PROJECTION-OPERATOR DETERMINATION OF KINETIC
EQUATIONS FOR A SYSTEM OF MANY PARTICLES

R. M. Yul'met'ev UDC 539.1.01

The projection-operator method worked out in general form by Nakajima and Zwanzig is
used to construct the kinetic equations describing real physical systems. The method is
generalized to the case of time-dependent projection operators which perform a non-
linear projection in functional phase space. The projection-operator methodisusedto de -
velop a common method for finding collision operatorsin a system of particlescharacter-
ized by different correlation properties. In examples, thiscommon method is used to find mod-
ified microscopic Fokker — Planck, Vlasov, Boltzmann, and Landaucollision operators.

1. Introduction

In this paper we will derive the kinetic equation for a many-particle medium by the projection-
operator method. In other derivations of the kinetic equations, by Landau [1], Bogolyubov [2, 3], Kirkwood
and Rice [4], Prigogine [5], and Balescu [6] among others, various assumptions about the properties of the
systems were made at the outset, and a wide variety of approximations was used to take into account in-
teractions in the medium. Typical approximations are an account of only binary collisions, a correlation-
weakening condition, series expansion in terms of the density or a weak interaction, etc.

Because of these restrictions, a sufficiently general method which would satisfactorily describe
condensed media (e.g., liquids) at all stages in the dyanmics of the motion and interaction of particles
has not been derived. Accordingly, one of the problems of the statistical theory of irreversible processes
is to find 2 common approach to studying the dynamic processes in multiparticle media.

A method which seems promising in this regard is the projection-operator method developed by
Nakajima [7] and Zwanzig [8]. This method is based on'an exact functional analysis of the kinetics of ele-
ments of the phase space, which govern the complete dynamics of the system. Although the equations ob-
tained in the initial step of the theory seem at first blush slightly formal, the projection~operator method
can be used for a quite rigorous and accurate description of interactions in the medium. The projection-
operator method has the undisputed advantages of taking into account non-Markovian and Markovian tem-
poral processes and of being compact, exceptionally simple, and mathematically elegant.

Among the disadvantages of this method, which are apparently only temporary, is the lack of specific
results for real systems which could be used as building blocks. Below we attempt to fill this void, using
the projection-operator method as a common method for finding kinetic equations for systems of many par-
ticles. In this manner more general results can be found; in particular, it will be possible to take into
account in more detail than was previously possible equilibrium. structural and dynamic temporal correla-
tions in a medium.

2. Basic Kinetic Equation

We start from the classical Liouville equation® for N particles:
aflv A A N 1 — -
LY = InfN, Ly =N —— p.v, U.
Py nfn, Ly }J ij,V, +ViU-v,,, (1)
J=1
* There is no particular difficulty in transforming to the quantum-mechanical case [9, 10]. This method is
widely used, e.g., in the theory of spin-reiaxation phenomena in NMR [11].
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Here r; and pj are the radius vector and momentum of particle i, U is the total potential energy for the N
particles of the system; Ly is the Liouville operator; I'g is a phase point; and
fw = fv(T'n, 1), Ty={r,pirs, ps...ru P
The single-particle distribution function £, (q;) and the kinetic equation for it can be found by the projection

operation [12] s =1,2, ..., N—-1)

‘ flzjvdFN—-l'fN(va t)a

A A AA & (3)
fi~T,fn, s =RTs, Tsfn(Tn,t) = j dUw-sfn (Cw, £),

where the integration is carried out over the phase space of N — s particles. Projection operator ﬁs is
generally a nonlinear operator [12]:

A A A (4)
[ofw = (RsTs) fv = [ dUsfn (T, 1) [ dlw—s fiv (Tws1).
We can transform to a linear projection using
©)
r
=My (T (5)
ST (T)

where the right side gives the initial values of the distribution functions. Since deviations from equilib-
rium are usually slight, we can write the initial conditions for any classical system on the basis of a
canonical Gibbs ensemble:

(T, = Zn j dTy_nexp{—Hn|KsT}, Zy= j dly-e~HNIKBT, (6)

A A o
Rs= R = frn-1 (Tn-1, 0) = faly

where Hyy is the total Hamiltonian of the system.

