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Abstract. We review various relaxations of (0,1)-quadratic programming problems. These include 
semidefinite programs, parametric trust region problems and concave quadratic maximization. All 
relaxations that we consider lead to efficiently solvable problems. The main contributions of the paper 
are the following. Using Lagrangian duality, we prove equivalence of the relaxations in a unified and 
simple way. Some of these equivalences have been known previously, but our approach leads to short 
and transparent proofs. Moreover we extend the approach to the case of equality constrained problems 
by taking the squared linear constraints into the objective function. We show how this technique can 
be applied to the Quadratic Assignment Problem, the Graph Partition Problem and the Max-Clique 
Problem. Finally we show our relaxation to be best possible among all quadratic majorants with zero 
trace. 
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1. Introduction 

1.1. BINARY QUADRATIC PROGRAMMING PROBLEM 

Consider the quadratic objective function 

q(x) := xtQx - 2ctx, 
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where Q is an n • n symmetric matrix and c E Nn. We study the general ( - 1 ,  + l ) -  
quadratic programming problem 

(P )  # * : = m a x  q(x), x E F A S ,  

where F = { - 1 ,  l} n, S C ~n, and F A S ~ 0. The (0,1)-quadratic programming 
problem is equivalent to (P) via the transformation x = 2y - e, where y E {0, l} ~ 
and e is the vector of ones. 

Problem (P), without the extra complication given by the set S, is NP-hard. 
One approach to get efficiently solvable problems, often used in the literature, 
is to relax the constraints and perturb the objective function in order to obtain 
upper bounds. In this paper we study several relaxations for (P) with the additional 
restriction provided by the set S. Moreover, we study the possible perturbations, 
in the data, that need to be considered to maintain tractable relaxations. Our main 
result is that all the bounds we consider can be obtained from the Lagrangian 
dual relaxation of an appropriate quadratically constrained equivalent program. 
This is done by adding appropriate redundant constraints and exploiting the hidden 
semidefinite constraints that occur in quadratic programming. Moreover, up to 
a normalization, the Lagrangian approach provides all the correct perturbations 
needed. Therefore, the Lagrangian dual is shown to be a very powerful tool, and 
semidefinite relaxations are shown to be equivalent to quadratic relaxations. This 
takes the guesswork out of forming semidefinite relaxations and shows which ones 
are guaranteed to be equivalent even though they may appear very different. All 
of the bounds that we discuss are tractable, i.e., can be found in polynomial time. 
This includes the trust region bounds and the box constrained bound. Therefore we 
have not added comments to this effect. 

An illustration of (P) is the Quadratic Assignment Problem (in the trace formu- 
lation), see, e.g. [8], 

(QAP) max• q(X) := trace ( A X B  - 2C)X t, 

where lI denotes the set of n • n permutation matrices, A, B are symmetric n • n 
matrices, and C is an n • n matrix. In this case, the feasible set (of matrices) is 
the set (F  translated) of (0,1)-matrices intersected with the set (S translated) of 
matrices whose row and column sums are all 1. This shows the usefulness of the 
set S in (P). (This set is used in branch and bound applications as well.) 

Another example, and in fact an equivalent problem when S is the whole space, 
is the Max-Cut Problem. Let G = (V, E)  be an undirected graph with edge set 

V" n V = { ,}i=1 and weights wij on the edges (vi, vj) E E. We want to find the index 
set 77 C { 1,2, .. .  n}, to maximize the weight of the edges with one end point with 
index in 37 and the other in the complement. This is equivalent to 

(MC) max � 8 9  wij(1 - xixj), x E F, 

where xi = 1 if i E 5[ and - 1  otherwise. This is an instance of (P) with a 
pure quadratic objective function. The corresponding matrix Q has components 
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qij = - - W i j ,  with 0 diagonal. Alternatively, Q can be taken as the Laplacian matrix 
of the graph, see, e.g. [6]. The resulting eigenvalue bound and the equivalent 
semidefinite bound have been recently used in numerical studies and found to do 
exceptionally well, e.g. [13]. Moreover, the semidefinite bound has been studied 
in [6] and shown to have a particular good performance index, see [10]. 

Other instances that we consider include: graph partitioning and max-clique 
problems. 

1.2. HISTORICAL BACKGROUND 

Quadratic bounds using a Lagrangian relaxation have been extensively studied 
and applied in the literature, for example in [16] and, more recently, in [17]. 
The latter calls the Lagrangian relaxation the "best convex bound". Discussions 
on Lagrangian relaxation for nonconvex programs also appear in [9]. In [23] it 
was shown that several quadratic type bounds considered in the literature, and 
in particular the ones mentioned in the abstract, are actually equal. A similar 
phenomenon occurs for linearizations of (P), such as in roof duality, see, e.g. [12], 
where many bounds obtained from various linearizations have been shown to be 
equal and, in fact, they have been shown to be equal to the Lagrangian dual of a 
linearized problem, see [ 1 ]. 

�9 Semidefinite relaxations have recently appeared in relation to relaxations for 
0-1 optimization problems. In [19], a "lifting" procedure is presented to obtain a 

�9 7Z2  problem in ~R ; and then the problem is projected back to obtain tighter inequalities. 
See also [3]. Several of the operators that arise in our applications are similar to 
those that appear in [19]. However, our motivation and approach is different. A 
discussion of several applications for semidefinite relaxation appears in [2]. 

