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The p ro j ec t ion -ope ra to r  method worked Out in genera l  f o r m  by Nakaj ima and Zwanzig is  
used to cons t ruc t  the kinetic equations descr ib ing  r ea l  physical  sy s t ems .  ~The method is 
genera l ized  to the case  of t ime-dependent  project ion ope ra to r s  which p e r f o r m  a non- 
l inear  project ion in functional phase  space .  The p ro j ec t ion -ope ra to r  method  is  used to de - 
velop a co mmon method for  finding colli sion o p e r a t o r s  in a s y s t e m  of p a r t i c l e s  c h a r a c t e r -  
i zed by different co r re la t ion  p rope r t i e s .  In examples ,  this  common method is used to find m o d -  
ified m i c r o s c o p i c  Fokker  - P l a n c k ,  Vlasov, Boltzmann, an d Landau col l is ion o p e r a t o r s .  

1 .  I n t r o d u c t i o n  

In this paper  we will der ive  the kinetic equation for  a m a n y - p a r t i c l e  medium by the p ro jec t ion-  
ope ra to r  method. In other der iva t ions  of the kinetic equations,  by Landau [1], Bogolyubov [2, 3], Kirkwood 
and Rice  [4], Pr igogine  [5], and Balescu [6] among o thers ,  var ious  assumpt ions  about the p rope r t i e s  of the 
s y s t e m s  were  made at the outset ,  and a wide va r i e ty  of approximat ions  was used to take into account in-  
t e rac t ions  in the medium.  Typical  approx imat ions  a r e  an account  of only b inary  col l is ions,  a c o r r e l a t i o n -  
weakening condition, s e r i e s  expansion in t e r m s  of the densi ty or a weak interact ion,  etc. 

Because  of these r e s t r i c t i ons ,  a sufficiently genera l  method which would sa t i s fac to r i ly  desc r ibe  
condensed media  (e.g., liquids) at  al l  s tages  in the dyanmics  of the motion and in te rac t ion  of pa r t i c l e s  
has  not been derived.  Accordingly,  one of the p rob lems  of the s ta t i s t i ca l  theory of i r r e v e r s i b l e  p r o c e s s e s  
is  to find a common approach  to studying the dynamic p r o c e s s e s  in mul t ipar t ic le  media.  

A method which s e e m s  promis ing  in this r ega rd  is the p ro j ec t ion -ope ra to r  method developed by 
Nakaj ima [7] and Zwanzig [8]. This  method is based on 'an exact  functional ana lys i s  of the kinet ics  of e l e -  
ments  of the phase  space,  which govern  the comple te  dynamics  of the sys tem.  Although the equations ob- 
tained in the initial  s tep of the theory  s eem at  f i r s t  blush slightly fo rmal ,  the p ro j ec t ion -ope ra to r  method 
can be used for  a quite r igorous  and accu ra t e  descr ip t ion  of in terac t ions  in the medium. The pro jec t ion-  
ope ra to r  method has the undisputed advantages  of taking into account  non-Markovian  and Markovian  t e m -  
pora l  p r o c e s s e s  and of being compact ,  except ional ly  s imple ,  and ma themat i ca l ly  elegant.  

Among the d isadvantages  of this method,  which a r e  apparent ly  only t e m p o r a r y ,  is the lack of speci f ic  
r e su l t s  for  r ea l  s y s t e m s  which could be used as  building blocks.  Below we a t tempt  to fill  this void, using 
the p ro j ec t ion -ope ra to r  method as  a common method for  finding kinetic equations for  s y s t e m s  of many p a r -  
t ic les .  In this manner  m o r e  genera l  r e su l t s  can be found; in par t icu la r ,  it will be poss ib le  to take into 
account  in m o r e  detail  than was previous ly  poss ib le  equ i l ib r ium s t ruc tu ra l  and dynamic t empora l  c o r r e l a -  
tions in a medium.  

