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Structure of a Liquid-Vapor Interface 
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The structure of the interface of an argonlike fluid in equilibrium with its 
own vapor at low temperature is studied using molecular dynamics. The 
longitudinal pair correlations in the interface are found to be consistent 
with a simply defined ensemble of local thermodynamic states. However, 
the transverse correlations exhibit very long-range behavior not  predicted 
by straightforward local thermodynamics.  These results strongly suggest 
that  the interface is made up of an ensemble of configurations in each of 
which the transit ion from liquid to vapor is locally sharp, but that the 
transition surface fluctuates strongly in space and time. 

KEY W O  R DS : Liquid-vapor interface ; l i qu id  a rgon ; cap i l la ry  waves .  

1. INTRODUCTION 

Since the inception of statistical mechanics the structure of the transition 
zone between liquid and vapor in equilibrium has been of great theoretical 
interest. 5 From a thermodynamic viewpoint, surface-associated quantities 
such as surface tension fit without difficulty into a framework encompassing 
the variation of both bulk and surface parameters (see, e.g., Ref. 2). But the 
jump from a microscopic description of structure in bulk fluid to that in the 
interface region has long eluded reliable analysis. This is largely because the 
experimental information so necessary to direct theoretical efforts remains 
very meager. There are relatively few equivalent particles entering into any 
given aspect of the interface, and their contributions to physical measure- 
ments are masked by the background from bulk particles. 
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The advent of modern digital computers has changed this situation. 
Now it is possible to perform a numerical simulation of an equilibrium sys- 
tem with a large proportion of interface particles, (a~ and sufficiently many to 
ensure good statistics not only for density computation, but even for joint 
distributions of particle pairs. With this information, one can begin to 
evaluate various theoretical approximations and suggestive concepts, and, 
more importantly, provide a suitable qualitative framework for the micro- 
scopic phenomenology of two-phase fluid interfaces. 

In this paper, we will study an argonlike fluid at low temperature. It is 
now fairly well established C4,5~ that for a planar two-phase interface, the 
density profile p(z) is a smooth, monotone function approaching the corre- 
sponding liquid or vapor density in the one-phase regions (see Fig. 1 for a 
profile from data of this paper). The common ingredient of theoretical 
derivations of p(z) has always been some Ansatz for relating the pair dis- 
tribution function p(2~(rl, r2) to O(z) and a suitable bulk pair distribution. 
In the present analysis, we first investigate the longitudinal pair correlations 
and show that they are consistent with a simply defined ensemble of local 
thermodynamic states. Self-consistent use of this idea, however, produces a 
density profile substantially steeper than the numerically observed p(z). 
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Fig. 1. Density profile for model argon at 84~ (units as in text). 
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We next proceed to transverse correlations, via a transverse Fourier 
transform, and find that they exhibit very long-range behavior not pre- 
dicted by naive local thermodynamics. This behavior is shown to be a quite 
general consequence of the existence of a self-supported phase transition 
region, and is placed dynamically in the context of ensembles of wavelike 
gas-liquid interfaces. The observed broadening of the density profile has a 
similar origin. To exhibit the genesis of the transverse correlations, an inter- 
mediate energy-density contour of each configuration of the computer- 
generated system is carried out. The results strongly reinforce the picture of 
an ensemble of configurations, each consisting of sharply divided liquid and 
gas regions, but with a highly fluctuating interfacial surface. 

2. L O N G I T U D I N A L  C O R R E L A T I O N S  

Our model system consists of 1728 particles, interacting via a classical 
mechanical Lennard-Jones (6, 12) potential 

r = V(r )  - V(ro), 0 <~ r <~ ro 
(1) 

= 0 ,  ro <~ r 

where V ( r ) =  4e[(~/r) 1 2 -  (a/r) ~] and r0 = 2.5~. We choose ~, e, and 
% = (rncr/48e) 1/2 as length, energy, and time units (for real argon, ~ = 
3.405•, e =  119.4~ and 7o=3 .112  x 10-1asec). The particles are 
placed in a fully periodic box of size L x L x 3L (with L = 13.15~), with a 
Maxwellian distribution of velocities corresponding to a mean temperature 
of 0.704 (84~ The details of creating an inhomogeneous system without 
any external field in this periodic box, using molecular dynamics, are pre- 
sented elsewhereJ 5~ 

After the film equilibrates (showing constant temperature and pressure 
in liquid and gas), the configurations are stored on magnetic tape at inter- 
vals of 0.128r0, and equilibrium quantities computed as averages over 800 
configurations, as well as over any theoretical directions of invariance. The 
full density profile that develops is shown in Fig. 2, consisting of a central 
liquid third of bulk density no = 0.76 and two-thirds vapor of bulk density 
nl = 0.0033. Here, interfaces are perpendicular to the long (z) direction. 

