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Abstract. Existing techniques for solving nonconvex programming problems often rely on the 
availability of lower and upper bounds on the problem variables. This paper develops a method for 
obtaining these bounds when not all of them are available a priori. The method is a generalization of 
the method of Fourier which finds bounds on variables satisfying linear inequality constraints. First, 
nonlinear inequality constraints are converted to equivalent sets of separable constraints. Generalized 
variable elimination techniques are used to reduce these to constraints in one variable. Bounds on that 
variable are obtained and an inductive process yields bounds on the others. 
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1. Introduction 

In their seminal paper, Falk and Soland [4] presented a method for finding a 
global solution to the problem of minimizing a separable nonlinear function 
subject to not necessarily linear constraints and bounded variables. This was 
extended by Soland [35]. McCormick [25] used the same general branch and 
bound approach to solve factorable optimization problems. In this section, we 
mention other literature on solving nonconvex programming problems where 
bounds on problem variables and/or the value of the objective function need to 
be provided. 

There is very little written on solving nonconvex programming problems using 
the Falk-Soland branch and bound point of view. The dissertation by Leaver [21] 
used similar ideas, but gave a different method for computing concave over- 
estimating functions. Sisser's [33, 34] interval arithmetic techniques were used in 
conjunction with factorable functions to solve nonconvex problems. Both authors 
assumed that bounds on the variables were available. 

In the most comprehensive recent survey [16] there are no other papers listed 
which deal with this approach. And, to the authors' knowledge, there is no work 
past or current which tries to find bounds so that the above nonconvex program- 
ming algorithms can be applied. 

In the following we cite some of the papers surveyed that involved the 
requirement of bounds on problem variables and/or objective function value. The 
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presentation is classified according to type of problem and /o r  technique used. 

1. Concave Minimization: Benson [2]; Hoffman [12]; Horst  [13, 14, 15, 18]; 
Rosen [31]; and Taha [36]. 

2. Difference of  convex programming: Thach [37]; Thoai [39]; and Tuy [40, 41, 
42]. 

3. Reverse convex programming: Avriel [1]; Hillested [10, 11]; Sen [32] and 
Tuy [40]. 

4. Use of  cutting planes, branch and bound and~or convex envelope techniques: 
Benson [3], Falk [4], Gabot  [7], Horst  [13, 14,_ 18], McCormick [25, 27], 
Soland [35]. 

The organization of this paper is as follows. Section 2 characterizes functions 
and situations in which one can analyze the global behavior of the sum of two or 
more  functions of one variable. In Section 3, techniques are introduced to find 
bounds on single variables from a set of inequality constraints. Section 4 develops 
a method for finding bounds on variables from a system of separable nonlinear 
constraints. This is a generalization of the method of Fourier [6] which applied to 
linear constraints only. The paper concludes with a summary and conclusion in 

Section 5. 

2. Analyzing the Global Behavior of the Sum of Functions of One 
Variable 

We characterize functions and situations in which one can analyze the global 
behavior of the sum of two or more functions of the same variable. The 
application for this will be given in Section 4.5 where Fourier 's ideas for 
manipulating linear inequality constraints to find bounds on the variables are 
generalized to separable nonlinear inequality constraints. Essentially the idea is to 
eliminate variables from a sequence of inequality constraints until we are left with 
one or more inequality constraints in a single variable. From this, bounds on the 
single variable are obtained and a backward process yields bounds on all the 

variables. 
The general problem considered is stated simply as: given two continuous 

functions fl(x) and f2(x) of the single variable x, find a positive scalar a and a 

scalar 13 such that: Otfl(X ) + /3 ~>f2(x), for all - ~  < x < +~ .  
In general, if one pair ( a , /3 )  can be found there are an infinite number of such 

pairs. In general, for any a, the/3 is picked so that equality holds for at least one 
point on the real line. The problem of which of the infinite number of pairs to use 
is not considered here. There is no adequate measure for this since, in general, 
the functions tend to -+ ~ as lxl-->~. The purpose for which a pair is used is to 
'eliminate' a variable from a system of nonlinear separable constraints (Section 
4.5). For  this purpose, any pair will suffice. 

Two different methods are devised to do this. Sometimes a lower or upper 
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bound is available on the variable x. The methods presented here can be easily 

modified to handle these cases. For  example if x I> L is known, all the operat ions 

which involve finding values for all x s.t. - ~  < x < + ~  are modified to all x s.t. 
L ~ < x <  +oo. 

2.1. CALCULATING a AND/3 FOR THE GENERAL FORM 

The first method for finding a and /3  such that 

O~fx(X ) + /3  ~>f2(x) for all - ~ < x <  + ~  

has two cases. 

Case I. 

sup f2(x ) = j~ < oo. 
- - o o < X <  +c0 

H e r e  set a = 0 and/3  t> f2. 

Case H. 

sup f2(x) = + ~ .  
- - o r  +c r  

The asymptot ic  behavior  of f l (x)  and f2(x) is analyzed as Ixl  . From this 
analysis a value of a is obtained if one is available. Then a value of/3 is gotten so 
that  the desired inequality is satisfied for 'finite' points. 

P A R T  ONE.  (Finding a) .  Define 

*/1 = l iminf  {f~(x)/fz(X)}. 
- - o o < X < + C r  

fz(x)~+= 

If  there are values of  (a ,  /3), where a > 0 such that the desired inequality is 
satisfied for all x, then 

+/3/L(x) >! 1 

must  hold for all x where f2(x) > 0. It  follows from this that 

a { lim inf_=<x<+= [fa(x)/f2(x)]} >~1" 
f2(x)~+~ 

If  Wa ~< 0, there is no value of a > 0 such that the desired inequality is satisfied. 
Intuitively this means f2(x) goes to plus infinity faster than fl(X) does along a 
sequence of points. (Or  it means f~(x) goes to a value less than infinity along a 
sequence of points). 

