comptete. Of course, this does 
not rule out illuminating characterisations in terms of other N-P-complete properties 
of graphs, but no such characterisations have been suggested. 

In 1991, a flaw in Ne~etfil and Rrdl ' s  proof was discovered by Thostrup [11]. 
Repairing the proof turned out to be harder than originally expected, but Ne~etfil 
and Rrdl  have produced a corrected version [5]. However, this new proof is rather 
complicated, and makes use of several earlier results, in particular a result of Lund 
and Yannakakis [2] on approximating the chromatic number of a graph. 

The purpose of  this note is to give a completely different proof that diagram testing 
is NP-complete. The proof is, in the author's opinion, considerably simpler and more 
elementary than that offered by Ne~etfil and Rrdl. It was produced following a talk 
on the subject by Oliver Pretzel at the One-day Colloquium in Combinatorics at 
Reading in May 1993, at which time the problem was understood by the author to 
be open. 

Recall that the diagram of a partial order P = (X, <)  is the directed graph on X 
defined by directing an edge from x to y if z < y and there is no z with x < z < y. 
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A directed graph G with vertex set X is a diagram if it is the diagram of some 
partial order on X. There is a simple and useful characterisation for when a directed 
graph is a diagram, for which we need a few more definitions. 

Essentially, we follow the terminology of Pretzel [7, 8, 9]. A walk W of length k in 
a graph G is a sequence of vertices VlV2...VkVk+I, where each of vivi+l (1 ~< i ~< k) 
is an edge of G. (Thus both repeated vertices and repeated edges are allowed.) A 
circuit C in G is a walk where the initial vertex vl is equal to the terminal vertex Vk+l. 
A simple circuit is a circuit with no repeated vertices. (The word 'circuit' rather 
than 'cycle' is used to emphasise that the circuit comes equipped with a direction.) 

An orientation of a graph G is an assignment of a direction to each edge of G. 
Given an orientation R of G, and a circuit C in G, a forward edge of C is an edge 
vivi+l oriented from v~ to vi+l in R, and a backward edge is an edge oriented in 
the opposite direction. Theflow difference of C (under R) is the number of forward 
edges of C, minus the number of backward edges. 

A directed cycle in the orientation R is thus exactly a circuit C of length k and 
flow difference k. A circuit of length k /> 3 and flow difference k - 2 (i.e., with 
exactly one backward edge) is called a bypass. It is clear that, if R is a diagram 
orientation of G, then it gives rise to no directed cycles or bypasses. Furthermore, 
the converse is true: if, in an orientation R of G, there is no simple circuit of length 
k and flow difference k or k - 2, then R is a diagram orientation. In particular, if R 
is a diagram orientation, then every simple circuit of length 4 has flow difference 0, 
and every simple circuit of length 5 has flow difference q-i. 

The problem we are concerned with is the following. 

DIAGRAM TESTING 

Instance: A graph G. 

Question: Can G be oriented as a diagram? 

THEOREM. DIAGRAM TESTING is NP-complete. 

We shall prove the Theorem by giving a polynomial transformation from NOT-ALL- 
EQUAL-3-SAT, which is on the standard list of NP-complete problems in Garey and 
Johnson [1] as [LO3]. This problem is as follows. 

NOT-ALL-EQUAL-3-SAT (NAE-3-S AT) 

Instance: A set U of variables, and a set C of clauses each containing three literals 
from U. 

Question: Is there a truth assignment for U such that each clause in C contains at 
least one true and one false literal. 
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Fig. 1. The clause represented here is (z~z).  

The problem NAE-3-SAT is equivalent to that of 2-colouring a 3-uniform hypergraph. 
There is a fairly easy transformation from 3-SAT to NAE-3-SAT. Given an instance 
I = (U, C) of  NAE-3-SAT, we call a truth assignment for U a satisfying assignment 
if each clause in C contains at least one true and one false literal. 

Proof of Theorem. Given an instance I = (U, C) of NAE-3-SAT, we construct a 

graph GI  such that Gz can be oriented as a diagram iff I has a satisfying assignment. 
The construction is given below; it might aid the understanding for the reader to refer 
to Figure 1. 

(1) Take one distinguished vertex a. 
(2) For each variable x in U, take a pair of  vertices z l ,  z2, joined by an edge. 

One piece of  notation at this point: if u is a literal corresponding to the variable 

(i.e., u = z or u = £'), then define ul, u2 to be the two vertices zl ,  x2 corresponding 

to ~, with ul  = Zl and u2 = z2 if u = x, but ul  = z2 and u2 = Zl if u = £. 