The shape of the density profile has been the subject of numerous 
theoretical studies, mainly before reliable numerical knowledge existed. Each 
of these was compelled to make a critical assumption as to the form of 
the pair distribution function in the inhomogeneous system. We are now in 
a position to evaluate the assumptions. Since the mean density variation is 
only in the longitudinal (z) direction, we first concentrate upon the longi- 
tudinal correlations. The two-particle distribution 0~2~(rl, r2) denotes the 
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Fig. 2. Full density profile for 84~ model argon in periodic rectangular parallelepiped. 

number  of  distinct pairs of  particles per unit volume in rl space and unit 
volume in r2 space. But our system is constructed to be translation invariant 
in the x and y directions, so we can write 

p<2>(rl, r2) = p~2)(zl,  z~;  x l  - x 2 ,  Y l  - Y2)  (2) 

indeed depending only on [(xl - x2) 2 + (y~ - y2)2] 1/2 for infinite interface 
cross section. By the longitudinal pair distribution, we now mean correlations 
perpendicular to the surface, viz. 

p~2~(zl, z2) - p<~>(zl, z~; o, o) (3) 

The assumptions made as to the structure of  an inhomogeneous fluid of  
course tend to follow local thermodynamics, mimicking--in the smal l - -  
successful conceptual aspects of bulk systems. Microscopically, the leading 
level of  structure for a homogeneous component  of  density n is given by the 
radial distribution function 

g(rl - r2;n)  = p(2)(rl - r2;n)/n 2 (4) 

How then is this information to be used to estimate the inhomogeneous 
p<2)(rl, r2) ? 
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Fig. 3. Typical subcritical isotherm for liquid-vapor transition. 

Consider for reference a typical two-phase PViso therm (Fig. 3). Suppose 
that an isolated planar two-phase interface is defined--with some suitable 
recipe--by gas for z < 0, liquid for z > 0. Then in the zeroth-order Ansatz 
of  Nazarian, (m one assumes 

#re(r1, r2) = p(rl)p(r2)g(rl - r2; n) (5) 

where 

f n =  if 1(zl + z 2 )  
no > 0 

effectively restricting consideration to the terminal pure phase points A in 
Fig. 3, the choice dictated by the center of  mass of  rl  and r2. Toxvaerd (7) 
avoids the discontinuity in n by choosing n as the center-of-mass density 
and computing g(rl - r2; n) by extrapolation along the metastable-unstable 
van cler Waals loop BB: 

#re(r1, r2) = p(rl)p(r2)g(rl - r2; p[�89 + z2)]) (6) 

To the extent that (6) is a valid starting point, first-order density gradient 
corrections can be shown to vanish. (m A third alternative, which we shall 
examine in some detail, is to move along the two-phase coexistence line C. 
This requires some explanation. 

For  the bulk fluid in two-phase coexistence, statistical mechanics as 
ordinarily practiced (see, e.g., Ref. 9) attaches a probability P0 = 1 - p~ 
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at each space point for the system to be liquid, and computes all distributions 
with this weight: 

n = p o n o  + pznz  

p(2~(rl - r2) = pop(o2~(rl - r2) + plp~2~(rl - r2) (7) 
etc. 

The implication is that gas and liquid are predominantly present only in 
very large clusters, so that in the course of time a given poin t - -or  set of 
points--can be regarded as either internal to a liquid cluster or internal to a 
gas cluster. I f  attention is focused on spatial and temporal regions of tran- 
sient existence of  small clusters, then the interfacial free energy affects the 
local pressure that can be supported, and the nonnegligible interfacial volume 
must be averaged into the environment of a given point. This is presumably 
what (6) takes advantage of. But there is evidence (1~ that the structural detail 
in the vicinity of  a rapid density change is very short range and in particular 
on a scale small compared to that of Fig. 1. Hence a suitable dynamic picture 
of a two-phase system should indeed include the possibility of  an interface 
sweeping past a given spatial point, but this point can still be regarded at 
any instant as either in gas or in liquid. 

The interpretation of the foregoing is clear enough. We can view 
the two-phase system as a temporal sequence, or phase space ensemble, of 
configurations each sharply divided into gas and liquid regions. The geomet- 
ric form of the dividing surface is, however, open. As a primitive approxima- 
tion, and in accordance with the resulting symmetry, we shall take this as 
planar. For  a given division plane, positioned at Z, we have pure gas for 
z < Z, and pure liquid uncorrelated with gas for z > Z. It follows that 

p z ( r )  = n o ~ ( Z  - Z )  + n ~ ( Z  - z) 

p(z2)(rl, r2) = no2go(rl - r2)~(zj - Z )E(z2  -- Z )  
(8) 

+ non1[1 - e(z l  - Z ) e ( z 2  - Z )  - E(Z  - z~)E(Z - z2)] 