If  ~ = ~,  any value of ot > 0 will suffice. This corresponds to the case where for 
every sequence of points where fe(X) goes to + %  fl(x) goes to + = ~ faster. 

Finally, if 7 h > 0, dividing through above by *h yields that [a >I 1/Th] must hold. 



28 A . S . E . - D .  H A M E D  A N D  G. P. M c C O R M I C K  

Sometimes an upper  bound on a can be obtained. I t  is clear f rom the basic 
inequality that 

ot[fl(X )/fz(X)] + [3/fE(X) ~ 1 

must  hold for all x where fz(X) < O. From this it follows that 

0/72 ~ 1 

where  

,2 = lim sup [fx(x)/f2(x)]. 

f2  ( x ) - - ~  - 

If  72 = ~,  no value of a will suffice since fl(x)---->-oo faster than f2(x)----~-~ 
along a sequence of points. I f  72 <~ 0, any value of a > 0 will do. Otherwise,  

a <~ 1/72 must  hold. 
F rom the discussion above the following rules for setting a are derived: 

- I f  both  71 and 72 are finite positive values, set a = [1/71 + 1/72]/2.  
- I f  71 <~ 0, or if 72 -- ~,  there are no values (a ,  [3) such that the desired inequality 

is satisfied for all x. 

- I f  71 = o% and 72 ~<0, set a = 1, since any value of a > 0  will handle the 
asymptot ic  cases. 

- I f  71 = o% and 0 < 72 < o% set a = 72/2 since only the situation where f l  and f2 go 
to minus infinity are of  concern. 

- Finally, if 0 <"/71 < ~,  and 72 ~< 0, set a = 2/~1 since only the situation where 
both  fl  and f2 go to plus infinity is of concern. 

This way of finding a value of a allows for all the possibilities of the function 

rE(x) tending to _+oo. 

P A R T  TWO.  (Finding [3). Using the value of a gotten above,  find a lower bound 
o n  

inf [af l (x) - f2(x)] .  

I f  this is finite, set [3 equal to any number  higher than minus this value. Clearly, 
the values of  a and [3 obtained are those desired. The following theorem states 
the situation when the infimum is -oo. 

T H E O R E M .  I f  the infimum above is -o% there are no values of  a > 0  and 
associated [3 such that the desired inequality holds for all x. 

Proof. If  the infimum is - ~ ,  that means there is a sequence of points {Xk} such 
that  the values 

{ OZfl(Xk) -- f2(Xk} tend to - o o .  

This can happen in two ways. In the first case, {f2(xk)} tends to - ~  or +oo. 
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Because of the way a was selected, this can happen only if 

O < r  h = r / 2 < ~ .  

That  means there is only one possible value for a. For  this value, there is a 
sequence of points for which the desired inequality fails no matter  what the value 
of/3 is. The  other  case is if the sequence of values {f2(xk)} tends to a finite limit, 
and {fl(x~)} tends to minus infinity. If such sequence exists, the infimum of the 
above problem would equal - ~  for any value of a > 0. QED.  

It is interesting to see what happens in the linear case where the method reduces 
to the eliminating variable technique. Consider the example where 

f l ( x )  = x,  and f2(x) = 5x .  

Now 

T h = 1/5 = lim inf x / ( 5 x )  (as 5x ~ +~) ,  and 

7/2 = 1/5 = lim sup x / ( 5 x )  (as 5x---~ - ~ ) .  

The only possible value of a is therefore in {(5 + 5 ) /2 ) .  
The problem { in f (5 ) (x ) -  5x} has the infimum 0. Thus /3 = 0. We refer the 

reader  here to Section 4.5 for an application of this. 
Implementing Part One requires knowledge of the functions involved and 

sometimes, l 'H6pital 's rule. Implementing Part Two can sometimes use the f r s t  
and second order  optimality conditions (abbreviated FONC,  SONC, and SOSC) 
when the functions are twice continuously differentiable (See McCormick [27 
chapters 10 and l iD .  For some functions bounds can be obtained without these 
assumptions. A simple example is given here to illustrate the method. A more 
detailed example is given in Section 2.3. 

Let  fl(X) = X 4 and f2(x) = X 2. From Part One, 

lim inf {x4/x 2} = + ~  . 

This implies that a can be any number > 0. Set a = 1. Part Two requires the 
minimization of 

4 2 
X - - X  

over  the real line. Using the FONC implies that minimizers might be 0 or -+V~i~. 
Use of the SONC rules out zero. The SOSC imply that the others are strict local 
minimizers. Note that because a was chosen to taken care of the situation where 
local minimizers might be at -oo or +0% this simple analysis takes care of all 
cases. The value of /3  is therefore 1/4. The end result is that 

X 4 ql- 1 / 4 ~ x Z f o r a l l  - ~ < x <  + ~ .  

The second me thod  for obtaining a and/3  involves rewriting the inequality 

ctfl(x ) +/3 ~> f2(x) 
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a s  

o r  

- f 2 ( x )  >! - 1 3 ,  (2.1.1) 

a />  [f2(x) - /31 I l l (X)  when fl(x) > 0 for all x .  (2.1.2) 

When f l ( x )  is not always positive, 2.1.2 can be rewritten as: 

a />  [f2(x) - / ?  + M a ] / [ f l ( x )  + M ] ,  (2.1.3) 

where - M  is lower bound on fl(x). If there is no lower bound on fl (x), then 2.1.1 
must be used. 

