ROLE OF MAGNETIC MICROSTRUCTURE FOR
FERROMAGNETIC RESONANCE WITH A
CONDUCTING FERROMAGNETIC FILM
1. NATURE OF THE SKIN EFFECT FOR FERROMAGNETIC
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In this study of the properties of a film of ferromagnetic metal in an electromagnetic field, a joint
solution is found for the Maxwell equations and an equation for the change in the density of the magnetic
moment. This latter equation is written in Landau—Lifshitz form [1la] with the relaxation term proposed
by Gilbert. The conduction current density is described by the usual local relation with a homogeneous and
isotropic static conductivity oy

j == 0‘0 E,
where j is the conduction current density; and E is the electric field.

The Landau-—Lifshitz equation is
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where Mg is the density of the saturation magnetic moment at the given temperature; H, = AyMg + aViMg
is the exchange magnetic field for a cubic lattice; Aw is the constant of the Weiss field; ¢ is the dimension-
less damping parameter oy < 1; o is the exchange constant from the Landau—Lifshitz equation [1a]; Hyp

is the anisofropy field, which can be expressed in terms of the corresponding anisotropy and anisotropy
—dispersion tensors E and /§u by
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and vy is the magnetomechanical ratio. The first term in the expression for the exchange field has the form
given above if the strong inequality wty << 1 holds, where w is the angular frequency of thé exciting electro-
magnetic field; and 7, is the relaxation time for the magnetic moment density. In the opposite case of wr
> 1, the term AywMg becomes A\yMg,, where Mg, is the static magnetic moment density.

If the magnetization inhomogeneities, expressed by the differential terms of fields H, and Hap, are
distributed continuously, and if the magnet is bounded by planar surfaces, as in, e.g., the case of our
plane-parailel film, the magnetic moment density can be written in a Fourier series. Assuming the vector
Mg fo be a function of the coordinates and time, we write

M;= My Z M, e—i(mt—nr)’
4
where r is the radius vector of a given point in the material; k is the complex wave vector, and the sum-

mation is carried out over all types of oscillations. The magnetic field H can be written in a similar
manner,
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Let us consider the Maxwell differential equations. Theconductioncurrentdensity for a metal in the
frequency range w < 10 sec~! is much higher than the displacement current density, so by neglecting the
latter and combining the two Maxwell equations, we find a relation between My and Hy:
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To obtain the dispersion equation f(k, w) = 0, we must specify further the structure of field H(r, t). In the
dipole approximation the condition for ferromagnetic-resonance absorption is, according to [2]

H,[H(r,t)—H] =0,

where Hj is the static magnetizing field; the expression in brackets is the sum over all types of oscillations:

[H(r,t) — H,]= Eﬂxe—i(mt~xr)_

Starting from these considerations, we choose the field structure in the film:
H{(Ho)x (Hoy, (H,)},
where (x, y, z) are a Cartesian coordinate system.

We first consider the case in which the field vector is parallel to the planes bounding the film of
thickness d and in which the following conditions hold:

Hy~My; xH,=0; [E,H)]=0; Hy| M.

The equality [E, Hy] = 0 eliminates the ordinary Hall effect. As in [3a, 4a], we are neglecting effects as-
sociated with the effect of the internal magnetic field on the orbital motion of conduction electrons; in other
words, we are assuming the condition

0,7 < 0.5,
where w, is the gyrofrequency; and 7 is the principal relaxation time of the conduction electrons.
The specified vector field Mg, and Hy implies uniaxial anisotropy. Here we have neglected the second
term in Eq. (2) and used the standard relation for the uniaxial —anisotropy field:
Hoy=8 (M, ),
where 3 is the anisotropy constant; andnis a umt vector along the easy axis, We now assume
Mg | n; VM =0.

These conditions are widely used [3b, 4n, 5; 6] fheir limitations will be discussed in Part II of this study.
Substituting Eq. (3) into Eq. (1), and linearizing the latter, we find the dispersion equation
f(nv (1)): 0;
K8 —GK*+ DK*+ F =0,
where
K = — Iudye, 8= (c¥4wo,0)'?, = af4=d},
G=1 + Q(U)H"/(BM) -+ 2i [Ez + o, (m/wM)],

D = (onfou) + (onjom)? — (ofon)? — g (ofon) — due? (ofon) + i {[1 + 2(onjon)] (ofon) @ + 42 [1 4+ (onfom)]},

(4)

F =252 (21 + (o fom)] (ofom) 3y + 1 [(ofom)? — (1+ (onfor) + (/on)'a3 ]},
Hy= Hy+ BMs, on,= 1%, om = 14xMa.
We now replace the complex wave number « by the corhplex quantity K
k,=iK, p=1,23, 4,56 (®)
The wavelength A in the material is related to K by
A= 2r/flm K],

where ImK is the imaginary part of the complex quantity K. It is sufficient to use only the roots with Re K,
> 0 for the analysis, since Eq. @) is bicubic. Numerical values of the roots of Eq. @) were calculated on
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a Minsk-22 computer for iron and cobalt; the initial data were
» = 2%-101% sec™t'; @y (Fe) = 3.78- 10" sec™?,
oy (CoY = 3.15- 10" sec!;
¥ = 0,100,...2000 Oe; 7t ==1.761-107sec™ . Ce™;

s, (Fe) = 9.0- 10 sec™! }
5, (CO) = 1.39-10%7 sec™® |’

from [7a].