+ n12gl(r l  - r 2 ) , ( Z  - z l ) e ( Z  - z2) 

where E(x) is the Heaviside step function, i.e., [1 + sgn(x)]/2. Now if Z is 
distributed with probability density f ( Z )  and corresponding cumulative 
F ( Z )  = fz_ o0 f ( Z ' )  d Z ' ,  we have on integration 

p(r)  = f p z ( r ) f ( Z )  d Z  

= n o F ( z )  + n~[1 - F(z)] 

p(2~(rl, r2) = no2go(rl - r 2 ) F ( M i n ( z l ,  z2)) (9) 

+ n o n l [ F ( M a x ( z l ,  z2)) - F(Min(zz, z2))] 

+ n12g~(rl - r2)[1 - F(Max(zl ,  z2))] 
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The desired relation between p(2)(rl, r2) and p(r) results from (9) on 
eliminating the function F(z): 

o(2)(rl, r2) = [no2/(no - n l ) ] [ p ( M i n ( z l ,  z2)) - n d g o ( r l  - r2) 

+ [non~/(no - nl)][p(Max(zl, z2)) - 0(Min(zl, z2))] 

+ [nl~/(no - nl)][no - p(Max(zl,  z2))]g~(r~ - r2) (10) 

quite different in form from (5) and (6). However, if n~ can be neglected, as 
is the case with our data, (10) reduces to 

p(2)(rl, r2) = n o p ( M i n ( z l ,  z2))go(rl  - r2) (10') 

very much in the same mold as (5) and (6). The radial distribution function 
at liquid density to serve as input to (10') is shown in Fig. 4. 

We can now return to the question of longitudinal correlations. Accord- 
ing to (10'), we should have 

p~2)(zl , z2) = noPmlngo( A z )  (11) 

and so the ratio p(L2)/nop=~n has been plotted in Fig. 5 for several values of  
Az ~: zl - z2, as a function of 2 = (z ,  + z2)/2.  Although the computer 
values of  p(r 2> vary by a factor of 50 in the range examined, this ratio remains 
very nearly constant - -and with correct cons tant - -a t  each fixed value of Az. 
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Fig. 4. Radial distribution function go(r) for 84~ model argon at liquid density 
no = 0.76. 
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Fig. 5. go'(Y, A z ) -  p(z2>(zl, z2)/nopml~(z) as a function of Y . -  (zl + z2)/2 at fixed 
Az =-- z~ -- z2. Solid circles denote Az = 1.38, open circles Az = 2.31, open triangles 
Az = 3.23. 

We conclude that the approximation represented by an ensemble average 
of sharply separated gas-liquid regions, even with the further assumption 
of a strictly planar interface, provides an adequate picture of longitudinal 
correlations in our model system with its model parameters. A similar test 
of  (6) requires much more bulk system input data and is correspondingly 
less definitive; an approximate check did not lead to substantially poorer 
results in the region examined. The advantage of (10) and (10') is their 
greater simplicity and deeper dynamical implications. In addition, they can 
be easily improved. We will pursue these advantages. 

3. T H E  D E N S I T Y  P R O F I L E  

The conventional way of using information on p<2~ to obtain an inter- 
phase density profile has been to insert this into an exact relation connecting 
p(2~ and p. For  this purpose, the first of the BBGKY hierarchy (local balance 
of mechanical and thermodynamic forces) 

Vp(r) + fl f p<2~(r, r ' )  Vr - r ' )  d3r ' = 0 (12) 

with r the pair interaction, has generally--but not universally<tl>--been 
employed. The qualitative nature of the profiles is easily established. We 
consider any region in which p(r) is close to the bulk fluid (gas or liquid) 
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density n, and, using (5) or (6), set p<2~(r, r ' )  = p ( r ) p ( r ' ) g ( r  - r'), where g 
is referred to density n. For a plane symmetric profile p(z),  (12) becomes 

p ' (z )  = - / 3 p ( z )  f g ( r ' ) ( z ' / r ' ) ( J ( r ' ) p ( z  - z ' )  dar ' (13) 

Assuming g4/short  range on the scale of p, we can Taylor-expand p(z  - z ' )  
about z, so that, on using the nonvanishing angular averages (z '2S) = 
r'2S/(2s + 1), we have 

p'(z) = - /3o(z)  f g(r')~'(r') 

x [ - � 8 9  - (1 /30 ) r 'Sp" ( z )  + ""l d3r '  (14) 

Hence, inserting the virial pressure, 

p'(z) = ap'(z) + bp(z)d"(z) + ... (14') 

where 

a = 2(n - / 3 e ) / n  2 

= (/3/30) f g ( r ' ) r ' ~ ' ( r ' ) r  b t r dar ' 