Finding a and fl such that the original inequality holds on the real line can be 
done using either 2.1.1 or 2.1.2. Using 2.1.1, one algorithm is to find a value of 
a > 0 such that the problem: 

inf { a f l  (x  ) - f2(x)} 
x 

has a finite minimum. Call it v * (a).  Setting fl ( a ) = - v * (a) gives a p air satisfying 
the original inequality. 

Using 2.1.3, the implied algorithm is to find a value of/3 such that: 

sup {[f2(x) - ~ ] / [ f x ( X )  + M]} 
X 

has a maximum greater than zero. Call this v*(/3). Setting a ( / 3 ) =  v*(/3) and 
~8 = + v * ( ~ ) M +  fl also yields a pair satisfying the original inequality for all 
- - o o < x < o o  , 

In Hamed and McCormick [9] are many example of these two approaches. 

3. Finding Bounds on Single Variables 

The material in the previous section will be used in the development of techniques 
for reducing systems of inequalities to inequality constraints involving functions of 
a single variable in Section 4. In this section the problem addressed is: given a set 
of inequality constraints of the form 

f k (X)  ~ bk , k = l ,  . . . , p 

on the single variable x, find a set of bounds on the variable x itself. 
The applicability of this to finding bounds on all the variables is shown in 

Section 4.5 where Fourier's method for linear inequality constraints is generalized 
to nonlinear inequalities. 

Techniques for finding the bounds on x depend a great deal on the nature of the 
functions {f~(x)}. There are lots of cases and many are discussed in Hamed and 
McCormick [9] and in Hamed [8]. The ability to do this is essential to the 
generalized method of Fourier. We give here only one example of how to do this 
for the unary function sin(x). 
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In the set ( x : - ~ - ~  x ~< + ~r) there are at most three intervals whose union is 
the set of points satisfying - 1  ~< a <~ sin(x) ~< b ~< 1. Call these ([Lj, Uj]). 
Let I =  { i = 0 ,  +1, - 2 , . . . } .  On the real line the set of points satisfying the 
inequality are all points in the set 

U U (x :21 r i+Lj~<x~<21r i+Uj ) .  
i E l  j=  l ,2 ,3 

4. Finding Bounds Pursuing Fourier's Ideas 

This section is a generalization of the work in Fourier [6] for finding bounds on 
variables satisfying linear inequality constraints. An excellent exposition of 
Fourier's work is in Williams [45]. In Section 4.1 is a brief description of this 
method. 

In Section 4.5 the full algorithm is stated. Three subalgorithms required are 
outlined in Sections 4.2, 4.3 and 4.4. In Section 4.2 a way is given of replacing 
certain nonlinear convex inequality constraints by linear inequality constraints. 
Conditions are proved under which the boundedness of the feasible region is 
preserved. 

In Section 4.3 ad hoc techniques for developing functional lower and upper 
bounds on a single variable are discussed in general, with some examples. In 
Section 4.4 is given a general method for converting systems of nonseparable 
constraints to equivalent systems of separable inequality constraints. 

Section 4.5 provides the generalized Fourier method for taking a system of 
separable nonlinear inequality constraints and finding bounds on the variables 
implied by these constraints. Section 4.6 contains examples of the generalized 
Fourier method. 

4,1. FOURIER'S METHOD FOR LINEAR INEQUALITIES 

In this section we briefly summarize Williams [45] work. For simplicity consider 
the set of linear inequality constraints 

~ aqxj<~bi , i=  l , .  . .  , p .  
j = l  

Let I be the index of a constraint where ai, , < 0, and K the index of a constraint 
where aKn > O. (If either an I or a K does not exist, the feasible region is 
unbounded). Then the following chain of inequalities results: 

A necessary and sufficient condition that a point ( x l , . . . ,  x,)  exists satisfying the 
/th and Kth inequalities is that a point ( x l , . . .  , xn_l) exists satisfying 

n--1 

~ [-alj /aln + arj/aKn]X~ + bl/aln - bK/aK, 4 0 .  
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Taking all pairs of the original inequalities in which x n appears in the same 
manner yields another set of inequalities in only n - 1 variables. It is not difficult 
to show that the set defined by this new enlarged set of inequalities in n -  1 
variables is equal to the projection of the original set on R n-1. Proceeding 
inductively it is clear that eventually x 1 appears alone in a system of bounds. If 
these are inconsistent, there is no point satisfying the original set; if there is no 
finite lower bound, and/or  there is no finite upper bound, the set of points 
satisfying the original set of inequalities is unbounded. If a feasible value of x I is 
available, a backwards inductive procedure gives successive vectors (xl, 
x 2 ) . . .  ( xa , . . . ,  Xn) satisfying the inductively generated inequality constraints. 
Ultimately a point satisfying the original set of inequality constraints is obtained. 
If the set of points satisfying the original inequalities is nonempty and bounded, 
then finite upper and lower bounds are obtained for each variable. 

4.2. REPLACING CONVEX NONLINEAR INEQUALITY CONSTRAINTS BY LINEAR 
INEQUALITY CONSTRAINTS 

In certain circumstances it is possible to bound the set of points determined by a 
set of nonlinear inequality constraints of the form 

f i ( x )~b i ,  i = l , . . . , m  ( x E E n ) ,  

where the { f/(x)) are convex differentiable functions by a set of linear inequality 
constraints, and maintain the boundedness of the feasible region*. A basic tool is 
the well-known convex differential inequality: 

f(x) >~ f(Xo) + 7f(Xo)r(x - Xo) (4.2.0) 

which holds when f(x) is a convex C 1 function. 
In anticipating the application of this technique to the generalized Fourier 
method,  the maintenance of a bounded region is an essential property. In the 
following, a circumstance under which this occurs is established. 