2.  B a s i c  K i n e t i c  E q u a t i o n  

We s t a r t  f r o m  the c l a s s i ca l  Liouville equation* for  N par t ic les :  

Of,,, ^ ^ N 1 
= LNIN, LN P,V,  + o t  (1) 

j ~ l  

There  is no pa r t i cu la r  difficulty in t r ans fo rming  to the quan tum-mechanica l  ease  [9, 10]. This method is 
widely used, e.g.,  in the theory of sp in - re iaxa t ion  phenomena in NMR [11]. 
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N 

(2) 

Here  r i and Pi a r e  the radius  vec to r  and momentum of par t ic le  i, U is the total potential  energy  for  the N 
par t i c les  of the sys t em;  L N is  the Liouville opera tor ;  F N is  a phase point; and 

fN=fN(FN,  t), F N = { r l , p l ; r 2 ,  p2; . . . r~ ,pN}.  

The s ing le -pa r t i c l e  dis t r ibut ion function fl (ql) and the kinetic equation for  it can be found by the project ion 
opera t ion [12] (s = 1, 2, . . . , N -  1) 

f t  = ~ dPx- i  "fN(FN, t), 
^ a A ^ A (3) 

where  the in tegra t ion  is  c a r r i ed  out over  the phase space  of N - s par t ic les .  Pro jec t ion  opera to r  fis is 
genera l ly  a nonlinear  opera to r  [12]: 

A A A 
gIsf~ = (RsT~) fN = ~ drs f x  (FN, t). ~ drN-s fN (rg,/).  (4) 

We can t r a n s f o r m  to a l inear  project ion using 

A A 
= (5 )  

where  the r ight  side gives the init ial  va lues  of the dis t r ibut ion functions. Since deviat ions f r o m  equil ib-  
r i u m  a r e  usual ly slight, we can wri te  the initial  conditions for  any c lass ica l  s y s t e m  on the bas i s  of a 
canonical Gibbs ensemble:  

f(o) (Fn) = Zw i dFN-n exp {- -HN]KsT) ,  Z~ = ~ drx.e-.~,~BT. (6) 

where  H N is  the total  Hamil tonian of the sys tem.  

Genera l ly  speaking,  the choice of a pa r t i cu la r  opera to r  fis depends on the par t i cu la r  problem.  The 
genera l  conditions a r e  that [8, 12] this opera to r  mus t  be an idempotent  ope ra to r  and mus t  leave the init ial  
conditions inv ariant:  

A A A 
m = n ~  , n j ~ ( r ~ ,  o) = f N ( F N ,  0) .  (7) 

Using Eqs. (1)-(7), we find the bas ic  kinetic equation for  fs = f s ( r s ,  t) in genera l  form:  

0y~ ^ o'A 
-- A ~ ( t ) f i ( t ) +  j J  ~(t, ~)./~ (~) d~, (8) 

Ot o 

where  As(t) is the Markovian  col l is ion in tegra l  and Fs(t ,  ,)  is the non-Markovian  col l is ion integral ,  

t 
A A A  A A A A  A t P A ~ A 

As (t) = TsLNR~ (t), F~ (t, ~) = T~LNN~ (t) exp / 3 d~'.N~ (~')j R~(~), 
(9) 

A 
A A A 0rL (t) 

N, (t) = 11 -- If, (t)] Lu 
Ot 

No specif ic  physical  p rope r t i e s  of the s y s t e m  have been s ta ted  up to this point. Equation (8) is a genera l  
equation, and by making specif ic  assumpt ions  we can work  f r o m  it  to obtain kinetic equations having v a r i -  
ous s t ruc tu res .  �9 

3. D e r i v a t i o n  o f  t h e  F o k k e r -  P l a n c k  E q u a t i o n  f o r  a L i q u i d  

Thi~ par t ic le  s y s t e m  is  cha rac t e r i zed  by s t rong cor re la t ions  in the equi l ibr ium state.  
to choose a l inear  ope ra to r  fis: 

A A ~ /~)(FN) 
n, = n~ (0), n~fN (t) = f~o) ( r , ~  (rN_s) "f~ (t). 

