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Abstract. Experiences with applications of concept lattices and the pragmatic philosophy 
founded by Ch. S. Peirce have suggested a triadic approach to formal concept analysis. It 
starts with the notion of a triadic context combining objects, attributes, and conditions under 
which objects may have certain attributes. The Basic Theorem of triadic concept analysis 
clarifies the class of structures which are formed by the triadic concepts of triadic contexts: 
These structures are exactly the complete trilattices up to isomorphism. 
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1. Triadic Concepts 

Formal Concept Analysis, as it has been developed during the last fifteen years, 
is based on the dyadic understanding of a concept constituted by its extension 
and its intension (cf. [7, 8, 13]). It starts with the primitive notion of a formal 
(or dyadic) context defined as a triple (G, M, 1) consisting of two sets G and 
M and a binary relation I between G and M. A formal (or dyadic) concept 
of a dyadic context ( G , M , I )  is a pair (A,B)  with A C G, B c M, A t = B, 
and /3 t -- A where A t and B t result from the following derivation operators 

(x  g G, Y Z M): 

X ,  > X  ~ : - - - { r r z c M l g l m f o r a l l g C X } ,  

Y~ > Y ~ : = { 9 E G I 9  I m f ° r a l l m E Y } "  

The dyadic concepts of (G, M,  I)  are exactly the maximal pairs (A, B) in q3(G) x 
~ ( M )  with A × B c_ [ according to the component-wise set inclusion. The 
dyadic concepts are structured by the following order relation: 

(A1,/31) ~ (A2, t32) :-' ~,- AI C A2(~=~ B 1 D B2). 

The set of all dyadic concepts together with this order relation forms a complete 
lattice denoted by fl3(G, M,  I)  and is called the concept lattice of (G, M, I). 
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The concept lattices of dyadic contexts are exactly the complete lattices up to 
isomorphism. Experiences with applications of concept lattices and the pragmatic 
philosophy of Ch. S. Peirce with his three universal categories have suggested a 
triadic approach to formal concept analysis (see [5, 9, 10]). The mathematical 
foundation of this approach is the theme of this paper. 

As in the dyadic case, the foundation starts with the primitive notion of a 
formal context by defining a triadic context as a quadruple (G, M, B, Y) where 
G, M, and B are sets and Y is a ternary relation between G, M, and B, i.e., 
Y C_ G x M x B; the elements of G, M, and B are called objects, attributes, 
and conditions, respectively, and (9, m, b) E Y is read: the object 9 has the 
attribute m under the condition b (the relational notation b( 9, m) may also be 
used for (9, m, b) C Y). The conditions in B are understood in a broad sense; 
in particular, they comprise relations, mediations, interpretations, evaluations, 
modalities, meanings, purposes, and reasons concerning connections between 
objects and attributes. For allowing shorter formulations, K1, 1£2, and/ (3  are 
often used instead of G, M, and B, where the chosen symbols indicate that the 
component Ki may be viewed as a formal reference of Peirce's i-th category. A 
triadic context K := (K1,/£2, K3, Y) gives rise to numerous dyadic contexts; in 
particular, it is useful to define 

K(1) := (K1,/£2 × K3 ' y(l)) ,  

K (2) := (/552, K 1 × / (3 ,  y(2)), 

K (3) := (K3,//1 x K2, y0 ) ) ,  

where 9Y(1)(m, b) :¢* mY(2)(9, b) :~=> bYO)(9, m) :e, (9,m, b) C Y, and, for 
{ i , j , k }  = {1,2,3} and Ak C_ Kk, 

:= (K.  vi'k), 

where (ai, a s) E YAJk if and only if ai, a s, ak are related by Y for all ak E Ak. 

The derivation operators in tK (i) a re  denoted by Z ~-~ Z (i) and in K~k by 

Z ~+ Z (i'j,Ak). Now, a triadic concept of K is defined as a triple (A1, A2, A3) 
with Ai c Ki for i = 1,2,3 and As = (A s x Ak) (i) for { i , j , k }  = {1,2,3} with 
j < k; A1, A2, and A3 are called the extent, the intent, and the modus of the 
triadic concept (A1, A2, A3), respectively. 