Suppose a set of inequality constraints has the form 

and 

f~(x)~<b i ,  i = 1  . . . . .  m - 1  (4.2.1) 

p 

frn(X ) : a 0 x  + ~ T Uk(akX ) <~ b (4.2.2) 
k=l 

where the Uk's are convex C 1 functions of a single argument. The derivative of 
U~(u) is denoted by U'g(u). 

The Convex Replacement Algorithm which attempts to substitute a system of 
convex inequalities will be given later. A subalgorithm needed to replace one 
nonlinear term at a time will now be given. 

We will eliminate the nonlinear term Ul(a~x ) by replacing fro(x)<-b by two 

*It is assumed throughout that these inequalities define a nonempty set. 
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inequality constraints. Specifically, replace (4.2.2) with 

P 

r U'l(M)(arx - M)  + E r Uk(akX ) --: b ,  aoX + UI(M ) + 
k = 2  

and 

(4.2.3) 

P 

r U~( -M) (arx  + M) + ~ r Vk(akx ) <- b ,  (4.2.4) aoX + U I ( - M  ) + 
k = 2  

where M is some number greater than zero. We shall show that if M is large 
enough, the boundedness of the original feasible region implies the boundedness 
of the 'linearized' region. Note that any point satisfying (4.2.1.) and (4.2.2) also 
satisfies (4.2.2), (4.2.3) and (4.2.4). In the theorem we assume such points exist. 

T H E O R E M  4.1. I f  the set of  points satisfying (4.2.1) and (4.2.2) is a nonempty 
bounded set, then for M large the set of  points satisfying (4.2.1.), (4.2.3) and 
(4.2.4) is a nonempty bounded set. 

Proof. Assume the contrary. Then for every M > 0  there is a point x #  
satisfying (4.2.1) and (4.2.2) and a direction vector SM, with IIsMII = 1 such that 
X#+SMt satisfies (4.2.3) and (4.2.4) for all t, but not (4.2.1) and (4.2.2). 

Using (4.2.0), the two inequality constraints result: 

>_ r r U~(M)(arlSM)]t b ~ aox# + UI(M ) + U~(M)(a(x#  - M)  + [aoS M + 
p (4.2.5) 

" ~ - E  T T p T T T [Uk(akX# + akSM z) + U (akx#  + a~sM'r ) (akSM)(t-  Z)], 
k = 2  

and 

b T T >i aox# + U I ( - M )  + U ~ ( - M ) ( a r x #  + M) + [aoS M + U~(--M)(arsM)] t 

p (4.2.6) 
- { - E  T r T T T [Uk(akX# + r akSM'C) + Uk(akX# + akSMZ)(a kSM)(t -- r)] , 

k = 2  

for every r > 0. 
The right hand sides of (4.2.5) and (4.2.6) cannot go to + ~  as t---> ~. Thus, 

collecting terms involving t, the two following inequalities must hold for all z > 0, 
and all M > 0: 

P 
T aoSM + U,I(M)(aTSM) + • , T T T Uk(akX# + akSM'r)(akSM) <~ 0 ,  (4.2.7) 

k = 2  

and 
P 

aoSMr + UI(_M)(aTlSM) + ~2 . . . .  r ,, + r r _< (4.2.8) UktakX~: akSMT)(akSM) ~ 0  . 
k = 2  

Because of the basic property of unary convex C 1 functions that their deriva- 
tives are nondecreasing it follows that if T akS M >I O, then 

t T T lim Uk(akX# + akSMr ) > --~ . 
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Also, if r -<0, akS  M 

lim , T T U~(akx # + aksM,r) < +oo. 

From these results and inequalities (4.2.7) and (4.2.8) it follows that 

t T T !im lUk(akx # + aksMr)l < o~ . 

This fact will be used implicitly in the remainder of the proof. 
Because s M is of length one there is at least one point of accumulation as 

M--~ ~. Call one such point ~'. We shall show that the x#+Yt  satisfies (4.2.1) and 

perturbat ion of (4.2.2), for all t. 
Expanding fro(x# + Yt), using Taylor's theorem, yields 

fro(x# + gt) T a~gt = aoX# + 
P 

+ ~ r , r ( a r y ) r ( x # ,  s, t)l(aeff)t } (Uk(akX#) + U~[akX# + 
k=1 (4.2.9) 

where z ( x# ,  s, t) is a number between 0 and t. This will be shortened to § for 

notational convenience. 
We need to show that fro(x# + gt) is bounded above by a number independent  

of t. For  this it is sufficient to show that for all t > 0: 

P 

aoSr- + Ul(alx r + a~Y~')(a~g)+ Z U'(a~x#+aksz)(aks)-~o.r-A r -  _< (4.2.10) 
k = 2  

There  are several cases to consider. 

CASE (i). U'I(M)---> +% and U~(-M)--->-oo as M-- -~ .  
Dividing (4.2.7) by U'I(M) and (4.2.8) by U'I(-M ) and taking the limit as 

M---> oo yields 

and 

a~s<~O, 

aTg >i O . 

These imply: 

aTy = 0 .  (4.2.11) 

Because of the assumptions, for M large it is possible to add positive multiples 
of (4.2.7) and (4.2.8) to yield 

P 
T aoSM + E p T T T Uk(a~x# + aksMr)(aksm) <- O, 

k = 2  

for  all M > 0, all z > 0. Taking the limit as M--* 0% 
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P 
T -  T -  T -  aoS + ~ , T Uk(a~x# + a~sz)(aks ) ~ O, for all ~- > 0.  

k = 2  

Using r = ~ and (4.2.11), the above implies that (4.2.10) is true. 

CASE (ii). U;(M)---,oo, U~(-M)--->/3, 1/31 < oo, as M---->o~. 
Dividing (4.2.7) by U'I(M) and taking the limit yields 

a ~ r ~  0.  (4.2.12) 

Taking the limit in (4.2.8) yields (for all ~-> 0) 

P 

r-  /3(ar~) + aks,r)(a~s) <~ ao s + ~ p T T -  T -  U~(akx# + O. (4.2.13) 
k = 2  

Because of (4.2.12) it follows that 

U ~ ( a l x #  + alffr ) >! i~ . 