1.3. OUTLINE 

This paper is organized as follows. After several preliminary notions and defini- 
tions, we study (P) in the simple case that S = ~R 'z. This prepares the way for the 
general case and provides intuition and motivation for deciding which relaxations 
and which parametrizations are important. In Section 2.1 we present several relax- 
ations for (P). These include: the trivial relaxation of ignoring the constraint set F ;  
relaxing F to the sphere and then to the box; homogenization by moving to a larger 
dimensional space; and lifting, to the space of semidefinite matrices. Many of these 
relaxations are well known in the l~terature. The purpose of presenting them is to 
show, in Section 2.2, that all these different looking bounds are actually obtained 
from, and equal to, the Lagrangian dual of a quadratically constrained equivalent 
problem to (P). Moreover, the Lagrange multipliers provide the perturbations used 
in these bounds. Then, in Section 2.3 we show that the perturbations that arise from 
the Lagrange multipliers provide all the quadratic majorants with zero trace. 
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We then continue in Section 3 with S defined by linear equality constraints. 
The development is very similar to the one for the simple S = Nn case. We 
show that the correct hidden semidefinite constraint provides the correct way of 
introducing linear constraints to the objective function. This is done by squaring 
the constraints. This provides a recipe for obtaining a quadratic relaxation, as well 
as the semidefinite relaxation, for hard combinatorial problems. 

We then present several specific applications in Section 4. The quadratic assign- 
ment problem, QAP, is treated in Section 4.1. The graph partitioning problem is 
treated in 4.2. Finally, the max-clique problem appears in 4.3. 

1.4. PRELIMINARIES 

We will use the following notations: Diag (v) denotes the diagonal matrix formed 
from the vector v, while the adjoint operator, Diag * (M) = diag (M), is the vector 
of the diagonal elements of the matrix M; R ( M ) ,  N ' (M) denote the range space 
and null space, respectively; e is the vector of ones and ei is the i-th unit vector; 
for symmetric matrices M1 _ M2 (M1 -< M2) refers to the Lrwner partial order, 
i.e., that Ml - M2 is negative semidefinite (negative definite, respectively); similar 
definitions hold for positive semidefinite and positive definite; v _< w, (v < w) 
refers to coordinatewise ordering of the vectors; conv (S) is the convex hull of the 
set S; Amax (M) ()~min (m) )  denotes the largest (smallest) eigenvalue of a symmetric 
matrix M. The space ofn x n symmetric matrices, denoted Sn, is considered with 
the trace inner product < M, N > = trace M N .  

We use the Kronecker product, or tensor product, of two matrices, A | B, 
formed from the matrix blocks AijB, when discussing the quadratic assignment 
problem QAP; vec X denotes the vector formed from the columns of the matrix X, 
while Mat x denotes the matrix formed from the vector z. The Hadamard product 
or elementwise product, is denoted A o B. The Kronecker product gives rise to 
generalized notions of trace and diagonal. For a (n 2 + 1) x (n 2 + 1) matrix Y, 
b~ (Y) is an n x n matrix called the block diagonal sum of Y. It is formed 
by ignoring the first row and column of Y and then summing the next n blocks of 
n • n principal submatrices. The adjoint operator is denoted B~ (S), i.e. for 
the n x n matrix S, we get a block diagonal (n 2 4- 1) x (n 2 + 1) matrix with the 
first row and column 0 and n blocks of the matrix S on the diagonal. 

2. Spec ia l  C a s e  that  S = ~R n 

In this section we first consider the special case when S is the whole space. The 
problem (P) is then equivalent to the max-cut problem. This section prepares the 
way for the general problem (P). We see that the Lagrangian dual provides a way 
of finding semidefinite relaxations as well as finding the proper parameters, or 
perturbations, to include in the relaxations. In fact, the Lagrange multipliers are 
exactly the correct perturbation parameters. 



RECIPE FOR SDP RELAXATION FOR (0,1)-QUADRATIC PROGRAMMING 5 5 

2.1. RELAXATIONS 

The problem (P) is NP-hard. The common approach is to solve relaxations and 
obtain bounds which can be incorporated in a branch and bound routine. We now 
derive several new and well known bounds. The motivation for these bounds 
varies. For example, one bound relaxes the constraints to the unit ball of length 
n, while another relaxes the constraints to the convex hull, i.e., to the unit cube. 
Our motivation is to show that that all these bounds are actually equal to the one 
obtained from a Lagrangian relaxation. 

We first note that, perturbing the diagonal of Q does not change the objec- 
tive function q on the feasible set F if, in addition, we subtract the sum of the 
perturbations, i.e. 

q~(x) : =  xt(Q 4- Diag (u))x - 2ctx - u t e  

= q(x), Vx C F. (2.1) 

Let us define the trivial bound obtained from ignoring the constraints and allowing 
the diagonal perturbations. We define 

fo(u) := max q~(x). (2.2) 
x 

This function can take on the value +c~. We then get the following trivial bound. 

#* _< Bo := min fo(u) = min fo(u). (2.3) 
~t t e = O  u 

We now see that this bound is equivalent to several others as well as to the smallest 
quadratic bound. (This extends the equivalences presented in [23].) 

We can minimize over the unconstrained parameter u or add the restriction to 
ute = 0. This can be seen from the optimality conditions for min-max problems. 
(Details can be found in [23].) In addition we can restrict the parameters and 
avoid infinite values for the inner maximization problem by adding the hidden 
semidefinite constraint, i.e., we use the fact that a quadratic function is unbounded 
if the Hessian is indefinite. (Note that a quadratic function is bounded above if 
and only if the Hessian is negative semidefinite and the stationarity equation is 
consistent.) 