PROPOSITION 1. The triadic concepts of a triadic context (K1, /(2, /(3, Y) 
are exactly the maximal triples (A1, A2, A3) in q3(K1) x q3(K2) x q3(K3) with 
A1 x A2 x A3 C Y according to the component-wise set inclusion. 

Proof For A.i c_ Bi C_ K~(i = t ,2,3),  B1 x /32 x B3 C_ Y implies Bi C_ 
(Aj x Ak) (i) for { i , j , k }  = {1,2,3} with j < k. This immediately yields the 
assertion of the proposition. [] 
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The set ~(IK) of all triadic concepts of K := (K1,/£2,/(3,  Y) is structured by the 
quasiorders < i  and their corresponding equivalence relations ~-,i defined by 

(A1, A2, A3) ~<i (/3t,/32,/33) :<----4" Ai C Bi and 

(A1, A2, A3) ~-'i (B1, /32, /33) :¢:=:> Ai = Bi (i = 1, 2, 3). 

Let [(A1, A2, A3)]i denote the equivalence class of ,-~i represented by the triadic 
concept (A1, A2, A3). The quasiorder ~<i induces an order relation ~i  on the set 
5g(K) /~ i  of all equivalence classes of ~-,i. 

PROPOSITION 2. For { i , j , k }  = {1,2,3}, (A1,A2, A3) <~ (/31,/32, B3) and 
( d l ,  A2, A3) ~<J (/31, B2,/33) implies (A1, A2, A3) ,..,>/c (/31, t32,/33)forall  triadic 
concepts (A 1 , A2, A3) and (/31,/32, B3) ofK; jhrthermore, "~i N ~ j  is the identity 
on %(g) for i ¢ j. 

Proof The first assertion follows from the fact that Ai C_ B/ and Aj c /3j 
implies A~ = (Ai x Aj) (k) D (/3i × Bj) (/c) = Bk. The second assertion is a direct 
consequence of the definition of triadic concepts requiring that two components 
of a triadic concept uniquely determine the third component. [] 

The relational structures 5g(K) := (5~(K),~<1, ~2, < ,-.,3)< play an analogous rote 
in triadic concept analysis as the concept lattices in the dyadic case. Hence 
a fundamental question is: What are the natural algebraic operations on %(K) 
corresponding to infima and suprema? First of all, such operations have the aim 
to yield triadic concepts from others. Therefore it should be first analysed how 
triadic concepts can be constructed within a triadic context. In the dyadic case, 
arbitrary concepts can be derived from single subsets X C G or Y C_ M by 
forming (X",  X ' )  or (Y', Y") (notice that X m = X '  and y m  = y~). In the 
triadic case, one needs two subsets to generate a triadic concept: 

PROPOSITION 3. For Xi c Ki and X~ C Kk with {i , j ,  k} = {1, 2, 3}, let 
Aj := X} i'j'xk), Ai := A~ i'j'xk) and Ak := (Ai × Aj) (k) (if i < j) or Ak := 

(Aj x Ai) (/c) (if j < i). Then (A1, A2, A3) is the triadic concept bi/c(Xi, Xk) with 
the property that it has the smallest k-th component under all triadic concepts 
(BI, t32, B3) with the largest j-th component satisfying Xi C Bi and X/C C_ B/C. 
In particular, bilc(Ai, A/c) -= (AI, A2, A3) for each triadic concept (A 1, A2, A3) 
of K. 

Proof Without loss of generality we can assume i = 1, j = 2, and k = 3. 
Obviously, X1 C At and X3 C A3. First it has to be proved that (A1, A2, A3) 
is a triadic concept. A3 = (A1 × A2) O) is already satisfied by definition. It 

(1 ,2 , (Al×A2)  (3)) : A(1 ,2 ,A3)  Q ~(-(1,2,X3) _ A2 and hence follows that A 2 C A 1 "*1 - -  " ~ 1  - -  