To solve (14'), we need only integrate, obtaining 

p(z)  = K + 0 .5ap(z )  2 + 0 .5b[2p(z )p" (z )  - p'(z) 21 (15) 

for suitable K. Now multiply by p ' ( z ) /p ( z )  2 and integrate, yielding 

K'  + In p(z)  = - K i p ( z )  + 0 .5ap(z )  + 0 .5bp ' ( z )2 /p (z )  (15') 

for suitable K'. I f  p(z)  = n is to satisfy (15) and (t5'), K and K' are deter- 
mined, allowing (15') to be written as 

n2b[p'(z) /n] 2 = 2p(z){ ln[p(z) /n]  - 1 + n /p (z ) )  

- n2a[p(z) /n  - 1] 2 (16) 

Finally, expanding in small A(z) = p(z) /n  -- I, 

n2b[A' (z)]  2 = (2/3P - n)  A ( z )  2 (16') 

Working in from gas and liquid ends, this results in exponential deviations 
into the interface region, with a much more rapid re la t ive  rise from the low-n 
gas side (see Fig. 6). It is then the nature of the connection region that dis- 
tinguishes, e.g., (5) from (6). 

The need for simultaneous knowledge of q~ and g is more than a small 
inconvenience if one wants ultimately to make use of experimental data. 
However, one can always write down a p(2~_p relation in which the internal 
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Fig. 6. Density profile from Eq. (16). 

potential ~ does not  appear at all. This is most  easily derived by putting the 
system in an external field u(r). It is known (8~ that  at fixed chemical poten- 
tial, a change in u produces a change in p according to the linear response 
relation 

~p(~) = 

or its inverse 

- /3 f [p~2>(r, r ' )  + p(r) 3(r - r ' )  - p(r)p(r')] 3u(r') d3r ' 

- - / 3 f  S~2>(r, r ' )  3u(r') d3r ' (17) 

Here 

- f l  3u(r) = f C<2>(r, r ' )  3p(r') dar ' (17') 

C~2~(r, r') = 3(r - r')/p(r) - c(r, r') (18) 

where c(r, r ') is the usual direct correlation function. For  a translation- 
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invariant internal potential, a unit translation of the whole system pro- 
duces (12) 3u(r) = Vu(r), 3p(r) = Vp(r), whence 

-/3 Vu(r) = f C(2)(r, r') Vp(r') dar ' 

Now if u(r) = 0, one has the desired result a3-~5) 

Vp(r) = p(r) f c(r, r') Vp(r') dar ' 

(19) 

and conclude that 

Approximations inserted into (20) may of course give dramatically 
different results than when inserted into (12). But the most convenient 
approximations are in fact those for c (Ref. 15) and not for O (2). The analogs 
of (4) or (6) have not yet been used for this purpose, and indeed the function 
c would be expected to become singular at infinite compressibility in the 
metastable region. However, the wings of the interphase region can pre- 
sumably be analyzed as was (12). We expand the plane symmetric case, 
obtaining for c(r, r') = c(r - r') 

where 

p'(z) = p(z) f c(r')p'(z - z') d3r ' 

= p(z)[Ap'(z) + Bp"(z)] 

f ( A = c(r ')dar ' = n l  1 - - - ~ - ]  

B = ~ f r'2c(r') d3r ' 

nB[A,(z)] 2 o~P = -~n  zX(z)2 (21') 

which has the same character as (16'). The exponent K = (?flP/nB On) ~12 
associated with the exponential falloff of A in (21') represents an inverse 
correlation length, and has appeared repeatedly in the literature dating back 
to Ornstein and Zernike. 

There is of course no point to using a p(2)_p relation more accurate than 
the approximation to p(2) i f  the same mechanism is responsible for the 
inaccuracy of each. The approximation (10) was based upon neglect of the 
gas-liquid interaction and the associated longitudinal fine structure, so that 
for each configuration of the relevant ensemble, each volume element either 

(21) 

(20) 
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belongs to liquid at density no or gas at density n~. Suppose that  we have some 
microscopic  criterion in the fo rm of  an observable Q(r~,..., rN; r), so that  

Q(r) > 0 implies liquid at  r 
(22) 

Q(r) < 0 implies gas at  r 

Then  the mean  density at  r under  the above assumpt ion  becomes simply 

p(r) = ,o<~(Q(r))> + n l < ~ ( - Q ( r ) ) >  

= 0.5(no + nl) + 0.5(n0 - n~)<sgn(a(r))> (23) 

N o w  

<sgn Q(r)) = I p f <exp[isQ(r)]> --dSs 

1 P  f exp[isO(r) -s2cr2(r)]dS--s (24) 

to second cumulan t  order,  where 

L)(r) = (O( r ) ) ,  c;2(r) = <Q2(r)> - < a ( r ) )  2 (24') 

Evaluat ing (by applying 8/8Q), we have 

no -- nl  f~Cr)/~r(r) 
p(r) = nl + j _  e at (25) 