#* _< Bo = Q+DiaI~?~).~0 ]0(u). (2.4) 

The feasible set for (P) lies on the sphere of radius v/-n. Then one relaxation of 
(P) is 

f l (u)  := max q~(x). (2.5) 
Ilxll2=,~ 

This yields our next bound 

#* < t31 := min f l (u)  = min fl  (u). (2.6) 
UtC~0 U 
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The inner maximization problem is called a trust region subproblem, see e.g. [21]. 
This problem provides an important technique in unconstrained minimization. This 
bound will provide the central tool in our analysis. 

We can replace the spherical constraint with the box constraint. 

f2(u) := max q~,(x). (2.7) 
Ixil<_l 

After adding the semidefinite constraint to make the bound tractable, i.e. to make 
the calculation of f2 tractable, we get our next bounds. 

#* < B2 := min f2(u) = m i n k ( u )  (2.8) 
- -  U t e = O  u 

and 

~* <__ B2 = Q+Dl~ag?u)MOf2('l-t). (2.9) 

Given Q and c, defne the (n + 1) x (n + 1)-matrix QC by adding a 0-th row 
and column, so that 

q~o = 0 
q~i = qiCo = - c i  for i > 0 

c = f o r i , j  > O, qij qij 

i.e. 

1 QC := . (2.10) 
- c  Q 

In order to have analogous functions q~(y) and fi(u) as in the previous cases, let 
us introduce 

q~(y) := yt(QC + diag (u) )y - ut e. (2.11) 

Note that qC reduces to q~ if the first component Y0 is + 1. The equivalent relaxed ' It  

problem is 

f~(u) := max q,~(y) = (n + 1)Amax(Q c + diag (u)) - ute. (2.12) 
IMI2=n+l 

Just as for f l ,  we can restrict ute = 0. Now a bound for (P) is 

B~ := min .f~(u) = m~nf~(u). (2.13) 
~ t e ~ 0  

Similarly, we get equivalent bounds B~ and homogenized bounds for the other 
models. 

The above argument shows that we can homogenize the problem by moving 
into a higher dimension. Therefore, we can consider the special case that e = 0. 
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TABLE I. Bounds for (P) 

Bo = minu max~ qu(x) 
B1 = min~max~,x=~ q~(x) 
B2 : min~ max_~<x~_<x qu(x) 
B3 : max{traceQCY : d iag(Y)  = e, Y >- 0.} 

B~ = min~ maxy~u=~+~ q~(y) and other homogenized bounds. 

57 

Semidefinite programming has been applied to provide relaxations for combinato- 
rial problems, e.g. [18]. (See [2] for several examples.) In the case that c = 0, the 
relaxation to (P) is studied in [6] and shown to have a particular good performance 
index, see [10]. The relaxation comes from the fact that 

xt  Qx  = trace xt Qx = trace Qxx  t 

and, for x E F, Yij = XiXj defines a symmetric, rank one, positive semidefinite 
matrix Y with diagonal elements 1. Therefore, we can l/ft the problem into the high- 
er dimensional space of symmetric matrices. This yields the following relaxation 
and our bound 3. 

B3 := max trace Q Y  
subject to diag (Y) = e 

Y~-O.  

(Note that if Y is restricted to rank-one matrices, then the relaxation is equivalent 
to (P).) 

In Table I, we now summarize the upper bounds for (P) in the case that S is the 
whole space. We use the definition of the perturbed function qu but do not include 
the fact that we could add the restriction ute = 0, and/or the hidden semidefinite 
constraint, in all the bounds that use the perturbation. 

2.2 .  LAGRANGIAN DUALITY 

We continue to assume the simple case that S is the whole space. We now show 
that all the above relaxations and bounds come from the Lagrangian dual of the 
following equivalent problem to (P) 

(PE) max q(x) = x tQx  - 2ctx 
2 1, i = 1 , . . . , n .  (2.14) subject to x i = 

Note that the Lagrangian dual of (PE) yields precisely our trivial first bound/3o 
in (2.3). Our strategy is to add redundant constraints to (2.14) and exploit the fact 
that there is a hidden semidefinite constraint in the Lagrangian dual for problems 
where the Lagrangian is a quadratic function. 

Our analysis is based on the fact that the trust region subproblem, 

(TR)  tr* := max q(x), 
xt x=n 
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has a zero duality gap. More precisely, define the Lagrangian for the trust region 
subproblem with u = 0 

L(x,A) = x t O x -  2ctx + A ( x t x -  n). (2.15) 

T . ~ O R E M  1. With the Lagrangian for the trust region subproblem defined in 
(2.15), we get 

max min L(x, A) = min max L(x, A). (2.16) 
x A )~ x 

The left-hand side of (2.16) is equivalent to the trus t region subproblem (TR) while 
the right-hand side is the Lagrangian dual problem. This result is proved in [26] in 
greater generality, i.e., allowing an indefinite, or nonconvex, trust region constraint 
13 <_ x tCx <_ a, with general C = C t. A simpler proof is one that exploits the fact 
that the minimization problem in the right-hand side has the hidden semidefinite 
constraint that Q + AC ___ 0, i.e., the inner max problem is unbounded otherwise, 
see [28]. 

Let us now add the redundant constraint xtx = n to (2.14). The Lagrangian 
dual is then equal to bound B1 by Theorem 1, i.e. 

minmaxqu(x) + A ( x t x - n ) =  min max q~(x)= B1. 
u ,A  x u x t x = n  

But we can equate u + Ae = v and see that the left-hand side is equal to the trivial 
bound B0 as well, i.e. we have shown that 

B0 -- B1. (2.17) 

It is interesting to note that the trivial bound makes sense even in the case that 
c = 0, i.e., the hidden semidefinite bound results in a min-max eigenvalue problem 
with optimal value --ute. 

