POLARIZATION ELLIPTICITY OF LIGHT
REFLECTED FROM A LIQUID SURFACE
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If a beam of plane-polarized light is incident on a liquid surface, the reflected beam displays a slight
polarization ellipticity, while Fresnel theory predicts that the plane polarization will be preserved. There
have been several theoretical and experimental studies of this topic [1-8], and the general concensus is
that the polarization ellipticity results from the existence of a surface layer having a structure different
from that of 2 homogeneous liquid.

In the case in which the light in the incident beam is polarized in a plane making an angle of 45° with
the incidence plane, the ellipticity p is

p=— VT (1~ 1), (1

where A is the wavelength of the light; n is the refractive index of the homogeneous liquid for the given
wavelength; vy and v, are theoretical parameters which depend on neither the wavelength nor the light
intensity,

Vi

1

= (2
i are the components of the induced dipole moment per unit area of the surface layer; &7, are the com-
ponents of the polarization of the homogeneous liguid.

The vector = can be found from the macroscopic equations for the electric field in a homogeneous
dielectric. In determining the dipole moment of the surface layer we must take into account the layer
structure and thus employ a specific model for the liquid structure. For this purpose we will use the meth-
od of molecular distribution functions.

Far from the critical point, where we can neglect the interaction between the molecules of the vapor
and those of the liquid, we can get satisfactory results by using the model of a liguid bounded by an ideal
impenetrable wall. For this model approximate solutions are available with which we can find the single-
component distribution function Fy(q) and the binary distribution Fy(q', q) in the surface layer if we know
the binary molecular interaction potential and the radial distribution function for the homogeneous liquid,
g(lq' —ql.). We place the origin of coordinates at a point such that the XOY plane coincides with the wall
and the z axis is directed from the vapor into the liquid.

The dipole moment of the surface layer consists of the dipole moments Py(z) of the molecules in
the layer; we can therefore write the components of the vector 7 as

I
=t fpol- (2) F1 (2) dz, (3)
0

where v is the average volume per molecule in the homogeneous liquid; I is the thickness of the surface
layer.

For nonpolar liquids the molecular dipole moment Py(z) arises as a result of the electric field E(z)
which consists of the field Ej of the light wave and that E;(z) of the surrounding dipoles. In the visible part
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of the spectrum the wavelength is much higher than the linear dimension a of the molecules (by two or three
orders of magnitude), so we can assume that the field intensity is the same at a given instant at all points
in the surface layer, which is no more than a few molecular diameters thick. The instantaneous values of
‘the molecular dipole moment and the field acting in this case are related by the usual relation

- |
Py(2) = BE(2), 3
where g is the average polarizability of the liquid molecules.

The field E,(z) can be expressed in terms of the conditional distribution function Fy(q'/q), which
gives the probability for finding a molecule at point q' if there is a molecule at point q. We denote the dif-
ference between ¢ and.q as r; then we have

E,(z)=%HS(P”(,Z_—)’ nr. b ]F1 (9'q)dq’. (4

r r3
The conditional distribution function F,(g'/q) is related to the single-component function F,(q) and the
binary function Fy(q', q) by
Filg'iq) =F.(q', q)/F (9.

In the superposition approximation, we can express the binary distribution function in the surface layer in
terms of the single~component functions at points.q and g and the radial distribution function of a homo-
geneous liquid:

Flg, ) =F (9 F.(q) g ).

Then we have

3(P , P,(z , ,
E,(z)=lﬂ Bole). 7)r _ P2 }g(r)ﬂ(z)dq, 5)
v r r
z2'>0
where the integration is carried out over the entire z! > 0 half-space, since a dipole at z' = z is automati-
cally included (since we have g(r < a) = 0).

After lengthy calculations, we find integral equations for the components of the dipole moment of
a molecule in the surface layer at a distance z from the wall:

Po; (2) == 8E0 + CiS Pu(ZYF, () Q (|2 —2)) dz'. (6)
$

In Eq. (6), we have

x ’ z
r

C ___?. C :_Qt@; Q(lz—7|) = g(r) [rz—?(z_zl)gldr.

12—2']

In the interior of the liquid, as z — », the dipole moment components take on the constant values
Pyis and the integral cj"odz’Q (lz— 2’ {) becomes equal to 4/3. For Py, we thus find the standard expression,
4]

found by Lorentz for isotropic media. We can therefore transform from Egj to Pjjeo:

oo
IS

4‘ : ’ ’ ! 4
P (2) = (1 ~—§Ci) Poioo + C; 5—1)01(2 YF(2) Qlz —2'|) az’.
J
For many nonpolar liquids we have C; < 1. We expand Pyj(z) in a series in terms of Cj:

Poi(2) = P (2) + CiPE) (2) + CIPR(2) 4. .. + CEPY () + ...

We substitute this expansion into (7) and equate the coefficients of identical powers of CiK on the two sides
of the resulting equation. In this manner we find the Péi‘)(z):

P (2) = Poiso
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TABLE 1. t =20°C, \ = 5460 A

Substance p- 105 p-10s Substance p-10° o108
theo exp theo exp
Benzene 122 107—136 {n~Pentane 92 70
Toluene 130 114 n-Octane 122 92
Carbon tetra- Cyclopentane 104 121
chloride 114 84—126 Chlorobenzene 135 138
p-Xylene 133 129 Water 57 40--75
n-Hexane 105 65

o]

PR = PuetPoe [ P Y Q2 D

........................

8

(K)(Z) (FI(Z)QQZ_Z ) PY {2) d’. ("

Accordingly, the dipole moment of a molecule in the surface layer can be expressed in terms of its value
in a homogeneous liquid:

P (2) :po,-w{(1 -_—c ) +cloj F(2)Q(z—21)dz

+ Ci gF, (2)Q(|2'—2'|) az’ [-%-}j Fi(Ha (lt——ZI)dt} + } : (8)
g ¢
The components of the vector P can be written as

Pi==—%-Pdthmy

Since the integrals associated with the high powers of C’i‘ fall off rapidly with increasing k, we can re-
strict Eq. (7) to the first approximation, i.e., take into account only the first two terms. Substituting into
(2) the components Pyx(z) and Pyy(z), we find

{ 00 . .
=(C,—C)) j Fi(2) [——;—Jrff, ()Q(|z—2)dz |dz 9
0 0 ’
Substituting (9) into (1), we find the final expression for the ellipticity p:
2 oo [e<]
o= 4")@ l/n_z—l-_-l-j‘ﬁ (@) dz [1 - —%S‘F, (2)Q(z —z';)dz'] . (10)
0 ¢

We used Eq. (10) to calculate p for several liquids™; the results are shown in Table 1. Also shown in this
table are experimental data from [3-5]. Since there is a large scatter in the experimental values obtained
for p for certain liquids by various investigators, we show the corresponding ranges.

Comparison shows that the values of p calculated from Eq. (10) agree quite satisfactorily with ex-
perimental values not only for the nonpolar liquids, but also for liquids whose molecules have a rigid dipole
moment, i.e., water, chlorobenzene, etc. We can explain this result by assuming that the oscillation
period of the electric field of the light wave is much lower, by about two orders of magnitude, than the

* The radial distribution function was taken from [10], and the single-component distribution function was
calculated from the approximate equation given in [11]:

o0 o0
2x i

Fi(a) =1—=" Ydt {g (1) — 1] rer.
z A
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orientational —relaxation time of many polar molecules. Because of this circumstance, the electronic
polarizability of the molecules plays the main role in producing the induced dipole moment and the polari-
zation ellipticity of the reflected light.
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