It is convenient 

(10) 
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For a spatially uniform liquid, we use Eqs. (1)-(10) to find the coll ision integrals  for the s ingle-par t ic le  

problem: 

i A 
A , ( t )  . . . .  P~V,, F~ (0, O) = "~Vvl (P, + mK~T'Vp . ) ,  (ll) 

17t 

= ~m (N/V) S d-r.g (r) V~-(r), (12) 

where we have introduced the radial  distr ibution function g(r) for the par t ic les  in the liquid. Because of 
(11) and (12), we can wri te  the equation in two fo rms ;  we find the f i r s t  fo rm by completely neglecting the 
t ime dependence of the non-Markovian collision integral  at t 

()fi 
r 

+P,V, /~  = ~ ~ v . ,  (p, + . ~ x : . w , ) f ,  (r~, p,; t - , ) d ~ .  (13) 
at m Zo 

The other fo rm for writing this equation is related to the fact  that " F o k k e r - P l a n c k  coll isions ~ are  ef-  
fective only over a t ime interval  Zr (where *r is the corresponding relaxation time), which cha rac te r i zes  
the deviation of the sys tem f rom an equilibrium Maxwell distribution. It is thus sufficient to take these 
collisions into account. In this case,  for  sufficiently long t ime intervals ,  the equation requi res  the usual 
Markovian form (t >> ~-r): 

Of, + P ,V ,  A = "~,V,, (P, + mKBT. V,,)A. (14) 
Ot m 

4.  T h e  S e l f - C o n s i s t e n t  V l a s o v  F i e l d  

The projection operator  is assigned a nonlinear proper ty  which follows f rom the conditions of the 
problem: 

A 
Flfm(t)=f::-,(t)'F(N--l,l)f,(t)={SdFi.fN(Fx, t)}F(N--l,l){SdF,v_,.fN(FN, t)}. (IS) 

The s t ruc ture  factor  F (N - 1 ,  1) is introduced to take approximate account of the cor re la t ion  effects in the 
medium. For  a raref ied  gas, we have F(N - 1, 1) = 1, while for a liquid we assume (if the f i r s t  part icle  
is fixed) 

N 
r(N - J, 1)= n g ( I r , - - r : ]  ). (16) 

j>] 

For an equilibrium distribution we would use the approximation* 

f!o) (FN) = fl~ F ( N -- 1, 1) f[o) (F0. (17) 

Taking Eqs. (15)-(17) into account, we find an operator  describing the se l f -consis tent  Vlasov field f rom 
Markovian collision integral  (9) [14]; this opera tor  differs f rom the ordinary opera tor  in that the initial 
equilibrium corre la t ions  a re  taken into account: 

a f, + 1  
PtV1L = ( g  -- 1) S dr~dp2f~ (r2, P2; t ) .  g ( i t ,  --  r2 I) 

:~f m. " (18) 

Vi  ~ ( I t 1  - -  r 2 [ )  Vpl f t  ( ra ,  P~; t ) +  ( the Fokker - P lanck col l is ion o l ~ r a t o r ) .  

5. T h e  B o l t z m a n n  E q u a t i o n  

This equation is found by a nonlinear project ion in (15) f rom Markovian opera tor  At (t) in Eq. (8) 
with the s t ruc ture  factor  F(N - 1 ,  1) = 1. Using the general  commutation proper ty  for the opera tors  in (3), 

A A A A A A 
T~LN = LNTs + ( N  --  s) ~)sTs+l, 

aPs = ~ drs+ldp~+j V: tF (I r] --  r~+~ j) Vp:,  
j = l  

(19) 

* Along with (16), this relat ion is equivalent to the ordinary superposit ion approximation [13], extended to 
the case of more  than three part icles.  
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we find 

A A 1 ~ A A 
T~L~= - - p ~ v ~ T , + ( N - - 1 ) ~ d q 2 { v ~ F ( f r , - - r 2 [ ) V p . + V , ~ ~  (20) 