A2 = A~ I&A3) = (A1 x A3) (2). Similarly one gets AI = (A2 x A3) (1). Now, 
let (B1,/32,/33) be a triadic concept of K with X~ c_/31 and X3 C_ /33. Then 
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B2 = (B1 × B3) (2) = "-'1/2(1'2"B3) C_ XI 1'2'X3) ---- A2; hence/3'2 C_ A2, Let B2 be 

equal A2. Then AI : A(21'2"X3) D /3 (1'2'B3) -~- ~ 2't'B3) : (/32 × /33) (I) : ~ t ;  

hence A1 D_ B1. It follows A3 = (A1 x A2) (3) c (131 ×/32)(3) = /33. This 
finishes the proof of the first assertion. If (A1, A2, A3) is assumed to be a triadic 

concept, then A] 1'2'A3) = (A1 x A3) (2) = A2 and A(21'2'&) = (Aa × A3) (1) = A1; 
hence bik(A1, A3) = (A1, A2, A3) by the first assertion. [] 

It seems natural to use the described construction of triadic concepts for defining 
algebraic operations on ~(IK) as follows: For i ¢i k in {1,2, 3}, the ik-join of 
two sets Xi and :Ek of triadic concepts of IK is defined by 

Vik (~i, ~T-k) 

In the next section, abstractions of the operations Vik are studied on a purely 
order-theoretic level to derive a triadic analogue of the dyadic notion of a com- 
plete lattice. 

2. Complete Trilattices 

First an analogue of the dyadic notion of an ordered set is introduced (notice 
that an ordered set is structured by two mutually dependent relations, namely 
~< and ~>): A triordered set is defined as a relational structure (S, ~1, <2, <3) 
for which the relations <~ are quasiorders on S such that <i  N < j C > ~  for 
{i,j,  k} = {1,2,3} and "1 C) ~"2 f-) "3  = i d s  where ,--,i :=<~ N >i  (i = 1,2,3). 
It immediately follows that ~ i  f? "~j= ids for i ¢ j .  For x E S, let [x]i := 
{y E S I x ~ i  y}- The quasiorder <i  induces on S / ~ i  (=  {[x]i I x E S}) an 
order relation ~<i. For { i , j , k}  = {1,2,3} and Xi, Xk C S, an element u of S 
is called an ik-bound of (Xi, Xk) if u >i  x for all x E Xi and u >~ x for all 
x E X/~; an/k-bound u of (Xi, Xk) is called an ik-limit of (Xi, Xk) if u > j  v 
for all ik-bounds v of (Xi, Xk). 

PROPOSITION 4. Let S := (S, 51, <2, <3)  be a triordered set. For { i, j, k} = 
{1,2, 3} and Xi, Xk C S, there exists at most one ik-limit u of (Xi, Xk) with 
u <~k v for all ik-limits v of (X~, Xk) in S; the element u is called the/k-join of 
(X~, XI~) and denoted by V~k(Xi, Xk). 

Proof Let ul and u2 be/k-limits of (X~, X~) less than or equal all/k-limits 
of (Xi, Xk) with respect to the quasiorder ~ .  Then, in particular, ul ~<k u2 
and u2 ~<~ u~; hence ul "~k u2. As/k-limits of (Xi, Xk), ul and u2 also satisfy 
U 1 "-,j U 2. Now, ul = u2 follows from ~j  N ,-~k= ids. [] 
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By Propositions 2 and 3, the relational structure ~(IK) derived from a triadic 
context N is a triordered set in which bik([_J{Ai I (A1, A2, A3) E Yi}, U{Ak I 
(A1, A2, A3) E Yk}) is always the/k-join of (Yi, Y~:). Therefore _if(K) is a com- 
plete trilattice which is defined as follows: A complete trilattice is a triordered 
set __L := (L, <1, <a, <3) in which the/k-joins exist for all i 7~ k in {1, 2, 3} and 
all pairs of subsets of S. In a complete trilattice L, the element 0i : =  Vjk(L, L) 
(= Vkj(L, L)) is uniquely determined by 0i < i  x for all x E L (note that also 
0~ = V~j(~, L) = V~k(~, L) = Vj~(~, ~ )  = Vk~(~, ~)). 

