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Estimating qualifications in a self-evaluating group 

I. BOMZE and W. GUTJAHR 
Department of Statistics, OR, and Computer Science, University of Vienna, Austria 

Abstract. We shall propose a method for assigning qualification values to individuals in a group, 
based on a cross-ratings matrix of its members. The method requires specification of a so-called 
'calibration function' describing the dependence of judging competence on qualification. 

1. Introduction and theory 

In the evaluation of scientific or other institutions, two approaches may be 
followed: The first one is evaluation from outside, i.e., by persons not belong- 
ing to the institution under consideration. The other one is self-evaluation: 
the performance of individual members is judged by members of the institu- 
tion. The term 'institution' may be understood in a very broad sense; for 
example, it may refer to the entire scientific community. In the latter case, 
some form of self-evaluation becomes indispensible: presumably, support for 
a system where scientific activities and results are judged only by non scien- 
tists will be lacking. 

One important aspect of evaluation is attributing degrees of qualification to 
individuals. (This seems indeed to be a major component of every educational 
system.) In connection with self-evaluation, the aspect of measuring qualifi- 
cations raises special problems, some of a definitory kind. 

Consider, for example, a group of physicists who want to acquire infor- 
mation on the qualification of each member of the group. For this purpose, 
each physicist rates all of his colleagues. What definition could be used to 
characterize 'good' physicists, based on the ratings? The most straightforward 
characterization seems to be the following: 

A good physicist is one who is rated to be good by a majority of 
physicists. (1) 

However, this definition does not adjust for the varying competence of 
physicists to judge (other) physicists. It might be conjectured that good 
physicists are more competent in judging their colleagues than the less good 
ones. So the following characterization appears to be more appropriate: 
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A good physicist is one who is rated to be good by the majority of 
good physicists. (2) 

Because of its evident circularity, this definition might seem hopelessly 
impractical. The same problem occurs if we want to evaluate artists, sharing 
Elster's intuitively appealing opinion that the best judge on art is a good 
artist (Elster, 1987, p. 179). 

Nevertheless, it is shown in Gutjahr (1994) that such definitions can make 
sense, provided they have afixed point. Fixed-point approaches to circularity 
problems have been used in different areas of research: In philosophical 
logic, they are essential ingredients of Kripke's theory of truth (Kripke, 
1975); in the foundations of artificial intelligence, they form a central tool 
for autoepistemic logic systems (Moore, 1988); in biology, they are closely 
connected to Maturana's and Varela's (1972) conception of autopoiesis; in the 
political sciences, Brams (1976) and Elster (1987) applied them to understand 
specific paradoxes of social behaviour; and in sociology, it was Luhmann 
(1984) who introduced, as a basic concept, v. F6rster's fixed-point analysis 
of observation (cf. v. F6rster 1985). 

From a fixed-point interpretation of circular definitions, a definition of the 
form x := 4~(x) is meaningful (but possibly not unique) if there exists an 
expression x which, inserted on both sides of x = OS(x), satisfies the latter 
equation. Now, for a given group P1 . . . . .  Pn of physicists, let the variable 
xj assume the value 1 if Pj is a good physicists, the value 0 otherwise 
(j  = 1 . . . . .  n). Then (2) may be reformulated as 

xj := {1,0, otherwise,ifPjisratedt~176176176176 1, (3) 

where j = 1 . . . . .  n. For given ratings and with x = ( x l , . . . ,  xn), this yields 
an equation of the form x = ~b(x) for the vector x. It can be demonstrated 
that there are cases for which a fixed-point solution x of (3) does not exist: 
interpreting 0 and 1 as truth values, one finds ratings where (3) has the same 
logical structure as the well-known Epimenides paradox (see Gutjahr, 1994). 

In order to improve the chances for a fixed-point solution, it was suggested 
in Gutjahr (1994) to consider quantitative ratings defined on some interval 
[0, M] of the real line, whereby one posits that the ratings are unique to a 
multiplicative scale constant c, c >  0, i.e., 'ratio-scale' properties for the 
ratings are presumed. For technical reasons, it is convenient to normalize 
the qualification values of the n persons considered, dividing them by the 
sum of all qualification values. Then the normalized or relative qualifications 
are numbers xl . . . . .  Xn ,  with 0 ~< xi ~< 1 and E7=1 xi = 1. 
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Now let a u denote person P;s  rating of person P/s  qualification on a 
nonnegative rating scale so defined. These values can be found empirically 
by means of a questionnaire, for an example, see Weiss (1968). Again we 
may normalize the values a u such that Z7=1 a u = 1, i.e., each judge Pi distri- 
butes a total amount of 1 on the n persons Pa . . . . .  In ,  proportional to their 
respective degrees of qualification (in his or her opinion). 

