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One way to study the surface propert ies  of semiconductors  is to study the effect of gas adsorption 
on the var ious  types of luminescence. A ve ry  convenient luminescence for this type of study is rad ica l -  
recombinat ion luminescence,  because the luminescence of the solid in this case is largely superficial  [1]. 

We repor t  here a study of the effect of pre l iminary  adsorption of gases  on the buildup kinetics of 
the rad ica l - recombinat ion  luminescence of phosphors. We used molecular  oxygen as adsorbate,  since the 
effect of its adsorption on other types of luminescence,  par t icular ly photoluminescence, has been studied 
thoroughly (see, e.g., [2, 3]). We used powdered phosphors of the following compositions:  "self-act ivated" 
ZnS, Z n S - M n  [10 -4 g /g ] ,  Z n S - M n  [10 -1 g /g ] ,  and CaO-Mn.  The lat ter  mater ia l  was used for compar i -  
son because of its broad energy gap and because it is supposed to have a different mechanism for the ex- 
citation of rad ica l - recombina t ion  luminescence [4]. 

The experiments  were  car r ied  out on an apparatus s imi lar  to that described in [5], but incorporating 
cer ta in  s t ructura l  changes for these experiments.  Radica l - recombinat ion  luminescence was excited by 
atomic hydrogen produced in molecular  hydrogen by a high-frequency discharge.  The electrodes were 
conditioned as in [6] (procedure "a"). The f i r s t  kinetic curve of the luminescence buildup was thus ob- 
tained f rom the sample conditioned in vacuum. Then the sample was again degassed in vacuum, and oxygen 
was admitted into the working volume at the selected tempera ture  (Tads) , to a p re s su re  of P = 0.3 torr.  
The adsorption time was ~15 rain. Then the oxygen was evacuated at Tads, the desired tempera ture  (Tlum) 
was established, and a second kinetic curve of the luminescence buildup was recorded.  Two curves were 
~hus recorded:  "before" and "af ter"  adsorption; the curves were compared.  

This sample was not used again, since it was difficult to remove the tightly bound chemisorbed oxygen, 
and it was difficult to r e s t o r e  the original state of the sample by conditioning. Oxygen adsorption at a dif- 
ferent  Tad s was therefore  studied on a f resh  sample,  conditioned under identical conditions. 

Figure 1 shows the effect of pre l iminary  oxygen adsorption on the rad ica l - recombinat ion  lumines- 
cence of self-act ivated ZnS at two tempera tures .  For  clari ty,  the curves showing the luminescence build- 
up for  two phosphor samples before adsorption at room tempera ture  a re  brought into coincidence by chang- 
ing the ordinate scale (curve 1). Curves 1'  and 2 v show the i so therms after  adsorption. Even at room 
tempera ture  (1'), oxygen adsorpt ion quenches the luminescence in such a manner that it cannot thereafter  
be res tored  to its previous level, i.e., i r revers ib ly .  The i r r eve r s ib le  quenching is more  pronounced at 
higher Tads (2'). 

Figure  2 shows the analogous family of kinetic curves  for the Z n S - M n  [10 -4 g /g]  sample. In this 
case the luminescence quenching by oxygen is completely revers ib le  at Tads not too high (1', 2'); at Tads 
= 360~ the quenching becomes i r revers ib le  (3'). 

The following factors  must  be taken into account in o rder  to understand these resul ts .  

1. Adsorption of an acceptor  gas (oxygen) charges  a surface negatively and reduces  the Fermi  level. 
As a result ,  the equilibrium coverage by a charged chemisorbed species (H +) increases ;  if we 
neglect the chemical  interaction between adsorbed oxygen and hydrogen and blocking of hydrogen 
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Fig. 1. Kinetic i so therms  showing the buildup of r ad i ca l - r ecombi -  
nation luminescence of self-act ivated ZnS samples  at Tlu m = 300~ 
1) Before adsorption;  1 ' ,  2') af ter  adsorpt ion of oxygen at Tad s = 300 
and 330~ respect ively.  

Fig. 2. Kinetic i so the rms  for the luminescence of ZnS--Mn [10 -4 g 
/g ]  samples  at  Tiu m = 300~ 1) Before adsorption; 1 ' -3 ' )  after  
oxygen adsorpt ion at 300, 330, and 370~ respectively.  
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Fig. 3 Kinetic i so therms  for  the luminescence of ZnS 
- M n  [10 -1 g /g ]  samples (1, 1') and C a O - M n  samples 
(2, 2') at Tiu m = 300~ 1, 2) Before adsorption; 1' ,  2') 
af ter  adsorpt ion of oxygen at Tad s = 300~ 

Fig. 4. Kinetic i so therm for the luminescence of ZnS 
- M n  [10 -t g /g ]  at Tlu m = 330~ 

f rom adsorpt ion centers  by oxygen, we conclude that the intensity of rad ica l - recombinat ion  
luminescence should inc rease  af ter  adsorption,  according to the mechanism described for this 
luminescence in [8]. 