2 < 1. These constraints Now consider adding the redundant constraints xi _ 
describe the box constraints - 1  _< xi < 1. They have associated Lagrange multi- 
pliers A = (Ai), since Slater's constraint qualification holds at the origin. We see 

that 

S 2 = minmaxq~(x) 

n 

= min minmax q~(x) + ~ Ai(1 - x 2) 
u .~_>0 x i = 1  

= min max qu(x) 
"a x 

= B0, 

since we can let the new multipliers A be absorbed into the vector u. Thus 

Bo = B2. (2.18) 
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The same argument holds if we add the hidden semidefinite constraints first. 
Now consider the Lagrangian of the homogeneous problem in ~'~+ 1. We move 

the quadratic constraints in and out of the Lagrangian using Theorem 1. Here 
v, y E ~nd-1 U, X E 5}~n and we equate y with xo, x and v with u0, u. Equality of 
the bounds B~), B~, B] with each other follows from the above arguments. 

B~ = min max q~(y) = minmaxq~(y) 
v y t y = n +  1 v y 

= minmax u0(x 2 -  l) + xt(Q + Diag ( u ) ) x -  2xoctx - ute 
~ 0  X,X0 

= m a x  + D i a g  - - 
u x,x~=l 

---- Bo, 

for if x0 = - 1, then the sign of x changes. 
Finally consider the bound B3 in the special case that c --- 0. The generalized 

Slater's constraint qualification holds for this program and so the dual can be found 
from 

min max trace (QY)  - yt(diag (Y) - e), 
y rko  

see, e.g. [27]. This can be rewritten as 

min max trace ( ( Q -  Diag ( y ) ) Y ) +  yte. 
Y Y~-O 

The inner maximization yields the value cc unless Q - Diag (y) -< 0. This implies 
that the maximum is attained at Y = 0. Therefore the problem reduces to 

minimize yt e 
subject to Q - Diag (y) ~ 0. 

We can shift the semidefinite constraint to get 

Q - Diag (y - ety e) -< et---~YI. 
n n 

We can then use the substitution w -- y - ~-~-e and z = ~ to get the equivalent 
n n 

program 

minimize nz 
subject to Q - Diag (w) -< z I  

w t e  ~ 0. 

This last program is equivalent to the min-max eigenvalue problem or bound B 1 . 

This proves the following theorem. 

THEOREM 2. All the bounds discussed above (see Table I) are equal to the optimal 
value of the Lagrangian dual of the equivalent program ( PE ). 
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Therefore, these seemingly unrelated relaxations yield the same bound. This is 
obtained from using semidefinite duality. Moreover, as seen by experience with 
the max-cut problem, the dual pair of programs yields an efficient primal-dual 
semidefinite programming algorithm. In the sequel we discuss what happens when 
the constraint x E S is included, but first we study which perturbations are impor- 
tant for the relaxations. 

2.3. PERTURBATIONS 

We now return to the (-1,1)-quadratic program (P) but still assume that S is the 
whole space. The parameters in the above relaxations were restricted to pertur- 
bations in the diagonal of the matrix, i.e., we considered the perturbed quadratic 
functions 

q~(x) = x t ( Q  + Diag (u))x - 2ctx - ute. 

These perturbations did not change the value of the function on the feasible set 
F .  Moreover, exactly these perturbations arose repeatedly from the Lagrangian 
duals of appropriately chosen programs. A natural question arises whether we 
can improve the bounds by allowing more general perturbations in the matrix or 
whether the Lagrange multipliers provide the correct set of perturbations. Note that 
we can add a multiple of the identity to Q in order to add a constant to the function. 
Therefore, no constant is included in the definition (2.19). Moreover, if we knew 
the value of the error in the bound, then we could always subtract this constant and 
get a perfect bound. Therefore, we assume that the perturbation in the matrix Q 
satisfies trace (U) = 0. The case trace (U) 7 ~ 0 is much harder to analyse, and is 
omitted here. 

For U an n x n symmetric matrix and d C J~ ,  define the general perturbation 
in the data 

qU, d(X) = x t ( Q  + U)x  + (d - 2c)tx.  (2.19) 

We now show that the diagonal perturbations are the most general ones that we 
need to consider under the zero trace normalization. 

The following observation will turn out to be useful. 

LEMMA 3. Let U = (uij) be an n x n matrix. Then 

x t U x  = 2~trace (U). 
xEF 

Proof 

Z x t U x  = 

xCF 

2 

xcF i xCF i#j  
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= 2ntrace(U)+~--~uij( ~ 1 -  ~ 1) 
iCj \ x i =  j,xEF x i • x j , x E l  y 

= 2ntrace ( U ) +  E uij ( 2 n - l -  2n-l)" 

61 

[] 

LEMMA 4. Suppose that U is an n • n symmetric matrix. Then the following are 
equivalent: 

trace U = 0 and octUx _> 0, Vm E F ;  (2.20) 

xtUx = 0, Vx E F ;  (2.21) 

U is diagonal, and trace U = 0. (2.22) 

Proof Suppose (2.20) holds. Using Lemma 3, we conclude 

0 < ~ xtUx = 2ntrace (U) = O, 
xEF 

thus (2.21) holds. 
Next suppose (2.21) holds. Using the lemma again we note that 

0 = E x t u x  = 2ntrace (U), 
xEF 

thus trace (U) = 0. Now let i 7~ j be fixed. We have 

0 : E x t U x  ~-- 2 n - l u i j  ' 

xE F, xi--.~xj 

showing that U is diagonal as well, and (2.22) follows. 
Finally, (2.22) trivially implies (2.20). [] 

THEOREM 5. Suppose that qU, d is defined as in (2.19). Then the following are 
equivalent: 

t raceU = O, andqu, d(X) >_ q(x), Vx E F (2.23) 
qU, d(X) = q(x), Vx E F;  (2.24) 

U is diagonal, trace U = 0, and d -- 0. (2.25) 

Proof Without loss of generality we assume d = 0. Otherwise we homogenize 
by (2.10). Next note that in this case 

qu, d ( x )  - q(x) = x Ux, w E F. 