Then using (4.2.12) again it follows that 

(a'(w + a[w <<- (a[w . 

With this, the left hand side of (4.2.10) is ~< the left hand side of (4.2.13) 
(evaluated at r = ~) and therefore the desired inequality follows. 

CASE (iii). U'I(M)---> a, Ial < ~, U(-M)---> - %  as M---> ~. 
The proof is similar to that of Case (ii) and is omitted. 

CASE (iv). U'I(M)--> a, lal < ~, U(-M)--->/3,1/31 < as M---> ~. 
The proof of this final case is also omitted. 

It has been shown that for all possible behaviour of U'x, (4.2.10) holds. From this 
it follows that fro(X# + st) is bounded above by a bound independent of t. 

Because the functions f~(x) (i = 1 , . . . ,  rn - 1) are convex functions it follows 
that f / (x#  + gt) ~< b i for i = 2 , . . .  m - 1. By Theorem 54 in [5] it follows from the 
assumption that the nonempty region satisfying (4.2.1) and (4.2.2) is bounded 
that all points on the ray x #  + k-t cannot satisfy a finite perturbation of these 
inequalities. This contradiction proves the theorem. 

We note that continuous differentiability of the functions is not the key 
requirement for this method. The use of a subgradient at M instead of U'(M) 
would also suffice. The main requirement is the property that subgradients of 
unary convex functions are nondecreasing. 

Suppose a set of inequality constraints has the form 

Pi 
T aioX + ~,  T Uik(aikx ) <~ b i , for i = 1 . . . .  , m ,  (4.2.18) 

k = l  
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where the Uik's are c o n v e x  C 1 functions of a single argument. A general 
algorithm which replaces these with a set of linear inequality constraints is stated 
below. 

Convex Linear Replacement Algorithm 

The general idea is to use the convex differentiable inequality on all the nonlinear 
U~k's defining the inequality constraints (4.2.18) as indicated in the previous 
development.  There  is one matter  which must be addressed. 

Applied recursively, the method generates a0's which depend upon the values 
of the derivatives used at the previous approximations. Thus we can generate 
successive bounded sets when M is large only if the inequalities (4.2.7) and 
(4.2.8) have a vector a 0 which is of a smaller order than the U'(M) which appears 
there. Dividing (4.2.7) by U'(M) or (4.2.8) by U'( -M)  will not necessarily drive 
the term involving a~s M to zero. For  this reason, each time the subalgorithm is 
invoked, the M used must take into account the previous ones and is a function of 
the iteration number.  

Iteration O. Denote  by L 0 the set of inequality constraints (4.2.18). Let  M 0 = 1, 
let M be a preassigned number >1. 

Iteration l, l t> 1. Available is a set Lt_ 1 of inequality constraints, each having the 
form (4.2.2). If all the constraints are linear, the algorithm is done. Otherwise, 
pick some nonlinear term from one of the constraints. Without loss of generality 
suppose the unary convex term is UIK. 

If l = 1, set M 1 = M. 
If 1 > 1, a more complication choice for M t is required. 
The value az0 is a function of derivatives of the previous approximations, and 

by induction can be regarded as a function of M. Thus az0 = axo(M ). 
The value M t to be used depends upon the case involved. If UzK is of Case (i), 

M l = MI(M ) should be picked large enough so that 

and 

I laz0(M)II /U'IK[Mt(M)]~0,  (4.2.19) 

alo(M ) / U'n~ [- Ml(M)]---> O, (4.2.20) 

as m---> ~. 
Case (ii) requires only that (4.2.19) hold, and Case (iii) requires only that 

(4.2.20) hold. Case (iv) only requires that M z go to infinity, so it is set equal to M. 
After  the selection of Mz, the convex replacement subalgorithm is to be used on 

the term U/r. 

T H E O R E M  4.2. If  M is sufficiently large, and if the set of points feasible to 
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(4.2.18) is nonempty and bounded, then the resulting set of linear inequalities 
produced by the above algorithm is a bounded nonempty set. 

Proof. The proof  follows inductively from Theorem 4.1 and the properties 
stated above which are required to hold for the M~'s. 

It is worth mentioning here that there is a trade-off in choosing M. One can speed 
up the algorithm by starting with a very big M. The cost of doing this is having a 
very loose bound. In fact there is a specific M that gives the most tight bound but 
it is hard to determine. 

There  are two algorithms derived from the above which can be used to find 
bounds for a set given by the convex inequality constraints (4.2.18). 

The  first algorithm is to generate a sequence of unbounded values {M(q)}.  At  
the qth iteration generate the linear inequality constraints using the convex 
replacement  algorithm with M = M(q). Then use Fourier 's method for finding 
bounds as applied to this set of linear inequalities. If Fourier 's  method indicates 
that the set satisfying the linear inequalities is not bounded the procedure is 
initiated again for M(q + 1). At  iteration k, we use M equal to M l+~k, thus 

lim {M~+~(~-~/MI+~k}--~ O. 
k---~oo 

If the original set of inequalities is bounded,  eventually the set of linear 
inequalities will be bounded and Fourier 's  original method will find some 

bounds. 
A second method is to generate all the coefficients symbolically as a function of 

M. Fourier 's  method would be applied to the symbolic coefficients and bounds 
would be found in terms of M. A search on M would then be made to find if for 
large values, the variables are bounded. 

Nonconvex Case 

The desirable property of inherited boundedness can sometimes apply in the 
convex case as indicated above. But it is not true for the nonconvex case as seen 
in the following example. Thus the technique suggested above is just a heuristic 
one for the general case. 