2. Elect rons  which appear in the conduction band as a resul t  of the adsorption and recombination of 
hydrogen a toms can recombine  at oxygen t raps  and leave the radia t ive-recombinat ion  process .  
As a result ,  the luminescence intensity should decrease  (there may also be afterglow and the rmo-  
luminescence).  

3. Blocking of atomic hydrogen f rom adsorption centers  by oxygen reduces the luminescence in- 
tensity. 

4. Finally, a previously adsorbed gas can actively interact  with atomic hydrogen, so that adsorp-  
tion of atomic hydrogen and thus luminescence excitation becomes improbable.  

Accordingly,  only the f i r s t  of these fac tors  has a "positive" effect, i.e., inc reases  the lumines-  
cence intensity. If this effect is to be observed (if this observat ion is at all possible), the effects of the 
other fac tors  would have to be eliminated; i.e., it would be necessa ry  to r e so r t  to an ext remely  low s u r -  
face coverage by adsorbed oxygen. 

Experimental ly  we observed only quenching of luminescence,  apparently due to fac tors  2-4. The 
blocking should be par t icular ly  important  for those phosphors whose luminescence centers  are  excited 
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by immedia te  recombina t ion  of a toms at  luminescence  cen te rs  (in the case  of phosphors  having a broad 
ene rgy  gap, e.g.,  C a O - M n ,  or  phosphors  having a nar row energy  gap but a high ac t iva tor  concentrat ion,  
e.g.,  Z n S - M n  [10 -1 g /g] ) .  In fact ,  both types of phosphors  display an equally pronounced quenching of 
luminescence  by oxygen (Fig. 3). Fac tor  2 a lso  opera tes  during photoexcitation, but in the case  of r a d i c a l -  
r ecombina t ion  luminescence  i ts  effect  should be g r e a t e r  because  of the superf ic ia l  na ture  of the lumines -  
cence. F ina l ly ,  that  a chemica l  reac t ion  does occur  between adsorbed  oxygen and hydrogen cannot be de-  
nied, in view of the complete  or par t ia l  r e s to ra t i on  of the s t eady- s t a t e  luminescence  intensi ty a f te r  quench-  
ing by adsorpt ion.  

The possibi l i ty  of moni tor ing a chemica l  reac t ion  on the bas is  of the kinet ics  of the luminescence  
r e s t o r a t i o n  a f t e r  adsorp t ion  would s e e m  to be a highly in te res t ing  appl icat ion of r ad i ca l - r ecombina t ion  
luminescence .  In this case  the reac t ion  " tel ls  us about i tself ,  using the language of light, n in the graphic  
words  of B. Ya. Sveshnikov. Fo r  example ,  the i r r e v e r s i b i l i t y  of the quenching observed  in s eve ra l  ca ses  
(Figs. 1-3) impl ies  that the oxygen adsorp t ion  is inhomogeneous: some of the oxygen adsorbed a t  a given 
Tads does not r eac t  with a tomic  hydrogen at  the given Tlum, while another  par t  ac t ive ly  in te rac t s  with it. 
In addition to the qual i ta t ive informat ion  about the exis tence of var ious  chemisorbed  spec ies ,  about the 
t e m p e r a t u r e s  at  which they appear  on the sur face ,  and about the t e m p e r a t u r e s  at  which they begin to i n t e r -  
ac t  with the gaseous  medium which can be ext rac ted  f r o m  the kinetic curves ,  it would in principle be pos-  
sible to calcula te  the c r o s s  sec t ions  for  chemica l  react ions .  

We prev ious ly  pointed out the possibi l i ty  of using a phosphor as a probe  for  de te rmin ing  the concen-  
t ra t ion  of act ive  pa r t i c les  in a gaseous  medium [7]. Such an appl icat ion would r equ i re  that the probe  re t a in  
i ts  p rope r t i e s  (that it not age) for  a sufficiently long time. Aging might  be caused,  in par t i cu la r ,  by the 
adsorp t ion  of slight amounts  of fore ign  impur i t i e s  f r o m  the working gas  (e.g., an  oxygen impur i ty  in hydro-  
gen) or  products  of chemica l  react ions .  Per t inent  exper imen t s  which we ca r r i ed  out showed that  the 
" s t e ady - s t a t e "  intensi ty  of r ad i ca l - r ecombina t i on  luminescence  was re ta ined in "e lec t ro ly t ic"  hydrogen 
for  an e x t r e m e l y  long t ime  under ce r ta in  conditions. These  r e su l t s  a r e  i l lus t ra ted  in Fig. 4 for  the case  
of Z n S - M n  [10 -4 g /g ]  sample .  Under these  conditions, this sample  could thus be used to detect  the con-  
cent ra t ion  of a tomic  hydrogen. 
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