For  plane symmetry ,  p, Q, and ~ are functions o f  z alone. Suppose that  the 
mean  interface is at  z = O, i.e., ~)(0) = O. Then, to leading order  in z, we 
have the error  function representat ion 

no - nl (~/~ e-t2/2 at (26) 
p(Z) = ni + -~))172 2-co 

where A = ~(0)/~)'(0). But what  shall we choose as Q(r)? In  order to make  
use of  one- and two-body  data,  Q must  contain only zero- and  one-body 
terms,  and o f  course be invariant  to t ranslat ion of  z and of  the whole sys- 
tem. Thus  

Q(r) = ~ r(r, - r) - ~o (27) 
i 

Since Q(0) = 0, we have % = f p(z')r(r')dar ', and so the parameters  of  
(24') become  

[ [p(z' + z) - p(z ' ) ] , ( r ' )  O(z) dSr , 
d 

(28) 

= f f s(2 '(r ' ,r") .4r '  - - z) d r' " 
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In  par t icular  

Q'(0)  = o 
(28') 

o~(o) = f f S~(r',r")-~(r')~(r") d3r' d3r " 

In  the numerical  case under  discussion, the gas density nl is very low. Let  us 
choose nl = 0, so tha t  (10') applies. After  some manipulat ion,  the distance 
pa rame te r  )t o f  (26) then takes the fo rm 

as= I ff[p(zmin)S~o~)(r-r')r(r)z(r')/no] dar d3r ' 

ff }[f + [no - p(Z~ax)]P(Zmin)z(r)~'(r') p '(z)r(r)  d3r (29) 

and our  task is to solve this for  1. 
Assuming that  the range of  S(o 2~ is small on the scale of  interest, we shall 

make  the replacement  

So(r - r ' )  -+  f S(oe)(r ") d3r" ~(r - r ' )  

= no(Ono/O~P)~(r - r ' )  

in Eq. (29). Finally, there is the question of  the choice of  the density test 
funct ion r, a l though the results should not  be sensitive to this choice. We 
shall take r as Gauss ian :  

~-(r) = r(x)-r(y)~'(z) = (27r)a/2 U3 exp - ~ (30) 

so tha t  Q(r) is indeed a measure  of  the local density at  r. N o w  (29) can be 
writ ten as 

a [f dz] 2=  ~:no f p(z)r(z)  dz[f dz] 2 

+ 
Lt al 

Z + ~ ' - < 0  

where ,c = (1/no)Ono/OflP denotes the compressibility. After  a somewhat  
tedious evaluation,  (31) attains the fo rm 

is = rra/2~:/[2F(x)] 

where 

F(x) = x3{[4~2/(I + x2)] - x2[k~r + tan -1 x/(2 + x2)~/2]} 
(32) 

x = ~/,~ 
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To make sure that A is insensitive to the value of v, we demand that F' (x )  = 0, 
resulting in the numerical value F ( x )  = 34 at x = v/A = 1.6. Hence 

A ~ 0.44K ~/a or o'(O) ~ no/[(2zr)l/2A] = 0.92noK -lm (33) 

This approximation should be appropriate to the center of  the interface 
region rather than the wings. Using the measured value K = 0.04, we find, 
from (33), o'(0) ~ 2.1. On the other hand, the measured density profile is 
much broader, with p'(0) ~ 0.35 at the half-density point in the interface. 
We shall soon see why this is the case. 

4. T R A N S V E R S E  C O R R E L A T I O N S  

Neither version (6) nor (10) of local thermodynamics appears to show 
major qualitative deficiencies when longitudinal effects, be they density 
profile or density correlations, are in question. The situation deteriorates 
rapidly but informatively when transverse correlations are considered. For 
pure transverse correlations, we identify the z values of  the points in ques- 
tion, and thus define the transverse pair distribution (for correlations parallel 
to the surface) by 

p(rm(z, r12) = p(2)(xl, Y l ,  z, x2,  Y2, z) (34) 

where r12 = (xl - x2, Yl - Y2). According to approximation (6), 

p(r2)(z, r12) -~ p(z)2g(r12; p(z)) (35) 

while, according to (10), 

p(r2~(z, r12) ~ p(z) - nl no2go(r12) 
n o  - -  l / z  

+ no - p(z)n12gl(r12) (36) 
n o  - -  l / z  

The corresponding approximations for the transverse correlation function 
F(rm(z, r12) = pCr2)(z, r12) - p(z) 2 then become 

F(rm(z, r12) --- F(~)(r12; p(z)) (37) 

F~2)(z, r12) ~ O(z) - nl F(o2~(r12) + no - p(z) F?~(r12) 
no - -  n l  no -- nz 

+ [no  - o(z)l[p(z) -//11 (38) 

It  is convenient to go over to transverse Fourier space: 