By two classes of complete trilattices it shall be indicated how complete trilat- 
tices may look like. As a first class let us consider the complete trichains defined 
as the complete trilattices (L, ~1, < ~2,< <3) for which (L/~i ,  <~i) is a complete 
chain for i = l, 2, 3. In the finite case, examples are the equilateral trichains 
T C  n. := (TCn, <1, ~2 < , <3) with TCn := {(Xl, x2, x3) E {0, l, . . .  ,n} 3 I Xl + 
x2 + x3 = 2n} and (Xl, x2, x3) <i  (yl, y2, Y3) :¢* xi ~< yi (i = l, 2, 3). The equi- 
lateral trichain TCn is isomorphic to ~(IK~) with IK~ := ({1 , . . . ,  n}, {1 , . . . ,  n}, 
{1 . . . . .  n}, Yr c) and (Xl,X2, x3) E Yn c :¢=~ Xl + x2 + x3 ~ 2n, where the unique 
isomorphism is described by (xl, x2, x3) ~-~ ([1, Xl], [1, x2], [1, x3]). A triadic 
diagram of TC 5 is shown in Figure l; it makes clear how the three quasiorders 
give rise to three directions in the graphical representation. Surprisingly, not ev- 
ery finite trichain can be order embedded into an equilateral trichain; a 9-element 

0 

<-t ~ 0 ~ ~ ,  ~" 

0 ~n~', '514 ",523 532 541 "', 03=550 

/" 451 

Pka ~ : "  " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  (~  0 

£ " ~ " ~ ' ~ " c ~ : '  / /  01=055 

% 

<-I 

Fig. 1. The equilateral trichain TCh. 
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Fig. 2. 3-dimensional visualization of a triadic (6 × 6 x 6)-context. 

/,, ,,,,~ {1,2) 

,~ , , , ,  {i) 

@ 

Fig, 3. The Boolean trilattice B_({1, 2}). 
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counterexample, which is given by the triadic concepts of the triadic context in 
Figure 2, was found by U. Wille [13] (for representations of triordered sets by 
ordered algebraic structures in general see [1 t] and [12]). 

As a second class we consider the complete Boolean trilattices defined as the 
complete trilattices (L, ~<1, ~<2, <3) for which (L/Hi, ~<i) is a complete Boolean 
lattice for i = 1, 2, 3. In analogy to the dyadic case, the subsets of any set S de- 
termine a complete Boolean trilattice, namely _B(S) := (B(S), ~1 < '  , ~<% <3) with 
B(S) : :  {(X1,22,  23)  E q3(S) 3 I X1 ('1X 2 f"l X 3 = 2~ and Xi U Xj = S for i ¢ 
j in {1,2,3}} and (X1,X2, X3) <~i (Y1,Y2, Y3) :¢~" Xi c Yi (i = 1,2,3). The 
elements of the complete Boolean trilattice _B(S) are exactly the triadic concepts 
of the triadic context K b := (S ,S ,S ,  Ybx) with yb := S3 \ { ( z , z , z )  [ z E S}; 
thus B(S)  = ~(IK~). A triadic diagram of B({I ,  2}) is shown in Figure 3. 

In triordered sets, notions connecting the three quasiorders are of specific 
interest. Such a notion is given by the following definition: A triple (XI, X2, )(3) 
of subsets of a triordered set is said to be joined if there exists an element u 
with u > i  :ci for all z~ E Xi and i 6 {1,2, 3}, i.e., u is an ik-bound of (Xi, X~) 
for all i ¢ k in {1,2, 3}. A triple (Zl, z2, z3) of elements of a triordered set is 
joined if ({zl}, {x2}, {z3}) is joined. In complete tritattices, joined triples of 
subsets can be recognized via joined triples of elements, which is the content of 
the following proposition. 

PROPOSITION 5. Let X1, X2, and X3 be subsets of a complete trilattice. Then 
(X1, X2, X3) is joined if and only if (zl,  cc2, z3) is joined for all zi C Xi and 

E {1,2,3}; inparticular, i f (X1,X2,  X3) is joined then V12(X1,X2) >~i z i for  
all zi E Xi and i E {1,2, 3}. 