To analyze the effects of the physical constants and parameters on the coefficients in dispersion equa-
tion (4), we use the following inequalities and approximations:

(U)/(BM) <02, ao~10—2, 0 < oy < 01, aO(Fe, Coy =~ 10_4 cm;
0 < (onfou) <0.11; a~ (10712 — 10-") em?; &2 <1072,

from which it can be shown that the effect of the dimensionless magnetic-damping parameter o, on the
roots of Eq. (4) is slight, so we can set oy = 0. Using a computer, we were able to study the solutions of
Eq. 4) and establish the following behavior: 1) the basic contribution to the numerical value of roots Kp
p =1, 2, 3) comes from the modulus of coefficient G; 2} coefficient D affects the root only one-fourth as
much; and 3) the effect of coefficient F on the root is one-third that of G.

In calculating the effective static field <% = H, + fMg,, we used the series of values 0, 100, 200,
. . . 5 2000 Oe, which span the range of static magnetic fields used to observe ferromagnetic resonance
in iron and cobalt films in microwave fields. The results of this calculation for cobalt are shown as graphi-
cal dependences of |Re Kpl and |Im Kpl on the effective magnetic field in Figs. 1 and 2, respectively. The
relative error in the calculation of K (p =1, 2, 3) is no worse than 1%. The dependence of Kp on the ef-
fective field % at fields higher than shown in the figures is difficult to find because of the limitations of
the Minsk-22 computer. However, by analyzing the dependence of Kp on the coefficients in Eq. @), we
can show that Re K; has 2 modulus much greater than those of the other Kp (0 =2, 3) and increases slowly
up to about 5-10° Oe. Between this field and % =1.5-10% Oe, this dependence is nonlinear. The quantity
}ReKil decreases slightly, reaching a minimum; then it increases to its former value,

From Eq. (4) we see that we have |Kp| ~ a /% for p =1, 2, 3, ina very good approximation. A
numerical check shows that this behavior holds for a between 10-1% and 10~!¢ em? and over the entire field
range of practical interest. Carrying out this calculation on the basis of the data of [6b], we find o ~ 10712
em?. For films a few hundred atomic layers thick the static magnetic moment density can be assumed
equal to the value of the bulk material.

Since the w-values calculated from the experimental data show a scatter, and since it was assumed
for the a~calculation that the static magnetization is uniform throughout the sample, we analyzed the
theoretical evaluations of o in [1b, 8]: o ~ 10~2-10"1 ¢m?. We believe these values to be more reliable.
The results calculated for Kp (p =1, 2, 3), ReKp > 0, shown in Figs. 1 and 2, were obtained with o = 1074
e¢m? — the upper limit on «.

We turn now to an analysis of these figures. Let us evaluate the possible anomalous behavior of the
skin effect. If the real part, the imaginary part, or both parts of Kp are very large, it may turn out that
the conditions for the normal skin effect will not be satisfied for this type of oscillation. The limits for
this effect are given by

[ReK,|K 1, A (6)
Hm K, [< 2r, (0

where I is the mean free path of a conduction electron. A numerical evaluation of I taking into account only
the phonon scattering mechanism near the Debye temperature yields

= Eya/xNkpT,

where E, is the Young's modulus; « is the lattice constant; N is the number of atoms per unit volume; Ky
is the Boltzmann constant; T is the absolute temperature. Results calculated from this equation for poly-
crystalline ferromagnets (iron, cobalt, and nickel) at 293°K are shown in Table 1.
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TABLE 1. Mean Free Path of Conduction The data used to calculate I were taken from [7b].
Electrons in Certain Transition Metals The last two columns in this table show the critical real
= and imaginary parts of Kp b= 1, 2, 3), i.e., the values
Metal } l ‘ (ReK), , (ImK), corresponding to equalities in (6) and (7). When these
p L ' . inequalities become equalities, the electric field changes
Fe 5’6'10_6 cm | 1,8 10_’°m_1 1,17-1:)(5)Ncm o by a factor of e over an electron mean free path, ac-
Co 6,5-107cm | 1,5-10°cm . 0,97- em cording to (6), while according to (7) the wavelength 27
Ni 5,9:-107%¢cm | 1,7.10cm™! | 1,1-106¢cm

/|ImKy| is equal to one electron mean free path. In
both these cases the field is very nonuniform over an
electron mean free path, so the local expression j = o E which we used for the conduction current density
in the calculations becomes invalid.

The actual mean free path of electrons in ferromagnets is slightly lower than shown in Table 1, be-
cause we have neglected the magnetic scattering mechanism. Since the range studied for iron and cobalt
(293°K) lies far from the Curie point, however, the magnetic-scattering mechanism cannot reduce the
value of / by more than 0.2 [. Since we have |Ky| ~ a~1/% and @cale = @max the calculated values of Kp
are minimum values.

Taking this circumstance into account, and comparing the results in Table 1 with the curves for K
(p =1, 2, 3) in Figs. 1 and 2, we conclude that the skin effect behaves in an anomalous manner for the first
mode (K;), and there is evidence of an anomalous skin effect for the second (K,) and third (K;) modes in the
field range of practical interest. However, in a large number of experiments, e.g., those reported in [9]
and in the literature cited there, no anomalies were observed in the behavior of the skin effect over a broad
range of microwave frequencies, 9-38 GHz, at room temperature, 293°K. The temperature dependence
found there for the line width of ferromagnetic-resonance absorption was explained satisfactorily on the
basis of the theory of the ordinary skin effect [4¢c]. We therefore turned to a possible effect of the micro-
structure of a ferromagnetic film, neglected above, on the nature of the skin effect; analysis of this factor
will be reported in the second part of this study.
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