Therefore the theorem is implied by Lemma 4. [] 
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REMARK 6. The above perturbation results translate naturally to the (0,1)- 
quadratic program. This can be seen by by using the substitution �89 (y + e) for 
the (0,1)-variables and expanding the quadratic function q. The only perturbations 
of q that are needed are of the form 

Wi x2 - -  WiXi~ 

i.e., we perturb the diagonal of Q as before but then add a linear perturbation 
as well. This perturbation is exactly the one that arises by using the Lagrangian 
relaxation of x 2 - x~ = 0. This connection has also been observed in [4]. 

REMARK 7. If we fix certain components of the variable x at + 1 or - 1, then the 
above results can be applied to the principal submatrix corresponding to the com- 
ponents that are not fixed. Therefore, in a branch and bound algorithm framework, 
we need only consider diagonal perturbations of this principal submatrix. Note that 
if the components in the subset S are free, while those in the complement are fixed, 
and U is the perturbation matrix as above, then 

O=xtUx :x tsVsxs-~-Exi  (Eui 'J~J)  - ~ x t S c U S c x S c ' i E S  j~_s 

where S c denotes the complementary index set. The last term is a constant and can 
be assumed to be 0 by adding a multiple of the identity to U. The middle term has 
0 contribution since the components in S can be multiplied by - l ,  as seen in the 
proof of the above theorem. So we can conclude from the above theorem that the 
off diagonal terms of Us' are 0. 

3. General Case (P) 

We now consider the general problem (P) where the constraint set S is defined by 
linear equality constraints, i.e. 

S = {x E ~R n :Ax = b}, 

for some m • n matrix A and b C ~m. Our approach is to replace the linear 
constraint by the squared norm constraint to get the following equivalent problem 
to (P). 

#* = max q(x) = x t Q x  - -  2etx 
subject to Ilnx - bl[ 2 = 0 (3.26) 

z 1, Vi. X i = 

In this section we provide motivation for using the Lagrangian relaxation for 
the above quadratic program. The semidefinite relaxation is obtained as the dual 
of the Lagrangian relaxation. This provides a recipe for finding a relaxation and a 
primal-dual pair of programs for an interior point algorithm. 
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R E C I P E  

1. Replace (P) by the quadratic constrained program where the linear constraints 
are replaced by the norm squared constraint and the 4-1 (0,1 respectively) 
constraint is replaced by the squared variables being equal to 1 (x 2 - xi = 0, 
respectively). 

2. Take the Lagrangian dual of the quadratic constrained program to obtain a 
min-max problem of the Lagrangian. 

3. Homogenize the Lagrangian. 
4. Use the hidden semidefinite constraint to obtain a minimization semidefinite 

program. 
5. Take the Lagrangian dual of the resulting semidefinite program to obtain the 

maximization semidefinite relaxation of the original program (P). 

3.1. LAGRANGIAN RELAXATION 

Several difficulties arise from introducing linear equality constraints. One approach 
is to find a matrix Z such that 7~(Z) = .A/'(A) and then eliminate the equality 
constraints by substituting x = Zy. However, this can result in a complete loss of 
the easy combinatorial structure such as the 4-1 constraint. 

Another approach is to bring the equality constraints into the objective function 
using Lagrange multipliers, i.e. the new parametrized objective would be q;~ (x) = 
q(x) + At(Ax - b). However, the hidden semidefinite constraint is now V2q -~ 0, 
whereas the true semidefinite constraint should clearly be that the projected Hessian 
ZtV2qZ -< 0, or equivalently that V2q is negative semidefinite on the null space 
of A. This can create a duality gap in the Lagrangian relaxation. 

EXAMPLE 3.1. Consider the simple quadratic problem 

1 = m a x { - x  2 + x2"x2 = 1}. 

The Lagrangian dual yields 

1 < oo = m i n m a x - x  2 + x 2 + A(x2 - 1), 
A x 

and shows that there is a duality gap. However, if we replace x2 = 1 with (x2 - 
1) 2 = 0, then we have a zero duality gap, i.e. 

1 = m a x { - x  2 + x 2 " ( x 2 -  1)2= 0}, 

and 

i n f m a x - x  2 + x  2 + A ( x 2 - 1 )  2 = inf m a x - x  2 + x 2  2 + A ( x 2 - 1 )  2 
.~ x A<--I  X 

A 
= inf 

~<-1  1 + A 
1. 
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A similar example can be constructed with an additional ball constraint, if we 
use a pure quadratic objective function which is negative semidefinite and we add 
a trivial linear constraint A x  = 0, where A is nonsingular. 

It is interesting that the difficulty disappears if we use the quadratic form of 
the linear constraints [ l A x  - bl 12 -- 0. The following shows that changing to the 
quadratic constraint provides the correct hidden semidefinite constraint. 