In 

As in the Bogolyubov method [2, 3], we consider  the par t icu la r  case  of the motion of only two objects ,  
in teract ing by means  of b inary  potential  ~I,(r12). He re  we have the condition FiN - 1, 1) = 1 for  an a r b i t r a r y  
t ime  t (including t = 0), by analogy with the two s imul taneous Bogolyubov conditions [2]: the co r r e l a t i on -  
weakening and synchronizat ion  conditions. We can the re fo re  wr i te  

V,W (1, 2) Vp,-b V2W (1, 2) Vp, = - -  (P~,V,~ -b P2~V2~), (21) 
?/g 

where  ~ indicates  that  only b inary  col l is ions a r e  taken into account  here.  The comple te  coll is ion in tegra l  is  

T rans fo rming  to a cyl indr ica l  coordinate  s y s t e m  for  the va r i ab l e s  (x2, Y2, zz) in which the z axis  is  para l le l  
to the momen tum P2 - Pi, arid a s suming  the f i r s t  par t ic le  to be incident on the second, we find the ord inary  
Bol tzmarm coll is ion (t - -  ~, so we have t >> ~coll): 

0L 
= ( N  - -  1) ~ d,~.O .~ d~ ~ dp2. {fi (p: t)f ,  (p;, t) -- f, (p,, t)fi  (P2, t)}, (23) 

Ot ~ o 

where  p is the impac t  p a r a m e t e r ;  ~ is the sca t t e r ing  angle, the pr imed momenta  cor respond  to the s i tua -  
t ion before  the coll ision,  and the unpr imed momenta  cor respond to the si tuat ion a f te r  the collision. On the 
r ight  side is a spat ia l ly  homogeneous distr ibution;  there  is no par t i cu la r  difficulty in genera l iz ing  to the 
inhomogeneous case.  

6. M o d i f i e d  L a n d a u  C o l l i s i o n  I n t e g r a l  i n  a L i q u i d  

Let us cons ider  the evolution opera to r  in non-Markovian in tegra l  (8). Using (9) and (19), and making 
use  of the fact  that the spat ia l  dis t r ibut ion is a s sumed  homogeneous and that the s t ruc tu re  fac tor  F (N - 1, 
1) sa t i s f i es  p rope r ty  (16), we find the l as t  t e r m  in (8) to be 

t A A  [ ' ~  "i t A A A 
I, =: ~d~:T1L~exp~d': 'NI(~c')IN,(*.) fN-,( 'c)F(N -- 1, 1)f, ( '). (24) 

0 

The subsequent  calculat ion of the "effect ive"  s ing le -pa r t i c l e  Liouville opera to r  N1 (T) with (19) leads to 
A A A A A A A A A A A 

N, (x)fN-~ (~)F(N--  1, 1)A (~) = {LN -- ]~tz [L~Ta + (N -- 1) (I),T2] -- [[TN-I.LNfN ('z)]] T1} Rv:, (25) 

where  1~1~ = fN-10")F(N - 1, 1). Here  the double b racke t s  l imit  the range^of  the Liouville ope ra to r  LN; 
because  of the spat ia l  homogeneity,  all  t e r m s  contained in the ope ra to r s  LiT 1 subsequently drop out. We 
then find 

A A 
(25) = ( L  N - -  LN-1)fN--I("~) FIN- -  1, 1)A ('0 --  ( N - -  1)fN_,(x) F ( N - -  1, 1) 

X ~ dr2dp~" V,xr (1, 2) Vp,L (1, "0 g ( 1, 2) L (2, ~). (26) 

The second t e r m  in (26) vanishes ,  s ince we have the following fo r  a spat ia l ly  homogeneous distr ibution: 

S dq2.v,W(1, 2 ) s  (1 )g ( l ,  2) f l  (2) = 0. (27) 

Since the exponential  evolution opera to r  in i24) is complex,  we will take into account  in it only those o p e r a -  
t o r s  which lead to f r e e  iner t ia l  mot ion of pa r t i c l e s ;  i .e. ,  we a s s u m e  

