CONDITIONS FOR THE COMPATIBILITY OF
PROCESSES INVOLVING MOBILE INTERFACES
AND THE STEFAN PROBLEM

I. P. Vyrodov UDC 536.4.421.1.4

The nature of the Hadamard algorithm is analyzed, and a simple method is outlined for
constructing the Hadamard and Predvoditelev algorithms. Generalized conditions which
hold at interfaces in transport problems are found.

We assume two regions separated by some surface £(x, y, z, t) = 0, and we assume that the transport
of some scalar T' {temperature, concentration, etc.) satisfies the following equation within each of the
adjacent regions:
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where the operator Li has the same structure for both regions, but not at the interface, at which a con-
version may occur on one side. In this case we have
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where v is the conversion constant. In general, the operators Lj may have various structures, e.g., in
the case in which there are sources distributed throughout the volume, in the case of convective forces,
ete.

If these equations are to have single-valued solutions, and if the boundary motion itself is to be
unidirectional, this motion must satisfy compatibility conditions. Some quantitative relations reflecting
these conditions were derived by Hugoniot [1] and Hadamard [2] for shock waves.

Turning to the compatibility conditions for transport processes describable by the operators
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we find
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which we can replace in certain cases by the equivalent
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Since the front moves as a result of the conversion (the primary equation) and the transport (the secondary
equations), the integrals I'i(x, y, z, t) contain wave solutions.* We can thus write the latter relation in
terms of the characteristic £ = V(x, y, z) + gt, where V(x, y, z) is the equation of the front surface; and g

*As was first pointed out by A. S. Predvoditelev.
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the wave velocity:
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For the one-dimensional case we have V = x and thus 9V /0x =1; it follows from (6) that
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It follows that if the discontinuity 6T is equal to zero or some other constant, the discontinuity in the flux
of this quantity at the interface is equal to zero or some other constant. It follows that, with the initial
discontinuity in T", Eq. (7) is a condition on the coordinate of the interface.

We now assume that a source of intensity y(x, y, z, t) is acting at the interface; then we replace (5)
by
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It is easy to see that this generalized relation includes the Stefan condition as a particular case,

We first consider the case in which we have a superheating or supercooling 6I' = const = 0 at the

interface. In this case we have
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i.e., if the heat flux is sufficient so that the latent heat does not suppress solidification at the front surface
(the case of the heat problem), we have the Stefan condition

|l "

(11)

where
o () =2 (0) + f b(2)at. (13)

The physical meaning of (11) is that the front acceleration is negligibly low. This inequality holds when-
ever we have £ ~ t, at large t, with £ ~ V't, and in many other cases. This analysis also holds for the
case oI' =0,

Under these assumptions, the Stefan problem can be used to determine the coordinate of the front.

The Hadamard procedure is based on the assumption 6I" = const, of which a particular case is oI
=0. Generalized relations (9) above are based on the assumption that operators 6 and 8 commute, although
they contain more information than could be obtained by applying only the Hadamard algorithm to the
problem. There is yet another way to generalize the Hadamard algorithm, suggested by Professor A. S.
Predvoditelev [3].
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In this paper we will generalize the Hadamard algorithm in a manner slightly different from that of
[3].
We assume
A = X (f). (14)

Then the following equations must be compatible:
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Hence we have
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If we assume that only operators d and 6 commute, we find
+f or X
R ( = a ) _ 2% dsi, (17)
or, since dx; is not varied, and the variation is independent of df,
0T _ X (18)
0x; 0x
We thus have
2 _ 5 9 9y (19)
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This is the generalized algorithm for the discontinuity in the first derivative. Replacing I" by the derivative
8r'/ oxq, we find
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This is the generalized algorithm for a discontinuity in the second derivative. For a mixed derivative we
have