Generally speaking, the choice of a particular operator fls depends on the particular problem. The
general conditions are that [8, 12] this operator must be an idempotent operator and must leave the initial
conditions invariant:

A A A
M2 =TI u ILfw (T, 0) = fiv (T, 0). @)
Using Eqs. (1)-(7), we find the basic kinetic equation for fg = f5(I'g, t) in general form:

ofs A LA _
o = A0 f:(8) +6S.Fs (t, %) 15 () dr, (8)

where As(t) is the Markovian collision integral and f‘s(t, 7) is the non-Markovian collision integral,

£
Aty = PLaR (0, Tt w) = DLl (9 exp |  de- B (=) Reo), o
afl, (#)

N, (8) = [1 — 1, ()] L
N; (f) = [1 = TL; ()] N

No specific physical properties of the system have been stated up to this point. Equation (8) is a general
equation, and by making specific assumptions we can work from it to obtain kinetic equations having vari-
ous structures. -

3. Derivation of the Fokker — Planck Equation for a Liquid

Thi$ particle system is characterized by strong correlations in the equilibrium state. It is convenient
to choose a linear operator Hg:

A A A _ (W) ] 10
I, = [1,(0), Isfn(t) = SO Tred Fs(£). (10)
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For a spatially uniform liquid, we use Egs. (1)~(10) to find the collision integrals for the single-particle
problem:

1 A - =
Aty = — I‘;Pan 1 (0, 0) = 1vp, (ps + mKsT -¥p), (11)
1 - - -
1= 5= (V]V) [dr-g () w2 (), (12)

where we have introduced the radial distribution function g(r) for the particles in the liquid. Because of
(11) and (12), we can write the equation in two forms; we find the first form by completely neglecting the
time dependence of the non-Markovian collision integral at t

) v [ -
(_aftL +P_;n_V_ fi =1 (Ve (P + mKET p ) fi (71, pys £ — 7). (13)
0

The other form for writing this equation is related to the fact that "Fokker —Planck collisions™ are ef-
fective only over a time interval v (where 71, is the corresponding relaxation time), which characterizes
the deviation of the system from an equilibrium Maxwell distribution. It is thus sufficient to take these
collisions into account. In this case, for sufficiently long time intervals, the equation requires the usual
Markovian form (t > T¢):

ofy

ot T

BV = 1595, (91 + mKaT-¥p) fi a4

4. The Self-Consistent Vlasov Field

The projection operator is assigned a nonlinear property which follows from the conditions of the
problem:

Tifiy (8) = frms (6 T (8 — 1, D) £, () = { { Ty -fs (T, )T (N—1, 1) { ] dlcaefor (T, ) (15)

The structure factor I'(N — 1, 1) is introduced to take approximate account of the correlation effects in the
medium. For a rarefied gas, we have I'(N —1, 1) =1, while for a liquid we assume (if the first particle
is fixed)

PO =11 = Mg (r =), 1)

For an equilibrium distribution we would use the approximation™®
TN =TT ) TN —1, 1) AN(TY). (17)

Taking Egs. (15)-(17) into account, we find an operator describing the self-consistent Viasov field from
Markovian collision integral (9) {14]; this operator differs from the ordinary operator in that the initial
equilibrium correlations are taken into account:

9{{—; ‘i——l p1€1f1 =(N—-1) gd"zdpzﬂ (ras P2 t)-g (11 —1a])
¢t ' m (18)

vi¥ (17, — r3|) Va/ (F1, Pi; £+ (the Fokker — Planck collision operator),

5. The Boltzmann Equation

This equation is found by a nonlinear projection in (15) from Markovian operator Al (t) in Eq. (8)
with the structure factor I'(N —1, 1) = 1. Using the general commutation property for the operators in (3),

A A AA A A
TsLN = LNTs -+ (N—* S) (I’STS-H,

s (19)
A -
O = j'dfs+1dps+1 E Vj‘F (]rj“rs—HJ)ij,

J=1

* Along with (16), this relation is equivalent to the ordinary superposition approximation [13], extended to
the case of more than three particles. ’
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we find

1 = A . A
T\ly=— EﬁxVi’ﬂ‘f‘(N— 1)5dq2{V1\F(ff1 — )V + VT r — 1) Ve To (20)
As in the Bogolyubov method [2, 3], we consider the particular case of the motion of only two objects,
interacting by means of binary potential ¥(ry,). Here we have the condition I'(N — 1, 1) =1 for an arbitrary
time t (including t = 0), by analogy with the two simultaneous Bogolyubov conditions [2]: the correlation-
weakening and synchronization conditions. We can therefore write

vi¥ (L, 2) vp, + V¥ (1, 2) Vo = ;(Pqu + P2aVas)s (1)

where o indicates that only binary collisions are taken into account here. The complete collision integral is
1 = 1- S o e
=P NV =D fdradpe (PR (Fy (7 i ) frra i ) 22)

Transforming to a cylindrical coordinate system for the variables (xy, ¥, %) in which the z axis is parallel
to the momentum p, — p;, and assuming the first particle to be incident on the second, we find the ordinary
Boltzmann collision (t — =, so we have t » 75411):

9 ool
aL;= (N — 1)5 d.o-pés d@ffif’z'

P_z;_ﬂl}{fl D) f1 (D 1) — £, (05, D) f: (B B)), )

where p is the impact parameter; ¢ is the scattering angle, the primed momenta correspond to the situa-
tion before the collision, and the unprimed momenta correspond to the situation after the collision. On the
right side is a spatially homogeneous distribution; there is no particular difficulty in generalizing to the
inhomogeneous case.