How should the values xj be determined fiom the values au? The simplest 
way is the following: 

x j : = -  a u ( j  = 1 , . . . , n ) ,  (4) 
n i = l  

which quantifies the (self-evaluative) qualification of person Pi as the average 
score that P~ has obtained by the judges. 

Clearly, also other weighted averages instead of the arithmetic mean could 
be used. In general, 

Xj : = ~in=l wia i j ,  (5)  
n 

~i=1 wi 

with nonnegative weights w~. 
Now let us define a class of qualification indices. Each index is determined 

by a calibration function f (u ) ,  0 ~< u ~< 1. The function f (u )  specifies the 
weight assigned to the judgment of a person with qualification u. Thus we 
set 

Wi : =  f (xi)  (i = 1 . . . .  , n). (6) 

The basic idea is that the ability of judging (other) people's qualification 
is mainly dependent on one's own qualification. 

By taking the special case f ( u )  = 1, one gets (4), which is the quantitative 
analogue of (1), since no influence of qualification on the judge's competence 
is assumed. For the special case f ( u ) =  u, one obtains (note that always 
Zxi = 1): 

x i := ~ xia u ( j  = 1 , . . . , n ) .  (7) 
i= i  

This system of equations can be viewed as a quantitative analogue of (2), 
since it is based on the assumption that higher qualification results in higher 
competence to judge. The particular approach described by Equation (7) is 
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not new; it has been proposed by Lehrer and Wagner (1981) in their theory 
of rational consensus. 

In the general case, inserting (6) in (5) yields: 

xj: = Zinlf(xi)aij (j  = 1 . . . . .  n). (8) 
Ei~ a f (xi) 

The values X i occur on both sides of (7) and (8), so these definitions are 
circular or implicit. The system of equations may or may not have solutions 
x = (xl . . . .  , x,),  i.e., fixed points of the vector function defined by the right 
hand sides. If there exists a solution x, it will be referred to as the vector of 
self-evaluative qualifications of person P1 . . . . .  P ,  with respect to calibration 
function f. 

By a formal analogy to the theory of Markov chains (see, e.g., Kannan, 
1979, or Kemeny & Snell, 1962, pp. 128-131), it is immediately seen that (7) 
has a unique solution, except in 'degenerate'  cases: Interprete the numbers aq 
as the transition probabilities from states i to states j in a Markov chain with 
state space {1 . . . .  , n}. The necessary conditions 0 <~ aq ~< 1 and Ej aq = 1 are 
satisfied. Let x = ( x l , . . . ,  x,) be a probability vector. Then (7) is the con- 
dition for x to be a stationary distribution of the Markov chain. It is well 
known that if the matrix A = (aq) is ergodic, i.e., irreducible, aperiodic, and 
positively recurrent, then (7) has a unique solution. For the ergodicity of A, 
relatively weak conditions are sufficient, for example the condition that the 
ratings aq are strictly positive, i.e., aq > 0 (i = 1 , . . . ,  n; 
j = 1 , . . . ,  n). Thus we have (cf. also Lehrer and Wagner, 1981): 

I f  the matrix A = (aq) satisfies aq > 0 then for the identity calibration func- 
tion f (u), there exists a unique vector of  self-evaluative qualifications. 

Practically, the solution x of (7) can be computed by iteration: 

x~ "+1~ = ~ x!")aq ( j  = 1 , . . . , n ; n - -  0, 1 , . . . )  (9) 
i = 1  

with an arbitrary initial vector of qualification estimates x (~ say the arithme- 
tic mean estimate (4). Because of the ergodic theorem (see, e.g., Kemeny 
& Snell, 1962, pp. 128-131), the following holds: 

Under the assumption aq > 0, the sequence of  vectors x (n) defined by (9) 
always converges to the unique fixed point x of (7). 
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In the context of (self-)evaluation of scientific journals, the iterative proce- 
dure (9) was already used by Liebowitz & Palmer (1984). However, they 
were apparently unaware of the formal analogies to Markov chain theory, 
because they took great care to choose an appropriate initial qualification 
estimate x ~~ without recognizing that the limiting fixed point solution of (7) 
does not depend on x~~ 

The case of nonlinear calibration functions can be treated similarly, albeit 
with considerably higher technical effort, see (Bomze & Gutjahr, 1995). 
While the existence of a fixed point solution of (8) is still guaranteed for all 
continuous functions f, the solution is not necessarily unique in this situation. 
Indeed, already in the simple case f ( u )  = u 2 and n = 2, there are examples 
where more than one fixed point of (8) exists. In such cases, the limit of an 
iteration analogous to (9) does depend on the chosen initial value. It seems 
reasonable to always choose the arithmetic-mean estimate (4) as the initial 
value of the iteration. This leads to the following convention: The vector of 
self-evaluative qualifications is defined as that fixed point of (8) that has a 
domain of attraction containing the arithmetic-mean estimate (4). 