Fr(z,  k) - ~ f F(r2)( z, r12)exp(/k.r12) d2r12 (39) 
PkZ) J 
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While (37) and (38) evoke similar behavior in FT(z, k) for k r 0, i.e., a bulk 
F(k) at some mean density compared to a mean of F0(k) and Fl(k), the 
behavior at k = 0 is qualitatively different: regular for (37), but singular 
for (38). How do these compare with our numerical simulation? In the 
simulation, we compute 

/ N(Az) ~ / 
S~(z, k) = ~,,.j~__l e x p [ -  ik-(rl - r2)] (N(Az)) (40) 

where k =  (2=n/L, 27rm/L,O), m , n = O ,  1,2 .... ; mn r O, i and j running 
over the N(Az) atoms in a slice of volume L • L • Az centered at z. The 
angular brackets denote the average over all configurations, and common 
values of k 2 are averaged as well. For small Az, it is easy to see that 

St(z, k) = 1 § Fr(z, k) Az (40') 

In Figs. 7 and 8, ,qz(z, k) is plotted as a function of k for two values of z: 
in the middle of the bulk liquid and in the middle of the interface. In Fig. 8, 
the circles show St(k) calculated with 1024 particles in a box of size 
6.78r • 6.78~ • 56.2&r. The close agreement down to the smallest k of 
the smaller system lends credence to the reliability of the numerical results. 
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Fig. 7. The  k dependence  o f  the  t ransverse  s t ruc tu re  fac tor  in l iquid,  z = 0. 
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Fig. 8. The k dependence of the transverse structure factor at mid-interface, z = 7.5. 
Curve shows system of 1728 particles, the circles denote system of 1024 particles. 

The enhancement of  low-k values in the interface region is brought out 
strikingly in Fig. 8. There is apparent divergence as k --+ 0, indicating trans- 
verse correlations over the size of  the box. One can say that the totally cor- 
related k = 0 component  of  (38) is in reality smeared into a merely very 
long-range correlation. To bring out the contrast, we plot in Fig. 9 the 
difference between ST obtained from simulation and that predicted by (38), 
for the minimum value of  k. This difference is indeed confined to the inter- 
face region, and closely resembles the curve of  p'(z) 2, also drawn. We will 
comment  on this relation in a moment.  Lack of  reliable knowledge of  the 
predictions of  (37) precludes a similar comparison. But we can say in general 
that its extrapolation from physical (one-phase) densities will certainly not 
introduce the observed singular k behavior. On the other hand, an inde- 
pendent assessment o f  the metastable state correlations should at least 
exhibit a divergence as k --+ 0 at the points of  infinite compressibility. 

The genesis o f  singular low-k transverse behavior has been suggested 
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Fig. 9. The  z dependence  o f  excess t ransverse  s t ruc tu re  fac tor  at k = 2~r/13.15, A z  = 
0.4 (line); p(z) is s h o w n  by tr iangles.  C o m p a r i s o n  curve o f  10p (z) 2 s h o w n  by circles. 

in a recent paper  of  Wertheim.  (~5~ A br ief  step beyond his analysis is all that  
we require. Suppose that  we take the transverse Four ier  t ransforms of  
C ~2) and S ~2~, denoting these by C and S. Then  [see (17), (17')] 

f C(zl, z2; z3; k) 3(zz - z2) (41) k) S(z2, dz2 

so that  C(k) and S(k)  are again inverse matrices. On the other  hand,  accord- 
ing to (19) and (20) in the plane symmetr ic  case, 

/C~2)(zl, z2; r12)p'(z2) = (42) dar2 0 

o r  

f C(zl, z2; O)p'(z2) = (42') dz2 0 

Thus  C(0) has O'(z) as a zero-eigenvalue eigenfunction, and does not  have an 
inverse. But if C(k) is a funct ion of  k 2 alone, analytic in k 2 a round  k 2 = 0, 
we can certainly write 

C(zl, z2; k) = C(zl, z2) + k2C'(zl, z2) + ... (43) 

where 

C'(zl, z2) = �88 f C~2~(zl, z2; r12)r~2 d2r12 
d 
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In a representation including the C(O) eigenfunction 

I f  h~'2 ~ho(Z ) = /(z)/  [p'(z)] 2 dz~ (44) 

(assumed nondegenerate), the only small diagonal element of C(k) is 

Coo(k) = k~[f  p'(zl)C'(za, z2)p'(z2)dzl dz2][f /(z)2 dz1-1 (44') 

Thus (readily verified by standard perturbation theory) the only singular 
element of S(k) is Soo(k) = S/Coo(k) and we have 