Proof Obviously, the joinedness of (X1, X2, X3) implies the joinedness of 
each triple (zt ,  z2, z3) in X1 x X2 × X3. Conversely, let (Zl, z;,  z3) be joined 
for all (zl ,z2,  z3) E X1 × 22  x X 3. For x2V23z 3 := V23({X2},{:;C3}) and 

>.i zi (i = 1, 2, 3), it follows u <~1 z2V23z3 and hence zl  <1 z2V23z3. This 
yields :c2V23z3 <2 V13(X1, {z3}) and therefore z2 <2 V13(Xt, {:c3}) for all 
z2 E X2 and z3 E X3. Now it follows V13(X 1, {z3}) <3 V12(X1, X2) and so 
X3 ,~3 ~712(X1,22) for all z3 E X3. Thus, (XI,  22, 23)  is joined. [] 

3. The Basic Theorem 

As already mentioned in Section 2, the triadic concepts of a triadic context N := 
(G, dig,/3, Y) form a complete trilattice with respect to the three component-wise 
defined quasiorders; therefore ~(IK) is called the concept trilattice of the triadic 
context IK. Conversely, every complete trilattice is isomorphic to a concept 
trilattice of a suitable triadic context by The Basic Theorem, which is the main 
content of this section. For fonnulating the theorem, some order-theoretic notions 
are useful: For a complete trilattice _L := ,(L,N~,~.,<4 <~ <3), the set of all order 
filters of (L, < 0  is denoted by ~/(_L_L) (i = 1, 2, 3) where an order filter of the 



156 RUDOLF WILLE 

quasiordered set (L, <~i) is a subset F of L for which x ~ F and x <i y always 
imply y ~ F. AprincipalfiIter of(L, <i)is  defined by [x)i := {y ~ L I x ~i Y}. 
A subset AS of 5C~(L) is said to be i-dense with respect to L__ if each principal 
filter of (L, ~<i) is the intersection of some order filters from X. Since the 
principal filter generated by the triadic concept (A1, A2, A3) in (_~_(~), <i) equals 
~a~A~{(B1, t72, B3) ~ ~(IK) t ai ~ t3i} ~ .U/(~(N)), one obtains an i-dense 
set ~i(Ki) of order filters of (~(N), <i) for i = 1,2, 3 by defining ~i(a0 := 
{(B1, B2, B3) ~ ~(IK) I ai ~ Bi} for ai ~ Ki. 

THE BASIC THEOREM OF TRIADIC CONCEPT ANALYSIS. Let N := 
(K1,/(2, B[3, Y) be a triadic context. Then ~(IK) is a complete trilattice of 
N for which the ik-joins can be described as follows ({i,j, k} = {1, 2, 3}): 

, A2, A3)~ :~i}'U {Ak ](AI,A2, A3)~ ~k}). 

In general, a complete triIattice L_ :=- (L, <1, <2, ~<3) is isomorphic to ~(IK) if 
and only if there exist mappings ?~i: Ki -+ f~(L) (i = 1, 2, 3) such that ~i(K~) is 

3 i-dense with respect to L and A1 x A2 × A3 C Y ~ Ni=l NaiEAi ~i(ai) ~L 2J 
for all AI C K1, A2 C_ K2, and A3 C K3; in particular, L -~ ~(L,L ,L ,Y£)  
with YL := {(Xl, x2, x3) E L 3 l(Xl, x2, x3) is joined}. 

Proof The first assertion is covered by Proposition 3. Let ~: ~(ti~) --+ L be 
an isomorphism between complete trilattices. For i E {1,2,3}, let us define 
?~(a~) := ~p~(ai) for all ai ~ Ki. Since gi(Ki) is /-dense with respect to 
_~(IK), ~i(K~) is/-dense with respect to L. Furthermore, At x A2 x A3 ~ Y ¢:~ 

Conversely, let t~i:/(i -+ ~/@_) (i = 1,2, 3) be arbitrary maps having the 
desired properties. Let ¢: L -+ q3(K1) x q3(K2) x q3(K3) be given by tO(x) := 
(A~,Z A2 ,z A~) with A~Z := {ai E Ki [ x E ?~(ai)} for i  = 1,2,3. Since [x)l N 
[x)2 N ix)3 = {x} and [x)i -~ N~EA~ ?~i(ai) by the assumed/-density, it follows 

3 ni=l  N~EA~ ?~i(ai) -: {x} and, in particular, A~ × A~ x A~ _c Y. For A~ := 
(A~ x A~) (3) we have also A~ × A~ x ,~z C Y and hence 3 - N ~ A ~  ~1(al) n 

Na2EA~' ~2 (a2) N na3E)~ t~'3(a3) ¢ 2~. Because of A3 C A3, this intersection 
^ 

equals {x}. Therefore A~ -~ A~, and the analogue holds for the indices 1 and 
2. This proves ~,(x) E ~(N). The map ~: L -+ ~(N) obviously preserves the 
quasiorders < < and <3- Let (A1, Az, A3) E ~(N) and let x be an element 