E X A M P L E  4.2.3. Consider the set of inequality constraints, gl = x 2 ~  1 ~-y2, 

g2 = x -  2y ~< 1, and g3 = - x  + 3y ~< 1. It will be shown in Section 4.6 that this 
defines a bounded set of points. 

We will expand X 2 around M and - M .  Thus the first inequality above is 
replaced by the two constraints 

L1 = ] q_ y2  q_ M E _ 2 M x  >! 0, 
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and 

L 2 = 1 + y2 at - M 2 + 2 M x  >! 0 .  

We will show that eventually points along the line x - 2 y  = 1 (as x--> - ~ )  satisfy 
these inequalities (as well as - x  + 3y ~< 1). Clearly the first inequality above is 
satisfied for any x < 0. Make the substitution x = 2y + 1 in the second inequality. 
This gives the one dimensional inequality 

L3 =y2 + 4 m y  + M 2 -t-2M + 1 >10. 

Clearly no matter how large M is, as y--->-~, this inequality will be satisfied. 
Thus for all y small, the point (2y + 1, y) satisfies the four inequalities generated 
by replacing the original nonlinear inequality by two constraints using the 
differential inequality. 

4.3. AD HOC METHODS FOR FINDING A FUNCTIONAL BOUND ON A SINGLE 
VARIABLE 

In this section we explore ad hoc methods for generating from an inequality of the 
form 

h(xj)  <~ ~ gj(xj) + b 
j=l  
j~J  

inequalities of the form 

+ <- + 
j=l j=l  
j #Y  y#y 

Our aim is to transform a functional bound on a function of the single variable 
xj into functional lower and/or upper functional bounds on the single variable 
itself; with the stipulation that the bounding function forms be separable in the 
other variables. There seems to be no general algorithm which can be stated, but 
only special cases cited for which this is possible. 

This is often done through inverse functions. Three examples of useful 
inequalities are given below. 

ak Z lakl ~ 
- -  k = l  

LN a k >t LN(a k / p ,  whena k > O ,  k = l , . . . , p .  

EXP a k ~ ~ E X P ( p a k ) .  
- k = l  
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E X A M P L E  4.3.1. h(xl) = (xl) 2. 

It can be easily shown that 

- Igj(xj)l~ 5 -1b t  ~ <~ xl <~ ~ I&(xj)l ~ + l b l  ~ �9 
j=2 j=2 

The use of this in finding bounds is illustrated by the example in Section 5.1. 
The set of inequality constraints is: x 2 ~< y2 + 1, x - 2y <~ 1, - x  + 3y ~< 1. Using 
the general result above, the nonlinear inequality yields the two inequality 
constraints: 

- l y l -  1 <~x<-}yl + I .  

It will be shown rigorously in Section 4.6 that the resulting region (using the two 
given linear inequalities above) is bounded. 

4.4. CONVERTING SYSTEMS OF NONSEPARABLE CONSTRAINTS TO EQUIVALENT 
SYSTEMS OF SEPARABLE CONSTRAINTS 

A function f(x) is a separable function of the n variables ( X l , . . . ,  xn) if it has the 
form 

f(x) = s fj(xj). 
j=l  

In this section we give a way of converting a system of inequality constraints of 
the form 

g~(x)<-bi, i = l , . . . , m  (4.4.1) 

to an 'equivalent' set of inequality constraints involving more variables and more 
constraints. Suppose the set of variables in the separated set is (x, y), where 
y E E q, and the separated set of inequality constraints is 

s q 
Gq(xj) + ~, Hi~(yk)<- d i , i= 1 , . . . ,  M .  (4.4.2) 

j=l  k=l 

The two sets are considered equivalent if the following is true: 

(i) if x satisfies (4.4.1), then there is a y such that (x, y) satisfies (4.4.2), and 
(ii) if (x, y) satisfies (4.4.2), then x satisfies (4.4.1). 

It is not known how to separate all problems. We assume here that the functional 
forms defining (4.4.1) are not separable because they have product terms and/or  
they involve unary functions of more than one variable. The process to separate 
such problems is well-known. A discussion of it is contained in McCormick [25, 
28]. We note the obvious fact that an equality constraint can be written as two 
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inequality constraints. The process of separation involves the recursive use of the 
two steps A and B below. 

Step A. If a cause of nonseparability in a system of inequality constraints is the 
existence of a term of the form T[t(x)] where T(t) is a unary function and t(x) is a 
function of more than one variable; introduce a new variable y, and equality 
constraint y = t(x). Replace T[t(x)] by T(y) wherever it occurs. 

Step B. If a cause of nonseparability in a system of inequality constraints is a 
product  term of the form u(x) * v(x), introduce two new variables w, z and two 
equality constraints w + z = u(x), and w - z = v(x). Replace u(x) * v(x) by w 2 - 
z 2 wherever  it occurs. 

It is easy to show that the sets of inequality constraints generated by these steps 
are equivalent (see McCormick [25] for a proof of this). 

Systems of inequalities involving factorable functions can be separated [28]. An 
example of a function which to date has not been able to be separated is the 
gamma distribution function: 

fo ([(xlx2)X2t(xz-~)e -xlx2t]/F(x2) ) dt 

(see McCormick [27, p. 83]). 

4.5. THE GENERALIZED FOURIER METHOD 

The basic idea behind the generalized Fourier method is tot take a system of 
nonseparable inequality constraints and convert it to a system of separable 
inequality constraints. Techniques are then applied to this latter set which 
hopefully generate lower and upper bounds on the variables. If bounds are found, 
they are valid ones for the variables satisfying the original set of inequality 
constraints. Except in special cases however, there is no guarantee that the 
separated system of inequality constraints defines a bounded set. The algorithm 

requires three separate processes. 