1 p'(zl)p'(z2) +... (45) S(zl ,  z2; k) = k-Z f 
p'(z) C'(zz, z2)p'(z2) dzl dz2 

4 

together with nonsingular terms in k. 
The p'(z)2/p(z) dependence of Fr(z, k), as defined by (39), is indeed that 

observed in Fig. 8. Only the magnitude of the singularity remains to be dis- 
cussed. But in fact the surface tension can be written (~a) as 

if 7 = ~ p'(zl)r~2C(~)(zl, z2; h2)/(z2) dzl dz2 d2h2 (46) 

We conclude, on identifying the deviation from a plane interface ensemble 
with the singular part (45), that to leading order in k, 

1 1 O'(z) 2 (47) 
Fr(z, k) f17 k2 p(z) 

In the present case, /3 = 1/0.7, - /=  0.7, p(z) = 0.35. If the choice / (z)  = 
0.50 is made, well within the margin of error, the simulated Fr, from (40') 
falls quite well on the curve (47) (see Fig. 10). The coefficient is not very 
precise, but the 1/k 2 shape is well established. 

3.0 

2 .0  

S(k) 

1.0 

0 t 
0 I!O 2.0 

k 

Fig. 10. Low-k  transverse correlat ions at mid-interface. Solid curve f rom Eq. (47), 
computer simulation points denoted by crosses. 
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Equation (45) was derived on quite general grounds of consistency, 
but its form is quite suggestive of a physical mechanism. The point is this. 
According to (38), there is a 3-function singularity in Fr(z, k) at k = 0. The 
basis of this is the assumption of a plane interface between liquid and vapor. 
This assumption of perfect coherence is most unphysical for large separation 
in the interface, and we expect some weaker small-k behavior. Indeed, in 
the absence of infinite-range correlations, one must have the asymptotic 
results 

p(2~(rl, r2) -+ p(zl)p(z2) 
(48) 

F(r2)(z, r12) --+ 1 

as [r~. -- r2i -+ oo or r12 -+ oo, respectively. These are of course consistent 
with (6). Thus, although the local z profile may be represented by (10), 
global structure is not. But the  amplitude of the deviation goes as kT/7, 
strong evidence that one is looking at modes thermally excited against sur- 
face tension. Surface modes (16-18) are clearly the leading candidates. 

It is tempting then to build up the true surface configuration by "un- 
freezing" surface modes on a bare or intrinsic surface profile. This, however, 
requires firm knowledge of mode-mode correlations and hence may not be 
useful for detailed questions about surface structure. If  instead one looks at 
infinitesimal changes in surface mode amplitudes, the objection does not 
hold. Indeed, pair correlations can be assessed in this fashion. S(2)(r, r') in a 
classical fluid serves not only as density-density correlation, but also [see 
(17)] as linear response to an infinitesimal applied field. Suppose then that 
an external potential u(r) is applied, resulting in a distortion of the z = 0 
surface of amplitude ~(x) = $(x, y). In other words, the new density profile 
is 

or(r) = p(z - se(x)) 

~:(x) = ~ ~:k exp( -  ik. x) (49) 

Now--at  least at long wavelength--a surface tension 7' implies a surface 
energy of E = 7 f (1  + IV~12)Z/2d2x. Hence the energy change through 
second order in u and ~: is 

AE d3r 

= (712)(11L2) ~ fi2fkf_k + f p(z)u(r) d3r 

- (1/L 2) f ~ ~kp'(z)u(r) exp( -  ik-x) d3r (50) 
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Using the Boltzmann weight e -~Ae, the free energy change associated 
with (50) becomes 

AF(u) = i '  p(z)u(r) d3r 
id 

But /Xp(rlu) = 8AF(u)/au(r) ,  and S(r, r') = - 8kp(rlu)/8~u(r' ). It follows 
that at long wavelength 

S(r, r) = (1/5TL=){p'(z)p'(z ') e x p [ -  ik. (x - x')]}/k 2 (52) 

and hence 

FT(z, k) = p'(z)2/[[37k2p(z)] (52') 

exactly reproducing (47). 
When is it reasonable to examine not just infinitesimal changes in 

but rather the full amplitude of surface waves in the bare interface alluded 
to above ? Perhaps if only a one-particle property such as the density profile 
itself is in question. Suppose then that p0(z) = noe(Z) denotes the idealized 
bare density profile, 70 the corresponding surface tension, and ~:(x) the full 
microscopic surface distortion. We then have 

o(z) = @~(r)> = n0<~(z - ~(x)> (53) 

o r  

n0 f exp{is[z -- ~(x)]} ds (54) p'(z) = 

According to (50), at u = 0, 

<e-i~>=<exp[-(is/L2)~6~exp(-ik'z)]> 

Hence 

where 

p'(z) = ~ exp (55) 

h2 = 1 1 (= (55,) 

The k = 0 term in (55') cannot of course be present in the form shown. As 
we have previously discussed, the motion implied must have a short co- 
herence length and presumably gives rise to that portion of h 2 represented 
by (33). The remainder of the sum in (55') is not small. In fact, it would 
diverge at large (two-dimensional) k if not cut off at some characteristic 
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length ao, e.g., interparticle spacing, or width of density profile. (1G~ Writing 
k = (27r/L)(K1, 1(2) for integer/(1, /(2,  setting Kmax = (2zr/ao)/(2~r/L) = L/ao,  
and approximating the sum in (55') by an integral, we have 

h2 = to 2 + ln(L/ao_..) (56) 
2@~o 

where to 2 is the k = 0 contribution. Thus the "capillary waves" k # 0 
make a large (and it seems ultimately divergent) contribution to the broaden- 
ing of the density profile. 