In this paper, we restrict ourselves to the class of power functions 
f ( u )  = uk(k = 0 , 1 , . . . )  as calibration functions. The case k = 0 yields the 
arithmetic mean estimates (4), the case k = 1 the "Markov chain fixed points" 
(7). Setting f ( u )  = u k with a value k > 1 represents the assumption that the 
competence of judging qualifications, as a function of qualification, grows 
with a positive second derivative: the influence of qualification on judgment 
competence is stronger in the high qualified than in the low qualified judges. 

2. Empirical results 

We emphasize the fact that the self-evaluative qualifications xi, as defined in 
Section 1, only reflect subjective estimates. From this point of view, choosing 
the calibration function f (linking judgment competence to qualification) is 
a priori: If qualification cannot be measured independently of the individual 
ratings, then it is also impossible to determine the 'true' judgment com- 
petence, i.e., the correlation between estimated and real qualifications. 

In some cases, however, qualification can be measured by an external 
criterion, for example an ability test or the estimate of an external person 
whose competence of judgment is commonly accepted. In such a situation, 
it would be interesting to compare the self-evaluative qualification values, 
computed via a certain calibration function from the results of a self-evalu- 
ation experiment, with the externally determined qualification values. The 
latter will be called objective qualifications. 
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Table 1. Group sizes 

Group I II III 

Total no. of students 39 26 40 
No. of students in self-evaluating kernel 9 11 7 

Three groups of students participated in our experiment. The groups were 
classes of undergraduate training courses in mathematics (linear algebra and 
calculus) for students of Computer Science at the University of Vienna 
(Department of Statistics, OR and Computer Science). The course for Group 
I took place in winter 1992/93, the courses for Group II and III in summer 
1993. Table 1 shows the sizes of the three groups. 

During the training courses, the students had to present their solutions to 
problems from a textbook; they were guided and corrected by an instructor. 
At the end of the course, a written examination took place, where a score 
of 0 (worst result) to 40 (best result) could be obtained. 

At the beginning of each course, the students were asked to participate 
in an evaluation experiment. Each volunteer received a questionnaire with 
the names of the other students of the course. She or he was told to predict 
for herself (himself) and for each of her (his) colleagues their result at the 
final examination (a number between 0 and 40). At the end of the course, 
prior to the examination, the questionnaires were collected. 

Only about half the students of each course participated in the experiment. 
Several of them had missing values in their answers: They did not rate all 

of their participating colleagues. Questionnaires with missing values were 
eliminated from the evaluation. Thus we finally obtained, for each group, 
complete (but relatively small) matrices of cross-ratings. The numbers of 
students in these self-evaluating kernels are also registered in Table 1. 

Let us start the analysis of the results with Group I. The complete matrix 
of the ratings is shown in Table 2. The ith row contains the judgments passed 
by the ith student. 

The true results zj of the written examination are shown in Table 3. 
From the values bq in Table 2, the self-evaluation matrix A = (aq), as 

described in Section 1, is computed by normalization of the rows: 

b/J 
aq = Ek bik" 

The self-evaluative qualifications were computed according to (8) for the 
class of power functions f ( u )  = u k (k = 0, 1 , . . . )  as calibration functions. 
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Table 2. Matrix of ratings bij (student i's prediction of student j's result) in Group I 

247 

1 2 3 4 5 6 7 8 9 

1 29 31 12 29 17 15 37 10 21 
2 35 20 20 20 20 25 19 15 20 
3 36 33 30 17 16 35 28 27 32 
4 30 22 20 20 23 20 19 20 20 
5 37 20 27 25 25 15 27 21 19 
6 35 25 15 30 25 30 40 20 20 
7 37 27 13 30 17 17 30 10 25 
8 33 29 32 29 26 31 37 21 35 
9 16 29 21 29 17 34 30 36 15 

Table 3. Examination results of Group I 

Student 1 2 3 4 5 6 7 8 9 

Score 26 33 30 28 37 27 39 04 14 

Now let 

s = . . . . .  

denote the fixed point of (8) with f (u )  = u k, that has a domain of attraction 

containing the arithmetic mean estimate x = s (~ Our main question was: 

Do the fixed point estimates s (k) for some k correlate higher with the true 

result z than the 'naive' arithmetic mean estimate s(~ 

As a measure of correlation, we used the Pearson product-moment corre- 

lation coefficient r(s, z). 
The Group I column of Table 4 contains the correlation coefficients 

r(s (k), z) for k = 0 . . . .  ,10. Therefore, for the self evaluation matrix of 

Group 1, the above question may be answered with an affirmative. The best 

correlation was obtained for k = 8. 