Process One (creation of a separable set of constraints). 
The  set of separated inequality constraints consists of three parts: set A, set B, 

and set C. 
Set A is obtained by using the techniques of Section 4.4 on the set of original 

inequality constraints. This will, in general, have more variables and constraints 

than the original set. 
Next,  apply the techniques of Section 4.2 to the convex unary terms of the 

original set of inequality constraints. This creates a set of partially linearized 
constraints. Apply the separation techniques of Section 4.4 to this partially 
linearized set. This results in the set B. 

Next apply the ad hoc techniques of Section 4.3 to the union of sets A and B. 
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The constraints resulting from these constitute set C. The union of sets A, B and 
C is the input to the second process. Call this set S 1. 

Process  T w o  (reduction of separable constraints to constraints in only one 
variable). 

The  techniques of Section 2 are applied to set S x to attempt to 'eliminate' the 
variable xl.  If this is sucessful, this results in a set S 2 which contains separable 
constraints in the variables ( x 2 , . . . ,  XN). 

In general, at the p th  iteration of the second process, there is a set of separable 
inequality constraints Sp which contains only the variables ( X p , . . . , X n ) .  The 
techniques of Section 2 are applied to this set to eliminate Xp. If successful, a set 
Sp+~ results which contains only the variables ( X p + l , . . .  ,XN).  Process Two 
terminates when the set S n has been created. 

To show specifically how the techniques of Section 2 apply, consider without 
loss of generality that we are at the beginning of the p th  step in the above 
process. Available a r e  mp constraints of the form: 

N 

gip(Xp) <~ E -- giy(X]) + bi , i = 1 , . . . ,  mp . 
j = p + l  

Suppose for two constraints, the Kth and Ith there exists a scalar a > 0, and a 
scalar/3 such that: 

O<- gzp(Xp) + agKp(Xp) + / 3 ,  for - o o < x p  <oo.  

The  inequalities obtain that: 

N 

E 
j = p + l  

glj(Xj) - b I <~ - gip(Xp) ~ aggp(Xp) + fl 

] <~a - g K i ( x j ) + b  K + f t .  
1- 1 

Combining the first and last terms yields an inequality which is separable in the 
variables (Xp+l , . . .  , XN)- 

Process  Three (finding bounds on x s . . . .  , Xx). 
The set S N has constraints only on the single variable x s .  The techniques of 

Section are used to find a lower and upper bound on x s .  

If this is successful, denote these bounds by L N and Us.  These bounds with the 
set of constraints SN_ 1 can be converted, using standard techniques of interval 
arithmetic [29], to a set of constraints in only the variable XN_ 1. Again, the 
techniques of Section 3 are used to find a lower and an upper bound on XN_ 1. 

This backward process is repeated: i.e., the bounds {Li, Ui} , i = p + 1 , . . . ,  N 

are used with techniques of interval arithmetic to create constraints on the 
variable Xp. The techniques of Section 3 are used on these constraints to create a 
lower and upper  bound on Xp. If each inductive step is successful, the final result 
is a set of bounds on all the variables. 
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More  specifically, assume that the bounds {L i, U/} for i = p  + 1 , . . . ,  N are 
available. Set Sp which was constructed during Process Two contains constraints: 

N 

gip(Xp)  <<- ~ - g i j (Xp)  + bi , i = l ,  . . . , m p  . 
j = p + l  

Techniques of  interval arithmetic can be applied to yield upper  bounds on the 

right hand sides. 
Then the techniques of Section 3 can be applied to find a lower and upper  

bound on Xp. 

4.6. E X A M P L E S  OF  T H E  USE OF T H E  G E N E R A L I Z E D  F O U R I E R  M E T H O D  

E X A M P L E  4.6.1. Consider the constraints 

g l = x 2 < ~ y 2 + l ,  g 2 = x - 2 y < ~ l ,  and g a = - X + 3 y < ~ l .  

Using the inequality f rom example 4.3.1. results in 

Ixl lyl + 1 (a) 

x ~< 2y + 1 (b) 

and 

- x  ~< - 3 y  + 1.  (c) 

Adding (a) and (b) yields 0 ~  < lyl + 2y + 2 which implies y i> - 2 .  Adding (a) and 
(c) yields 0 ~< [y[ - 3y + 2 which implies y ~< 1. Adding (b) and (c) also implies 

y ~< 1. Substituting the bounds on y back into the original constraints implies 
x v3 .  

E X A M P L E  4.6.2. The inequality constraints are 

x 2 + (x 1 + Xa) 2 + 2 x  3 ~< 19, 

- -X  2 q- (X I -I- X2) 3 ~ 8 ,  

and 

2x 1 - 2x 2 + x 3 ~< 20. 

Using the convex differential inequality on (a), at 

x l + x  3 = 4 ,  and x a + x  3 = - 4 g i v e s  

8x 1 - 2x 2 + 10x 3 ~< 35 

and 

(a) 

(b) 

(c) 

(d) 

- - 8 X  1 "J- X 2 --  6X 3 ~< 3 5 .  (e) 
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Def ine  x 4 = X 1 -1- X 2 . T h e n  (b) is equivalent  to 

and 

- x  2 + x34 <<- 8 ,  

__Xl __ X2 ql_ X4 ~ 0 , 

Xl qt_ X 2 _  X4 ~ 0  . 

We now el iminate xa. 

4(c) + (e) ~ - 7 x  2 - 2x 3 ~<115 

(d) + (e) f f  2x 2 + 4 x  3 ~<70 

(c) + 2(g) ~ - - 4X  2 -t- X 3 + 2X 4 ~<20 

(d) + 8(g) ~ - 7 x  2 + 10x 3 + 8X 4 ~<35 

(e) + 8(h) ~ 9x 2 - 6x 3 --  X 4 ~35  

3 ~<8 
( f )  ~ - - X  2 q- X 4 

We now el iminate x z.  