6. Modified Landau Collision Integral in a Liquid

Let us consider the evolution operator in non-Markovian integral (8). Using (9) and (19), and making
use of the fact that the spatial distribution is assumed homogeneous and that the structure factor T(N -1,
1) satisfies property (16), we find the last term in (8) to be

t ¢
?1 == Ed’tﬁl{\N exp { j' d'c’]\/\/i (‘c’)} 1/\\/1 () fvar (TN —1, 1) fi (%). (24)
0 T

The subsequent calculation of the "effective™ single-particle Liouville operator I:II (1) with (19) leads to
A A A A A A A A A A A
N () fvt ()TN —1, 1) fi (v) = {Ly — Rz [Li Ty + (N — 1) @, T, ] — [[Tw-1-Lafw ()]} T} Ry, (25)

where f{” =fN_1 ()T -1, 1). Here the double brackets limit the rangehofﬁ the Liouville operator ‘LN;
because of the spatial homogeneity, all terms contained in the operators I;T; subsequently drop out. We
then find
A A
(25) = (Lxv — Ly—1) fu—1i(®) T(N— L, D 1 &) — (N = 1) fwa(=5) T(N— 1, 1)
X jl drydp,- vV (1, 2) vu fi (L, 1) g (1, 2)f1(2, 7). (26)

The second term in (26) vanishes, since we have the following for a spatially homogeneous distribution:
(w2 (1, 2) /i (1) g (1,2) f1(2) =0. (27)

Since the exponential evolution operator in (24) is complex, we will take into account in it only those opera-
tors which lead to free inertial motion of particles; i.e., we assume

N
A 1 — -
Ni(=) = — Em—,- (P11 + PaVs)- (28)

pa=

Using (20) and (26)-(28) for sufficiently long time intervals (t — «), we find
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A . 4 < -~ -
li=(N=1) [ dgs-vi¥ (1, 2)¥p, { ds-exp [—;(pivx ‘l‘sz'z)]
Y

X ViYL 2 g (1L 2) (Vo — Ve [1 (1, £ — %) f1 (2, £ — ). (29)
Since the exponential operator in (29) is a functional operator of a displaced argument, of the form
exp(a 9/0x) f (x) = f(x +a), (30)

the general form of the collision integral is

?1 =(N— 1>C§"‘S dr.dp, 1% (1, 2)'—{7;:.] [V‘w <;r12—— i‘ﬂle )g( "’2_,%1"2‘) (_ép‘ B ;pg)]fl (Lonea. @l

After carrying out all the averaging and introducing the binary-collision mechanism for the momentum
distribution ¢(p,, t)[f;(1, t) = V“ga(pl, t)], we find the Landau kinetic equation with a modified collision
integral:

Op (1, 8) _
0[' 6p, M

[ dps-Sustor—p [FE0D0 20— o 1, ) 2L, @2)
/4 0pys

/ =M p Oaﬁ*pa Ps dp 13D (n
Sus(p) = 5 S § o i@ (p),
- (33)
v =( LVFET) ﬁ VP 7)o (VT e,

Ve + a2

-0

where x is the impact parameter. In the case of liguids the integration over the impact parameter is only
over the interval (@, ), where a is the distance of closest approach. We can therefore qualitatively explain
the elimination of the divergence at small distances which is typical of the Landau collision integral in the
case of neutral gases and plasmas: it is due to the appearance of the radial distribution function g{r), which
takes the liquid structure into account.

7. Conclusions

We have shown that the projection-operator method can be used as a common method for deriving the
kinetic equations with modified Fokker —Planck, Vlasov, Boltzmann, and Landau collision integrals. These
equations are microscopic equations and do not contain any phenomenological parameters. Interestingly,
these equations are not only Markovian: they may also contain dynamic memory effects typical of non-
Markovian processes. We should emphasize that the structure of a general non-Markovian collision opera-
tor is apparently such that in the case of a liquid the familiar Fokker —Planck operator is apparently only
a "zeroth® approximation for a more complicated operator, which has not yet been determined in modern
statistical theory. We can draw an analogy with the situation in rarefied gases: use of the projection-
operator method shows that, e.g., the modified Landau collision integral serves as a "zeroth approxima-
tion" for the Lennard—Balescu collision integral [3, 5, 6]. In this case the approximation consists of
neglecting the interaction of particles in the evolution operator for the system.
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