N 

= - • ( 2 s )  ~ i n j  

Using (20) and (26)-i28) for  sufficiently long t ime in te rva ls  it - -  oo), we find 
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l ,= (N- -1 )Sdq~ . .W,W' (1 ,2 )Vp ,  Sd : . exp  --~(P~V~ + P 2 ~ )  
0 

X V,W(1, 2)g(1, 2) (~7, , - -~m)f , (  1, t - -  x)f ,  (2, t - -  ~). (29) 

Since the exponential  ope ra to r  in (29) is a functional opera to r  of a displaced a rgument ,  of the f o r m  

exp (a O/Ox)f(x) = f ( x  + a), (3o) 

the genera l  f o r m  of the col l i s ion in tegra l  is 

/ , = ( N - - l )  d~ dr.,.dp2[v,[(1,2).~p,] V, Ir,2 - 
0 

m 
(Sl) 

After  c a r ry ing  out al l  the ave rag ing  and introducing the b ina ry -co l l i s ion  m e c h a n i s m  for  the momen tum 
dis t r ibut ion 9(Pl, t)[fl(1, t) = V- l~(pl ,  t)], we find the Landau kinetic equation with a modified col l is ion 
integral :  

O~ (1, t )Ot  = -OP,,--~O ~ dp2.S~,:~ (p~- p~){.O~o~l' t).~ (2, t) --  ~ (1, t).~l,op.,.~, (32) 

2 ~" CO 

S~.~ (p) 2(V/N) p o 

m (,~) =.i~ ,(V~___n) fro, (V~T$ -~~) 
J l/,~-J x~ ax. 1/~2+~ ~ g (V?-47)  dz, 

- o o  - - c o  

(33) 

where  x is the impac t  p a r a m e t e r .  In the case  of liquids the in tegra t ion  over  the impac t  p a r a m e t e r  is  only 
over  the in te rva l  (a, oo), where  a is  the dis tance of c loses t  approach.  We can t he re fo re  qual i ta t ively explain 
the e l iminat ion of the d ivergence  a t  sma l l  d i s tances  which is  typical  of the Landau col l is ion in tegra l  in the 
case  of neutra l  gases  and p lasmas :  i t  is due to the appea rance  of the rad ia l  dis t r ibut ion function g(r),  which 
takes  the liquid s t r u c t u r e  into account.  

7. C o n c l u s i o n s  

We have shown that the p ro j ec t ion -ope ra to r  method can be used as  a common method for  der iving the 
kinetic equations with modified F o k k e r - P l a n c k ,  Vlasov,  Boltzmann, and Landau col l is ion in tegra ls .  These  
equations a r e  mic roscop i c  equations and do not contain any phenomenological  p a r a m e t e r s .  In te res t ing ly ,  
these  equations a r e  not only Markovian:  they may  a lso  contain dynamic m e m o r y  effects  typical  of non- 
Markovian  p r o c e s s e s .  We should emphas ize  that the s t ruc tu re  of a genera l  non-Markovian  col l is ion o p e r a -  
tor  is  apparent ly  such that in the case  of a liquid the f ami l i a r  F o k k e r - P l a n c k  opera to r  is  apparent ly  only 
a "zero th"  approx imat ion  for  a m o r e  compl ica ted ope ra to r ,  which has not yet  been de te rmined  in mo d e rn  
s ta t i s t i ca l  theory.  We can draw an analogy with the s i tuat ion in r a re f i ed  gases:  use  of the p ro jec t ion-  
ope ra to r  method shows that, e.g. ,  the modified Landau col l is ion in tegra l  s e r v e s  as a "zero th  a p p r o x i m a -  
t ion" for  the Lennard - -Ba lescu  col l is ion in tegra l  [3, 5, 6]. In this case  the approx imat ion  cons is t s  of 
neglect ing the in te rac t ion  of pa r t i c les  in the evolution opera to r  for  the sys tem.  
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