5. S U R F A C E  D Y N A M I C S  

We have been led to a picture of the phase transition region in which a 
quasiplane symmetric pattern of parallel surface motions of relatively short 
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Fig. 11. Typical configuration of atoms in vapor region, centers in slab of thickness 
Az = 1.0. 
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0 0 o C  
0 o 

)�9 0 
Fig. 12. Typical configuration of atoms in interface region, centers in slab of thickness 

Az = 1.0. 

coherence length is further perturbed by waves excited in the effectively 
elastic surface. Our analysis has been partly heuristic and partly rigorous, 
raising at least as many questions as it claims to answer. For example, the 
analysis of (48) applied to the density profile itself has been seen to lead 
to a divergence going as the logarithm of the system size. We have there- 
fore begun a detailed study of the dynamics of the surface motions in com- 
puter simulation. 

To start with, we have plotted in Figs. 11-13 the atomic configurations 
in the vapor, surface, and liquid regions at one particular time. Each atom 
is represented by a circle with diameter or, and the partial circles represent 
the hidden atoms when looking from the vapor region into the surface. 
These pictures do show a clustering of atoms in the surface with well-defined 
regions of high and low density. When we follow these pictures in time, 
we observe the clusters moving, but it is difficult with our data to distinguish 
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Fig. 13. Typical configuration of atoms in liquid region, centers in slab of thickness 
Az = 1.0. 

diffusive f rom wavelike propagation of the clusters. However, over as few 
as 800 configurations, the mean density has already achieved a form sensibly 
independent of  x and y. 

To examine the surface motion in greater detail, it is first necessary 
to define the surface. For  a meaningful microscopic visualization, this is 
best done by dividing the system into gas atoms and liquid atoms. For a 
rather sharp criterion, we may compare the local energy of a particle with 
some reference energy: 

r~ in gas if E =  ~ ~ ( r ~ -  rj) > E0 
~ (57) 

in liquid if E < Eo 
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I 
i 

Fig. 14. Typical surface configuration of atoms with energy criterion Eo = 0. 

Indeed, the surface obtained from the liquid surface atom-atom connec- 
tions is quite insensitive to the threshold value Eo, reinforcing the picture 
of a sharp short-time liquid-gas interface. This is shown in Figs. 14 and 15, 
essentially histograms of ~:(x, y). More important is the dynamical informa- 
tion in the form of time-dependent correlation functions F(k, t), obtained by 
replacing r~ in Eq. (40) by r,(t). Here, preliminary computations at least show 
that F(k, t) decays to equilibrium much more slowly in the surface region than 
in the bulk, evidence again of the presence of slow, long waves manifested 
presumably as slow, large clusters. A more detailed analysis using longer 
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jJr 

Fig. 15. Typical surface configuration of atoms with energy criterion Eo = -0.5. 

simulations and larger surface area is now being undertaken and will be 
reported in due course. 

6. C O N C L U S I O N S  

The density profile found by Rao and Levesque appears superficially 
to indicate a smooth and uninteresting transition from liquid to vapor extend- 
ing over a broad range of about five length units. But we find as a result of  
the further analysis presented here that the interface has considerable struc- 
ture. In particular, the transverse structure factor does not interpolate 
smoothly in the interfacial region. On the contrary, it exhibits a striking 
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peak  for  small  k in the  interface.  W e  in te rpre t  this as evidence of  capi l la ry  
waves in the interface whose leading te rm for small  k gives rise to a s tructure 
fac tor  con t r ibu t ion  S(z ,  z'; k)oc  p'(z)p'(z). In addi t ion ,  we find tha t  pure ly  
longi tud ina l  corre la t ions  are  consis tent  with a model  in which  the interface 
is taken  to be p lanar ,  sharp,  and  f luctuat ing in locat ion.  Taken  with  the 
evidence p rov ided  by snapshots  o f  a toms  in the  interface,  we conclude tha t  
the  del ineat ion between l iquid and  vapor  is ra ther  a b r u p t - - o f  the  order  of  
one a tomic  d iameter  for  our  p a r a m e t e r s - - b u t  tha t  this b o u n d a r y  fluctuates 
m a r k e d l y  in pos i t ion  and  t ime.  
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