(3) For each pair {zi, y j )  with ~ # y, i , j  E {1,2) ,  take a vertex v{~,,v~), joined 

to zi, yj, and a .  

(4) For each clause l = (u, v, w), take four vertices forming a 4-cycle 

Ct,1 Cl,2 Cl,3 CI,4 CI,1. 

These are joined to the rest of the graph as follows. The vertex cz,1 is joined 
to ul; cz,2 is joined to u2 and Vl; cl,3 is joined to v2 and wl; and ct,4 is joined 
t o  w 2. 

The basic idea is as follows. The orientation of  the edge xlz2 corresponds to the 
truth value of the variable x, with edge oriented from ~1 to ~:2 if ~ is True. We shall 
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force the edge ct,xcl,2 to be oriented the same way as UlU2, and similarly for the 
edges cl,2cl,3 and cz,3cl,4. If these three edges are all oriented in the same direction 
around the four-cycle corresponding to l, it will then not be possible to orient the 
edge el,4cz,1 without producing a bypass or oriented cycle. 

At first sight, this is not feasible, since, if a graph can be oriented as a diagram, 
then it is known that it may be re-oriented in many different ways as a diagram, and 
in particular that it can be oriented as a diagram with any two independent edges 
given an arbitrary direction. Perhaps the key idea of the proof is to take advantage of 
exactly this freedom, by using the following result of Mosesian [3], see also Pretzel 
[8]. 

LEMMA. Let G be a connected graph that can be oriented as a diagram, and let 
a be any vertex of  G. Then G can be oriented as the diagram of  a partial order in 
which a is the only maximal element. 

Perhaps it should be remarked that the proof of this lemma is not difficult: a suitable 
orientation can be obtained by repeatedly 'pushing down' maximal vertices z other 
than a (i.e., reversing the directions of all the edges incident with x). 

Our claim above should now be read as: in every diagram orientation of Gz in 
which a is the only maximal element, Cl,lCl, 2 has the same direction as UlU 2. 

Returning to the formal proof of the Theorem, it is clear that the construction of 
Gr can be carded out in time polynomial in the size of the instance L We make the 
following two claims which, in the light of the lemrna above, suffice to complete the 
proof. 

(a) If  G1 can be oriented as a diagram, with a the unique maximal element, then 
t has a satisfying assignment. 

(b) If  I has a satisfying assignment, then Gt can be oriented as a diagram. 

Part (a) is more interesting, although perhaps part (b) is more critical. We start 
with (a). 

Suppose then that Gz can be oriented as a diagram, and fix one diagram orientation 
R of GI where a is the unique maximal element. Note that all the edges from the 
vertices v{~,vs ) to a are directed towards a by R, since otherwise a is not a maximal 
element. Also, there is some directed path P from each ~:i to a, and if some 
edge v{x~,ys}zi is directed towards xi, then the circuit xiPav{r~,vAxi is a bypass. 
Therefore all the edges of the form v{,~,uj)zi are directed towards v{~,u A in R. 

Now let l = (u, v, w) be a clause, and consider the subgraph of G1 in Figure 2, 
with the known directions of edges x iv~ ,u j }  marked. 

The flow difference of the simple circuits of length 4 bounding each of the six 
faces F 1 . . .  F6 is zero, and the flow difference of the circuit bounding F7 is -I-1. 
There is an obvious sense in which the external circuit is the sum of these seven 
circuits, and it follows that the flow difference around the external circuit is 4-1. (A 
more careful discussion of this principle, and several applications, are to be found 
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Fig. 2. A subgraph of Gz, corresponding to the clause containing literals u, v, w. 

in Pretzel and Youngs [10].) This means that the three edges UlU2, VlV2, and WlW 2 

are not all oriented in the same direction. 
We define a truth assignment for I = I ( R )  by setting variable z True if the edge 

xlx2 is directed from xl  to x2 in R, and False otherwise. Thus literal u is True iff the 
edge UlUZ is oriented from ul to u2. By construction of Gz, and the observation in 
the previous paragraph, no clause contains three false, or three true, literals. Hence 
I is a satisfying assignment. 

We now move on to proving assertion (b). Suppose then that we have a satisfying 
assignment for I. We shall give an orientation to each edge of the graph Gz, and 
claim that Gz is thereby made into a diagram. Naturally, a will be the unique 
maximal element in this orientation. 