PROPOSITION 8. Suppose that A is an m • n matrix and b E ~ .  Define 

q~(x)  = q(x)  - a ( A x  - b) t (Ax  - b). 

Then the following are equivalent: 

V2qa -< 0, for  some a E 
V2 q~ -~ O, for  sufficiently large a E 
V 2 q  -~ O, o n  A;(A) .  

Proof The proof of this well known result can be found in several books and is 
essential in, e.g., the theory of augmented Lagrangians. (See, e.g. [5, 20]). [] 

The above result shows that we can get the correct hidden semidefinite conditions 
by transforming the linear constraints to quadratic constraints. This provides further 
motivation and a possible explanation for the recent success of the lifting process 
into semidefinite programming. Moreover, we now see that lifting such a quadratic 
constraint, or trust region constraint, does not create a duality gap. (This lifting is 
actually equivalent to the lifting in the semidefinite relaxation, since the dual is 
actually the semidefinite relaxation.) 

THEOREM 9. Let K C ~ be a finite set and let A and b be as in Proposition 8. 
Then there exists ~ E ~ such that 

max{q(x)  : x E K ,  I laz  - bl] 2 = 0} 

Proof  Define the function 

h(A) := maxq(x)  - AIIax - bll 2 
xE I< 

and the set 

= max{q(x) " x E K, I IAx  - bll 2 0) 

= minmaxq(x)  -  [IAx - 5112 
~>0 x E K  

= m i n m a x q ( x ) -  Al[Ax - bll 2 
A x E K  

= maxq(x) - A I I A x -  bl[ 2, VA > A. 
x C K  

K~ := {x E K " h(A) = q ( x ) -  A I I A x -  b]12}. 

The function h is finite valued and convex and so subdifferentiable with subdiffer- 
ential 

0h(A) = c o n v  {-[[Ax~ - b[12 " x~ E K),}. 
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The function h is based on the well known quadratic penalty function in nonlinear 
programming, see, e.g. [20]. Since q is a "nice" function and bounded below on K,  
the results follow from the well known results on this penalty function. Note that 
the penalty function exhibits monotonic behaviour, so that we get the exact penalty 
function behaviour on the finite set K,  i.e., the existence of A. The fact that we do 
not need the nonnegativity restriction on A follows by noting that in this case - A  
gives a smaller value for each x. Also, an optimal positive point, A > 0, exists and 
0 E Oh(A). Since the elements in the subdifferential must be _< 0, this implies that 
there exists a feasible point xx which attains this minimum, i.e., this yields the result. 

[] 

4. Applications 

In this section we study several specific instances of (P) and show how to apply the 
recipe for relaxations and perturbations. In each case we derive a min-max eigen- 
value problem from the Lagrangian dual of an appropriately chosen quadratically 
constrained program. The dual of this dual problem provides a semidefinite relax- 
ation for the original problem. We do this for: the quadratic assignment problem; 
graph partitioning; and the max-clique problem. 

4.1. QUADRATIC ASSIGNMENT PROBLEM 

Typical relaxations for QAP, see the definition in Section 1, try to exploit the trace 
formulation and use perturbations on A, B separately. Current approaches have 
two serious drawbacks. They completely discard the nonnegativity constraints 
and then they derive a bound from the sum of two bounds obtained by treating 
the quadratic and linear parts of the objective function separately, see, e.g. [22]. 
However, the Lagrangian relaxations and homogenization for the special case S = 
~ shows that we should consider more general perturbations and, in particular, 
we should consider perturbations that arise from Lagrangian quadratic relaxations. 
This approach does not have the two drawbacks mentioned above. 

We now use the fact that the set of permutation matrices is equal to the inter- 
section of the orthogonal matrices with the 0,1 matrices. We get the following 
equivalent program to QAP. 

#* := max q ( X )  = trace ( A X B  - 2 C ) X  t 

( Q A P E )  subject to X X  t = I (4.27) 
x Z  - x~j  = O, Vi, j .  

We could also consider the square of the norm of the residual of the (redundant) 
linear constraints 

X e  = e~ X t  e = e. 
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Other equivalent relaxations and bounds can be obtained by adding redundant 
constraints such as 

trace X X t = n 

o r  

O < Zij  <_ 1, Vi,j. 

We now devote our attention to homogenization since that results in a min- 
max eigenvalue problem and an equivalent semidefinite programming problem. 
We have seen that we can homogenize by increasing the dimension of the problem 
by 1. We first add the 0,1 constraints to the objective function using Lagrange 
multipliers Wij. 

min max t r a c e ( A X B -  2C)X t + E W i j ( X  2 - Xij ). (4.28) 
W X X t = I  ij 

We now homogenize the objective function by multiplying by a constrained scalar 
X. 

rain max trace [ A X B X  t § W ( X  o X)  t -  x(2C + w ) x t ]  . (4.29) 
W XXt=l , x2=l  

We can now use Lagrange multipliers to get a parametrized min-max eigenvalue 
problem in dimension n 2 + 1. We get the following bound. The parameters are: the 
symmetric n x n matrix A = A s, the general n x n matrix W and the scalar a. 

BQAp : =  min maxtrace [ 
A,W,a X 
A X B X  t + A X X  t + W t ( X  o X)  + OLX 2 (4.30) 
- x ( 2 C  + W ) X  t ] - a - trace A. 