B .
i J

9%, 01, o ax | toxy ox av, ox, 9x; omdx, | oxiox, @

Hence, writing [3]
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we find the generalized Predvoditelev algorithm
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We thus see that the Predvoditelev algorithms are consequences of the commutation of d and 6. Ob-
viously, other generalizations of the algorithms are possible for discontinuitiesin the derivatives.
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We will now use a generalized Predvoditelev algorithm to write the conditions characterizing the
motion of an interface between media. For this purpose we write the right and left sides of the equation

-
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We thus find the interface velocity to be
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When it is necessary to take into account a discontinuity in the first derivative 8I'/8xj, we find
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Comparing this expression with that found from (6), we see that in the generalized Predvoditelev algorithm
there are additional terms with derivatives of the corresponding discontinuities. To study these terms,
we write the discontinuity operation in the following symbolic form:

SO0 (AT @) L 9f A@D)_ 5 Of L OGD)_ h Of | 9(I)

= + = —h .
0% 0%, ax; of 0x; = Ox Yox: | ox Hyom | dx

(29)

;00 _ GOT 0@ &T of L 0GN _ ay 0f L 30D

ot ot ot of et ' ot  H, of = ot

(30)

Here the operation 6*/ 8 denotes the conditional derivative of a function for the case in which the dis~-
continuity of this function is not constant. If this discontinuity is equal to zero or some other constant,
we have 6* = 60. The conditional derivative vanishes if the operations 6 and & are interchangeable; this
result means that the parameter of a first-order discontinuity vanishes. The condition that operations
6 and 9 be interchangeable thus implies the independence of T" from f.

We turn now to a discontinuity of the second derivative:
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where x; and Xjare the spatial coordinates and the time. It follows that commutation of 5 and 8 implies
the independence of 8T'/#f from f. In this case the parameter for a second-order discontinuity vanishes.

Similarly, we can introduce the parameter of a discontinuity of order n,
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and we can generalize the algorithm,

()= (oo
.0X,

A%, 0xs .. T of \ap Jox ox o,
L9 g_ﬁi"):*_n_‘ln_iJr_@_ LR (33)
dx, \ 0x,...0x, H} 0x,  0x, = 0x, 0x, ... 0xp

We now list the three algorithms under consideration here:

1. The Generalized Predvoditelev Algorithm. This algorithm is based only on the commutation of
operators 6 and d. The discontinuities of the function itself and of its derivatives are assumed
not equal to zero or other constants.

2. The Hadamard Algorithm. This algorithm is also based on the commutation of operators d and 6,
but it is based on the assumption that the discontinuities of the function vanish [2] but that those
of the derivatives do not (see n° 72 in [2] and n° 74). This algorithm is a particular case of the
Predvoditelev algorithm.

3. The Algorithm Based on the Commutation of & and 6 as well as on that of 6 and d. This algorithm
is based on the assumption that the function I" and its derivatives along the surface are inde-
pendent of the surface itself; by "independent" here we mean that there is no conditional derivative
of these functions along the surface.

In connection with these results, we quote Hadamard [4]: "As yet no meaning has been found for a
discontinuity of infinite order, i.e., one for which the types of motion must be treated as different, even
though the partial derivatives of any order of the unknown function remain continuous at the wave."

If the basic partial differential equation contained derivatives with respect to the coordinates of order
higher than in (3), e.g., of order n, then the numerator in (28) would contain discontinuity parameters of
up to n~th order and derivatives with respect to ¢ of the discontinuities in the (n —1)th derivatives. If we
now set all the discontinuities in such an expression equal to zero, the interface could still move. More-
over, if we set dm/8 = 0 in such an expression the interface velocity would become
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As an example we will apply the symbolic method to the equation describing diffusion in accordance
with the generalized equation ‘
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where ¥(t) denotes the source function at the interface. Here the discontinuities in the derivatives with
respect to the spatial coordinates can be reduced by the procedure above to a discontinuity in the function
itself. With a known I'(t) at the interface, the problem of finding the coordinate of the moving interface is
ultimately solved outside the framework of the boundary-value problem.

In conclusion the author thanks Professor A. S. Predvoditelev, corresponding member of the Acad-
emy of Sciences of the USSR, for his inspirational work and instructive advice.
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