3 in the nonempty intersection n/=l  nai~Ai ~i(ai). It immediately follows that 
(A1, A~, A3) = ~(x). Therefore ~ is surjective and, because the intersection 
consists only of x, t0 is also injective. Obviously, ~-1 preserves <1, "~, and 
<3 too. Thus, 10 is the desired isomorphism. To prove L ~ ~(L, L, L, YL~), we 
define ?~: L -+ ~ ( L )  by ~:~(x) := [x)~ for i = 1,2,3 and x ~ L. Clearly, ~(K~) 
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is /-dense with respect to L. Let A1 x A2 × A3 _c YL with A1, A2, A3 __ L. 
By Proposition 5, (A1, A2, A3) is joined. This yields the second condition to 
guarantee L_L_ ~ ~(L, L, L, YL). [] 

For a dyadic context, the concept lattice is always isomorphic to the ordered set 
of its extents and antiisomorphic to the ordered set of its intents, Therefore the 
extent lattices and intent lattices are exactly the complete lattices up to isomor- 
phism. Although, by The Basic Theorem, the concept trilattices are exactly the 
complete trilattices up to isomorphism, the extents, the intents, and the modi of 
a triadic context do not form complete lattices in general. One can even prove 
the following proposition: 

PROPOSITION 6. Let (P, <~) be an ordered set with smallest element 0 and 
greatest element 1, and let Y := {(p,q,r) C p3 [ 0 ¢ p ~< q = r}. Then 
(P, 4) ~ ('__~(P, P, P, Y)/N1, 41)- 

Proof The assertion is proved if one shows that the triadic concepts of (P, P,  P,  
Y) are the triples ((5o]\{0}, {p}, {p}) with p ¢ 0 in P and the triples (2L P,  P), 
(P, 2~, P), and (P, P ,  2~). Obviously, the described triples are triadic concepts 
of (P, P,  P ,  Y). Let (A1, A2, A3) be an arbitrary triadic concept of (P, P,  P,  Y) 
with 2~ ¢ A1 ¢ P.  Then also A2 7 ! ~ ¢ A3. There cannot exist q E A2 and 
r E A3 with q ¢ r or q = 0 or r = 0 because this would imply 

A1 c ({q}, {r}) (1) = 2~. 

Hence A2 = (p} = A3 for some p ¢ 0 in P and, consequently, A1 = (p]\{0}. 
[] 

Proposition 6 shows that every bounded ordered set may occur as the ordered set 
of the extents, the intents, or the modi of a triadic context and that these ordered 
sets given by a triadic context might be quite different. Assuming that they are 
complete lattices, one has the following independence result: 

PROPOSITION 7. Let (L, ~<) and (M, ~<) be complete lattices, and let 

Then 

(L, <~) ~ (~(L, M, L x M, Y)/,-.q, <~1 ) 

and 

(M, ~) -~ (~(L, M, L × M, Y)/~2,  <~2 ). 
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Proof  The assertion is proved if one shows that the triadic concepts of (L, M, 
L x M, Y) are the triples ((p]\{0}, (q]\{0}, [/9) x [q)) with p ¢ 0 in L and q ¢ 0 
in M and the triples (25, M,  L x M), (L, 2~, L x M), and (L, M ,  25). Obviously, 
the described triples are triadic concepts of (L, M, L x M,  Y). Let (A1, A2, A3) 
be an arbitrary triadic concept of (L, M, L x M, Y) with 25 ¢ A1 ~ L. Then 
also A2 7 ~ 25 ¢ A?; furthermore, 0 ~ A1 and 0 ~ A2. Using the derivation 
operators (1) and (2), it follows that p := V A1 E A1 and q := V A2 E A2 so 
that A1 = (p]\{0} and A2 = (q]\{0}. Consequently, one obtains A3 = [p) x [q) 
by applying the derivation operator (3). [] 

Let us finally remark that one can construct a concept trilattice from its underlying 
triadic context by a nested use of Ganter's Algorithm for dyadic contexts (see 
[1]). This is explicitely discussed in [4] and implemented in [2]. 
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