We have grouped the quadratic, original linear, and constant terms together. The 
hidden semidefinite constraint now yields a semidefinite programming problem. 

rain - t race  A - c~ 
subject to LQ + Arrow (c~, vec (W)) + B~ (A) -< 0, (4.31) 

where we define the matrix 

[ 0 - v e c  (C) t ] (4.32) 
LQ := - v e c  (C) B | A ' 

and the linear operators 

[ o 
Arrow (~,vec (W)) := _ l v e c  (W) Diag (vec (W)) ' (4.33) 

0 0 ] (4.34) B~ (A) := 0 I |  ' 
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We can now introduce the (n  2 + 1) x (n 2 + 1) dual variable matrix Y >-_ 0 and 
derive the dual program to this min-max eigenvalue problem, i.e. 

max min - t race  A - a + t raceY(LQ + Arrow (a, vec (W)) + B~ (A)). 
Y~O A,W,a 

The inner minimization problem is unconstrained and linear in the variables. There- 
fore, after reorganizing the variables, we can differentiate to get the dual problem 
to this dual problem, or the semidefinite relaxation to the original QAP. (Recall 
that Y/,j:~ refers to the i-th row and columns j to k of the matrix Y; and b~ (Y) 
is the block diagonal sum of Y which ignores the first row.) The derivatives with 
respect to a and W yields the first constraint and the derivative with respect to A 
yields the second constraint in the following program. Equivalently, the constraints 
are the adjoints of the linear operators Arrow and B~ 

max trace LQ Y 
subject to diag (Y) = (1, Y0,1:n2) t (4.35) 

b~ (Y) = I 
Y _ 0 .  

Another primal-dual pair can be obtained using a trust region subproblem as the 
inner maximization problem, rather than homogenizing to an eigenvalue problem. 
This is done by adding the redundant trust region constraint trace X X  t = n. Also, 
as mentioned above, we can add the redundant constraint 

[ I X e - e l l  2 + IIX*e-el l  2 = o .  

This type of constraint is discussed below for the graph partitioning problem. 
A primal-dual interior point method based on the these types of dual pairs of 
programs, such as (4.35),(4.31), are being tested and studied in [14]. 

4.2. GRAPH PARTITIONING 

Let G = (V, E)  be an undirected graph as in the description for (MC). The graph 
partitioning problem is the problem of partitioning the node set V into k disjoint 
subsets of specified sizes so as to minimize the total weight of the edges connecting 
nodes in distinct subsets of the partition. Let A = (aij) be the weighted adjacency 
matrix of G, i.e. 

{ Wij i j  E E 
aij = 0 otherwise. 

The graph partitioning problem can be described by the following (O,1)-quadratic 
program see, e.g. [24]. 

w(E~,nc~t) = max 
( G P )  subject to 

ltrace X t  A X  
X e k  = en 
X t  en = m 

X #  E {0, 1}, Vij, 
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where ek is the vector of ones of appropriate size and m is the vector of ordered 
set sizes 

m l > . . . > _ m ~ > _ l  and k < n .  

The columns of the 0,1 n x k matrices X are the indicator vectors for the sets. We 
can replace the 0,1 constraints by quadratics and also change the linear constraints 
to quadratic by squaring. We get the following equivalent program. 

w(Euncut) = max �89 X t A X  
subject to IlXek - enll 2 +llX%-ml12=O 

X 2 - X~j = O, Vij. 

The Lagrangian relaxation yields the following bound. 

BGp := min max trace 
a , W  X 

[ �89 + a(eketkXtX + Xte~et~X) + W t ( X  o X)  
-2a(ek  et X + met  X)  - W t X  l 
+~(n + E~ ~). 

(4.36) 

We can now homogenize the problem by adding a variable x. 

BGp := min max trace 
c~,W X 

x 2 = l  
[ �89 + a(eketkXtX + Xtene~X) + W t ( X  o X)  

+~(n + E~ m~). 

We now lift the variable z into the Lagrangian to get a min-max eigenvalue 
problem. 

BGp : =  min max trace 
c~,W,6 X,x 
[ �89 "+" oL(eketkxtx n t- Xtenetn X)  q- w t ( x  o X)  q- ~x 2 
+.(-2~(eke~X + me~X) - w ' x )  ] 
+ ~ ( ~  + E~ m~) - a. 

The above has a hidden semidefinite constraint. 

min a (n  + 2 i  m/2) - 5 
subject to LA + Arrow (5, vec (W)) q- aL a  -'< 0, 

where we define the matrices 

(4.37) 

[o o ] 
LA := 0 �89 | A ' (4.38) 

v = vec enm t, 
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E0 l L ~ : =  - ( e  + v) (eketfl | I + I Qe~e t)  ' 

and the linear operator 

[ 5 ( v e c  (W)) Diag�89 (vec (W))t ] ( v e c  (W)) Arrow (5, vec (W)) := _ 1 .  

The dual program yields the semidefinite relaxation of (GP). 

max trace LAY 
subject to diag (Y) = (1, Yo, I:~) t 

trace YL,~ = 0 
Y>-O. 
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(4.39) 

(4.40) 

(4.41) 

4.3. MAX-CLIQUE AND STABLE SET 

Consider again the undirected graph G = (E, V) defined above. The max-clique 
problem consists in finding the largest connected subgraph. We let co(G) denote 
the size of the largest clique in G. A stable set is a subset of vertices of V such that 
no two vertices are adjacent. We denote the size of the largest stable set in G, the 
complement of G, by a(G). Clearly 

a(G) = co(G). 

Bounds for these problems and relationships to the theta function, or Lov~isz number 
of the graph, are described in the expository paper, e.g. [15]; see also [25]. 