So, given the truth assignment, we orient the edges as follows. Each edge from 
a vertex v(~,,yj) to a is directed towards a, and each edge from xi to v(~,u~) is 
oriented towards v{~,yj). The edge between xl and x2 is oriented from xl to x2 
if x is set True by our satisfying assignment, and in the other direction if x is set 
False. All the edges from vertices el,j to vertices xi are oriented in that direction. 
For a clause l = (u, v, w), the edge ehlei, 2 is oriented forwards if the literal u is True, 
and backwards if False (so the edge is oriented the same way as the edge ulu2). 
Similarly the edges ez,2et,3 and el,3el,4 are oriented forwards iff v and w, respectively, 
are True. The edge el,4el,1 is oriented forwards if exactly one of u, v, w is True, and 
backwards if exactly two are True: since we have a satisfying assignment, this does 
define an orientation of Gz. 

It is immediate that there are no directed cycles thus created, since there are no 
directed cycles inside (i) the set of all vertices etj ,  (ii) the set of all vertices xi, (iii) 
the set of all vertices v(~,u~}, (iv) the single vertex a, and all edges between these 
classes are directed (i) ~ (ii) -* (iii) --. (iv). Note in particular that the digraph 
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Fig. 3. The subgraph of GI,  corresponding to the clause containing literals u, v, w. 

restricted to class (i) consists of independent circuits of length 4, each oriented with 
two forward and two backward edges. Class (ii) consists of independent edges XlZZ 
oriented according to the truth assignment. 

It remains to be shown that there are no bypasses. Suppose then that there is a 
circuit with just one backward edge. Evidently such a circuit does not lie entirely 
within one of the four classes. Also, if a circuit contains vertices u and v from 
two nonconsecutive classes, then two backward edges are needed to get from one to 
the other. So our bypass is contained in some pair of consecutive classes. Classes 
(iii) and (iv) consist of isolated elements, and two vertices of (ii) connected to the 
same vertex of (iii) lie in different components, so the only remaining possibility is 
a circuit contained in classes (i) and (ii). 

The putative bypass must consist of: a forward path inside class (i), a single 
(forward) edge from (i) to (ii), possibly a forward edge inside (ii), and the sole 
backward edge from (ii) to (i). Therefore the cycle lies entirely inside some subgraph 
of the form shown in Figure 3. The four circuits C1,. •., C4 shown in Figure 3 have 
flow-difference 0, by the specification of our orientation. Therefore every cycle in 
that subgraph has flow-difference 0, contradicting our assumption that the subgraph 
contains a bypass. 

This completes the proof. [] 

Two diagram orientations of a graph G are said to be inversion equivalent if the flow 
difference of every circuit in G is the same in the two orientations. It is shown by 
Pretzel [8] that any two inversion equivalent orientations can be obtained from each 
other by a sequence of simple operations known as 'push-downs'. The proof of the 
result of Mosesian we used earlier implies that, if a is a vertex of a connected graph 
G, then every diagram orientation of G is inversion equivalent to one where a is the 
unique maximal dement. 

Given an instance / of NAE-3-SAT, let G1 be the graph constructed above. Note 
that different satisfying assignments of I are associated with orientations that are not 
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inversion equivalent, since the circuit av{rl,vl}ZlX2V{zz,vl}a has flow difference +1 
according to the direction of  zlx2. 

We claim that inversion equivalence classes of diagram orientations of Gz are in 
1-1 correspondence with satisfying assignments of I. Indeed, given an inversion 
equivalence class, there is at least one orientation in the class such that a is the only 
maximal element; the directions of  the edges ZlZ2 in such an orientation are deter- 
mined by the equivalence class, and we saw above that a set of  directions for these 
edges can occur in this way iff the associated truth assignment is a satisfying assign- 
ment for I. Furthermore, it is straightforward to check that a diagram orientation 
of Gx is specified uniquely by the orientations of the edges x1~:2 corresponding to a 
satisfying assignment, and the requirement that a be the unique maximal element. 

It is not too hard to show that counting the number of  satisfying assignments of a 
NAE-3-SAT instance is #P-complete. The above fact then shows that counting the 

number of  inversion equivalence classes of  diagram orientations of  a graph is also 
#P-complete. 

Finally, we note that the graph G I  is clearly 4-colorable, so we have in fact 
proved that DIAGRAM TESTING is NP-complete even for 4-colorable graphs. This 
answers a question posed by Negetfil and R6dl in [5]. 
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