2(i) + 7(j)  ~ 2 4 x  3 

9(i) + 7(m) f f  - 6 0 x  3 - 7x 4 

2(j)  + k ~ 5 x  3 + 2x 4 

7(j)  + 2(1) ~ 4 8 x  3 + 16x 4 

( j ) + 2 ( n )  ~ 4 x  3 + 2 x ]  

In  this 

9(k) + 4 ( m ) ~  - 1 5 x  3 + 14x 4 

9(1) + 7(m) ~ 48X 3 + 65X 4 

m + 9(n) ~ - 6 x  3 - -  X 4 q-  9x] 

~<720 

~<1280 

~<160 

<~560 

~<86 

~<176 

~<560 

~<107 

example  it is no t  necessary to el iminate (x3). 

f rom (0): x 3 ~ 30 ,  

f rom (p):  - 7 x  4 ~< 1280 + 60(30) ~ x 4/> - 4 4 0 ,  

f rom (t):  176 i> - 1 5 x  3 + 14x 4 >i - 1 5 x  3 + ( 1 4 ) ( - 4 4 0 )  ~ x 3/> - 4 2 2 . 4 ,  

f rom (q): 160 I> 5x 3 + 2X 4 I> (5)(--422.4)  + 2 x  4 ~ x 4 ~< 1,136.00,  

f rom (i): --7x 2 ~< 2(30) + 115 f f  x 2 > / - - 2 5 ,  

f rom (j):  2 x  2 <~ 4(422.4) + 7 0 ~ x  2 ~< 879.8 ,  

f rom (c): 2x 1 ~< 2(879.8) + 422.4 + 2 0 ~ x  1 ~< 1,001.0,  

f rom (e): - -8x I ~< 25 + 6(0) + 35 ~ x 1 > / - -4 .375 .  

(f) 

(g) 

(h) 

(i) 

(J) 
(k) 

(1) 

(m) 

(n) 

(o) 

(p) 

(q) 

(r) 

(s) 

(t) 
(u) 

(v) 
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R E M A R K S  from (r): 560 i> 48x 3 + 16x 4 ~ 560/> 48(-422.4)  + 16x 4 ~ x 4 ~< 
1,302.2, from (u): 560/> 48x 3 + 65x 4 ~ 560 t> 48(-422.4)  + 65x 4 ~ x 4 ~< 300, but 
from (q) we found that x 4 ~< 1,136.00. This demonstrates that we can get different 
bounds by different back substitutions. According to Fourier one should exhaust 
the combination of the given set of inequalities to find all possible bounds then 
choose the tightest one. 

5. Summary and Conclusions 

A motivation for this paper was to provide bounds on problem variables, since a 
key requirement of many of the most powerful existing techniques for solving 
nonconvex problems is that bounds on problem variables be available. 

In this paper,  different methods for obtaining lower and /or  upper bounds on 
the problem variables are developed in order to enhance the methodology for 
solving nonconvex programming problems. Fourier in 1826 established a method 
for manipulating linear inequalities to obtain bounds on variables. This method is 
generalized in Section 4.5 to find bounds on variables satisfying nonlinear 
inequality constraints. The idea we present is to reduce the systems of separable 
nonlinear inequality constraints to inequalities involving a single variable. An 
inductive method obtains bounds on all the other variables. This requires the 
inequality constraints to be separable. A method of converting the certain large 
classes of nonlinear inequalities to an equivalent set in which the functions are 
separable was presented in McCormick [28]. Examples were provided to demon- 
strate the use of this approach. 

Several techniques to find bounds on a single variable from inequality con- 
straints are introduced in Section 3. Section 2 as well, characterizes functions and 
situations in which one can analyze the global behavior of the sum of two or more 
functions of the same variable. The general problem considered here is stated in 
the following simple form: given two functions fl(x) and f2(x) of a single variable 
x, find a positive scalar a and a scalar /3 such that afl(x ) + fl >~f2(x) for 
- ~  < x < +~ .  Two different methods are devised to do this. The application for 
these techniques introduced in Sections 2 and 3 are given in Section 4.5 in the 
generalization of Fourier 's  idea. 

Fourier 's  techniques [6] for manipulating linear inequalities to obtain bounds on 
variables is generalized in Section 4 for the case of nonlinear inequalities. Three  
subalgorithms required are outlined. These include: (1) a way of replacing certain 
nonlinear convex inequality constraints by linear inequality constraints, (2) ad hoc 
methods for finding a functional bound on a single variable, and (3) a general 
method for converting systems of nonseparable constraints to equivalent systems 
of separable inequality constraints. Those three subalgorithms lead to the general- 
ized Fourier  method for taking a system of separable nonlinear inequality 
constraints and finding bounds on the variables implied by these constraints. 
Examples were provided to demonstrate the use of this technique. 
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A natural extension of this paper would be the investigation of the use of the 
inverse function techniques on functions of more than one variable in order to 
eliminate variables and obtain bounds on the function variables. 

N o t e  

It is worth mentioning that many papers presented at the ORSA/TIMS meeting in Philadelphia on 
29-31 October 1990 [see ORSA/TIMS Bulletin Number 30] needed or assumed the existence of 
bounds on problem variables and/or objective function value. We cite here according to session 
number some of these papers: Amarger [MC30.4], Chang [TB30.4], Fisher [TA3.3], Keller [TB30.1], 
Konno [MB30.2], Lazimy [MC30.1], Nielson [MD30.5], Savard [TA30.1], Yang [MB30.3], Zhu 
[MB30.1]. 
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