In this section we show that the Lovasz bound on co(G) can be alternatively 
obtained from two distinct 01-programs (4.42) and (4.45) by Lagrangian relax- 
ations. Let A be the incidence matrix of the graph, i.e. A = (aij) with aij = 1 
if ij  E E and 0 otherwise. If x is the indicator vector for the largest clique in G 
of size k, A then x t ( I  + A ) x / x t x  = k2/k = k. A quadratic formulation of the 
max-clique problem is the following (0,1)-quadratic program. 

co(G) = max xt(I+A)x 
xtX 

subject to x i x j = O ,  i f i j ~ E , i r  
x~ ~ {0, 1}, Vi. 

(4.42) 

Therefore, a quadratic relaxation of the max-clique problem is the following 
quadratic constrained program. 

co(G) < co t := max x t ( I  + A)x  
subject to x i x j = O ,  i f i j 6 E ,  i r  

x t x  ~ 1. 
(4.43) 
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The Lagrangian relaxation for this problem is the perturbed min-max eigenvalue 
problem and the equivalent semidefinite program 

w~ < min Amax(I + A + W) - axtx  + o~ 
w~j=o, if ~jCE, or ~=j 

= rain max x t (I + A)x + ~ wij x~xj - axtx  + c~ 
w,o~ x ij~_E, i # j  

: nfln c~ 
I+A+W~_o~I 

w~5=0, if ijCE, or i=j 

i.e. minimize the max eigenvalue over perturbations in the off-diagonal elements 
corresponding to disjoint nodes. This bound is equal to the Lovasz theta function 
on the complementary graph. 

0 ( 0 )  = min Amax(A) (4.44) 
AE.A 

where Jt = {A �9 Asymmetric  n x n matrixwith A~j -- l, i f i j  E E, or /  = 
j}. 

By considering the (optimal) indicator vector for the largest clique, we see that 
a (0,1)-quadratic program that describes the max-clique problem exactly is the 
following one. Note that if node i is not in the largest clique, then necessarily, 
x~xj = 0 for some j with node j in the clique, i.e. necessarily x~ = 0 in the 
indicator vector. 

w(G) = max xtx 
subject to x~xj = 0, if i j  ~ E, i # j (4.45) 

2 x ~ - x ~ = O ,  Vi. 

The Lagrangian relaxation yields the bound 

Bclique := minmaxx tx  + ~ w#xix j  + ~ A~(x 2 - xi). 
w,;~ x ij~E, i#j i 

We let W be an n x n matrix with zeros in positions where i j  E E. We can homo- 
genize by adding the constraint y2 = 1 and then lifting it into the Lagrangian. 

min max xtx + E wijxixj  + E Aix2 + ~ - y E Aixi - o~. 
a ,W,A  x , y  

We now exploit the hidden semidefinite constraint to get the semidefinite pro- 
gram. 

Bclique = min w,,~,a 
subject to (4.46) 

where the matrix [oo] 
L A : =  O I ' 

--o~ 

LA + L w  (W) + Arrow (c~, A) ~ 0 
W~j =0,  Vij E E, o r i = j ,  

(4.47) 
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and the linear operators 

I 0 0 ] 
L w ( W ) : =  0 W ' (4.48) 

Arrow (c~, A) := _1)~ Diag(A) " (4.49) 

The dual of the above min-max eigenvalue problem yields the semidefinite 
relaxation for the max-clique problem with Y C Sn+l. 

max trace LAY 
subject to diag (Y) = (1, Y0,1:n) t 

Y~j = O, Vij ~ E 
Y ~ - O .  

(4.50) 

The equivalence of the bounds (4.44) and (4.50) was shown in lemma 2.17 of 
[19]. 

Consider the program (4.42) with an additional redundant constraint 

(4.51) xixj  >_ 0 for i j  E E 

That is 

(4.52) 

x~(I+A)x w(G) = max x~x 
subject to xixj  = 0 ,  i f i j ~ E , i # j  

xixj  >_ O, if ij  E E,  
c {0, 1}, Vi. 

A quadratic relaxation of the max-clique problem is the following quadratic con- 
strained program. 

w(G) <_ w~ := max 
subject to 

x t ( I  + A)x  
xixj  = O, i f i j ~ E ,  i # j 
x ixj  >_ O, if ij  E E,  
x t x  = 1. 

(4.53) 

The Lagrangian relaxation for this problem is equal to the Schrijver's improve- 
ment [25] of the theta function on the complementary graph. 

0'(G) = min Amax(A), 
AE.A I 

where ~4 ~ = {A" A symmetric n x n matrix with Aij _> 1, i f i j  E E,  or i = j}. 
Haemmers [11] constructed graphs where 0~(G) is strictly smaller than 0(6) .  

Analogously, it is possible to modify the program (4.45) by adding the constraint 
(4.51). 
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5. Concluding Remarks 

We have found the best quadratic relaxation, among all quadratic majorants with 
zero trace, for constrained (0,1)-quadratic programming; and we have shown that 
this is equal to a semidefinite relaxation. We have also provided a recipe for 
calculating a dual pair of  semidefinite programs for primal-dual algorithms. This 
dual pair of  programs are suitable for interior point semidefinite programming 
techniques. 

In particular, we have provided a primal-dual pair of semidefinite programs for 
the quadratic assignment problem, graph partitioning problem, and the max-clique 
problem. The semidefinite relaxations for these problems are interesting for both 
numerical and theoretical reasons. The feasible sets have empty interior and so a 
relative interior primal-dual method must be used. Numerical tests are currently 
being studied in [14, 7]. 
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