Nevertheless, the improvement from r(s (~ z) to r(s 0), z) is not impressive. 

A deeper analysis of the data reveals why: Let ai. =(ail, �9 �9 �9 ain) and let 

pi = r(ai., z) denote the correlation coefficient between the ratings and the 

examination results. Obviously, pi is a measure for the judgment competence 

of judge i. Then, contrary to our expectation, the values pi did not correlate 

positively with the qualifications zi. The correlation was r(p, z) = -0 .019  (cf. 

Table 4). Roughly speaking, in Group I, good students were on the average 
not superior to weak students in judging qualifications. However,  the best 

students had an above average competence for judgment. 

In Group II,  the improvement achieved by computing s (k) for higher values 
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Table 4. Values r(p, z) and r(s (k), z) for the three groups 

Group I II III 
r(p, z) -0.019 0.090 -0.226 
k r(s (k), z) r(s (k), z) r(s (k), z) 

0 0.400 0.617 -0.066 
1 0.416 0.634 -0.155 
2 0.431 0.652 -0.256 
3 0.443 0.671 -0.351 
4 0.451 0.691 -0.428 
5 0.456 0.712 -0.484 
6 0.460 0.733 -0.525 
7 0.426 0.752 -0.555 
8 0.463 0.770 -0.577 
9 0.433 0.787 -0.594 

10 0.399 0.802 -0.607 

of k was more distinct (see Table 4), caused by the slightly positive correlation 
coefficient r(p, z) = 0.090 between judgment competence and qualification. 
A maximum was obtained for k = 16, namely r(s 06), Z) = 0.847. Compared 
with the accuracy r(s (~ z) = 0.617 of the arithmetic mean estimate, this is a 
remarkable increase. 

The results of Group III are also interesting. The arithmetic mean esti- 
mates s (~ happened to correlate negatively (r = -0.066) with the examination 
results. (This seems to be caused by the very small size n = 7 of this group, 
which obviously favored the influence of randomness.) The effect of comput- 
ing s (k) for higher values of k is not an improvement, but a further deterior- 
ation of the estimates. Naturally, an indispensible condition for correctly 
estimating an objective qualification by any of the proposed self evaluative 
qualification indices, is a positive correlation between ratings and objective 
qualification. For Group III, however, we obtained r(p, z) = -0.226. 

An explanation for the surprising fact that, in our experiment, good stu- 
dents did not judge better than weak students, might be the public feedback 
the instructors of the groups gave during the training courses: Even less 
qualified students were able, by means of this feedback, to realize whether 
a presentation of another student was adequate or not. The difference in 
accuracy between the arithmetic mean estimate s (~ and the 'Markov chain 
fixed point' estimate s (1), or the estimate based on a calibration function f 
differing from the identity, would possibly prove much more drastic in an 
experiment where such feedback was absent. 

In general, we expect a (small) positive correlation r(p, z) between the 
competence of judging others and the externally determined objective quali- 
fication, but that would be a subject for a large empirical investigation. 
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Our own experimental data are only intended to illustrate the proposed 
methodology. 

3. Conclusion 

A method has been presented for assigning qualification values (with respect 
to a specified attribute or ability) to individuals from a group, based on a 
matrix of cross ratings of the members of the group. The method requires 
the specification of a 'calibration function' f, describing the dependence of 
competence for judging on qualification. The function f may be obtained in 
two different ways: 

(a) Empirically, given that 'objective' qualifications can be measured. In 
this case, a primary investigation should be carried out in order to 
determine an optimal shape of f for the qualification attribute under 
consideration. Once this has been done, the presented method may 
be used for estimating objective qualification values in similar situ- 
ations where only cross-ratings are available. On the condition that 
the calibration function has been chosen appropriately and that there 
is a positive correlation between average ratings and objective qualifi- 
cation values, the presented method is likely to yield better estimates 
than the arithmetic means of the ratings. 

(b) Theoretically, whenever 'objective' qualification values cannot be mea- 
sured because of the intrinsic 'subjectivity' of the qualification attribute 
under consideration. In this case, a dependence between competence 
for judgment and qualification, as specified by some chosen calibration 
function f, has to be justified by theoretical arguments. For a plausible 
calibration function, the presented method yields a plausible oper- 
ational definition of qualification with respect to the subjective qualifi- 
cation attribute inquired by the ratings. 
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