EMBEDDING THEOREMS FOR WEIGHTED CLASSES

OF HARMONIC AND ANALYTIC FUNCTIONS
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Introduction

In many problems of analysis the question arises as to the comparative strength of various
norms on a set of analytic functions. For example Carleson, in his celebrated paper on the corona

problem (see [1]), rests on the following proposition.

THEOREM. Let D be the unit disk, let H', p> | be a Hardy class (see [2]) of functions regular
in the unit disk, let # be a positive measure in.D, and let

As'c:{xe“{: =8 <v<d, ¢-3 << c_ga}A

In order for the inequality
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to hold for all functions u & HF itis necessary and sufficient that
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If we introduce into the discussion the class H () of functions regular in the unit disk and

Ilwl!x,(r)i{ gblu}Pc{g‘ }VP

then (1) is a boundedness' condition on the embedding operator for H® in HF ().

satisfying the condition

Refining Carleson’s proof, Hormander found necessary and sufficient conditions for boundedness
of the corresponding embedding operator in spaces of functions of several variables (see [3]).
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The present article is concerned with embedding theorems for certain spaces of harmonic and
analytic functions. Let Q¢ R, be a bounded domain of n-dimensional Euclidean space with a smooth
(C*) boundary 25%. We denote by dx the distance from a point xeS to 2%, and by Dg, a ball (ar-
bitrary) of radius ¢ located in §2 at a distance ¢ from the boundary. We denote by 5;‘,‘1 () (p21, >
-4, and ¥ 2 0)is an integer) the Banach space of functions harmonic in & with norm

x
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We also denote SFME 5;,4 '

Finally, let  be a nonnegative measure defined on Borel subsets of§2. Along with the Banach

space Sf,f; we consider the normed space SP ( 3"59) (in general, incomplete) of functions harmonic in

for which the norm is finite:
Y
ful {ul"a } P
w = u .
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Following is the fundamental resuit of the article.

THECREM 1. In order for the operator of embedding of S:,A into S$ (g5 QX(St} £p< =) to be
bounded (completely continuous) it is sufficient and, for « > O, necessary that the measure I satisfy
the condition

(m-ul)qf/
g«(Df)= 0 (¢ ®)

(s (5, o (€770

uniformly with respect to all D? .

Jur method of proof is based on the embedding theorems of S. L. Sobolev and are essentially
similar to the proof used in {4, 5] to establish certain discreteness criteria for the spectrum of differ=-
ential operators.

The first section is given over to the derivation of inequalities that will enable us to estimate the
norms of the derivatives of a harmonic function in terms of the norm of the function itself. In the
second section we prove the fundamental theorem. In the last section we discuss the necessity of con-
dition (2) for the boundedness {compactness) of the embedding operator for spaces of analytic functions.

The authors would like to thank V. G. Maz'e for valuable discussions.

$1. Auxiliary Inequalities

Later on we shall have need of estimates of the norms of the derivatives of a harmonic function
in terms of the norm of the function itseif. This type of inequality is met (for analytic functions) in
Zygmund's book [6]. For harmonic functions analogous inequalities have been obtained by Nikol'skii[7].
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While the present manuscript was being prepared for publication the authors discovered a recent arti-

cle by Fokht {8], in which some of the results of this section have been obtained.

Let S be an arbitrary n-dimensional domain with boundary 2, let Q ¢ be the & -neighborhocd
of 2Q in S, and let =R\ S2e . We prove the following proposition.

LEMMA. For an arbitrary function w harmonic in $2,* any £>0.a>-1 ,-o0< p<os , pxd,
and integers { > 0 the following inequality holds:

(4 D% den gédf”"m‘umx sc{gaf il {4210l dx). @

2
Q& S R& ﬂa

Proof. We note that if one of the integrals on the right-hand side of inequality (3) is divergent,
the lemma is trivial. We assume, therefore, that the right member of (3) is finite-valued. We parti-
tion the entire domain S into "layers™:

K 4
Q"{x ﬂer, 2% <d. =2 & }; K=0,£1,£2 .,

We also let 7 (ix1) be a smooth finite nonnegative function: 9(i=1)= 0 for i=/>{ . Hereinafter
we use the averaging operator

Keu=zt [ (1555w )ds,
where
¢={ 7 (tgNds.

K= 4
We assume that in the layer $2, the averaging K is carried out over a region of radiusS$= % ¢,
It is clear that for a harmonic function Kg u = u and, hence, for <€52_we have

(D)= e [ (DD (1w (D .

The latter at once yields the estimate
(AR ¢ (
g IDu ! dccé-;ﬁ:n—g 5 ]u(m-g)”dgc{x$
:1‘ g QK !‘§‘$§

¢ —pi TulPdw.
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Recognizing that for xeS, the condition 2% < c{: s holds, we obtain for any y & (- oo, eo)

*In other words, harmonic in any compact subdomain of €2,
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wllde < €| do? (u)fde (4)
R, VR VSR,

Summing inequality (4) on < and assuming that Y=« for x<0 and that Y=9 for x> 0, we ar-
rive at the desired inequality,

Remark 1. If S2is a bounded domain with Cz-boundary, the lemma can be restated as follows:

For a harmonic function ue S P the derivative R°u & 5‘,,, “pes and the following estimate holds:

al+el

(4 [D%u,desCSd:iuIde. (5)

a 2

Remark 2. Estimates analogous to (5) can be obtained in spaces of harmonic functions other than

SP « s for example in spaces with norm

uuus{j}; 2" | fulf dw b

-

Remark 3. Let S be the exterior of a bounded domain; then in the integral on 2% in inequality
(3) we can clearly replace dwith (x| .

L
§2. The Embedding Theorem for S?,d in Sc} ().

In this section we prove Theorem 1 stated in the Introduction.

In the proof of sufficiency we are only required to verify the following inequality for some &> 01

14
e ?Q{»uﬁ

EL E |u;"u{\;x} =C{ g(d:(ui?* d::.

) ('/P
(%)) dx } (6)
S¢ : Q

[

To do so,we use the partition of &; into layer $2,, <O (see §1). We construct a special
covering of $2;s ; we cover each layer.$2,. with a finite number of balls of radius » 2" &, We place
the centers of the balls on a surface located a distance 3 2 ‘& from »£2 and pick them in such a way
that the multiplicity of the covering of S, does not exceed a fixed number (which is the same for all
x). This step is permitted by the smoothness of 2 $2 for sufficiently small £.* We observe that the
radius of each ball involved in the covering of £2: is equal to the distance between the ball and the
boundary. As before, we denote any such ball by D? , where ¢ is the radius of the ball. We nowchoose
an integer ¢, such that p¢, >n, It follows from the embedding theorems ([9], p. 372) that the follow=

ing estimate holds in every De:

. _ Yo

Lo .n { P pli=n £ ?
{u(x){sb{g Mu‘dzw‘-? gm u!dtg,xé(’%
\ % Ao

*In proving the sufficiency of condition (2) we do not even need smoothness of 251, but merely the
existence of a finite-fold covering of 2 for some &>0 by balls ”DS, .
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Also, on account of the relation § <dy < e for xe Qg, we have

-«mwp
ulVde s ¢ (D) I
c;, a 5%« (Ry)

Summing on all balls with regard for the finite-multiplicity of the covering and making use of the lem~
ma f{rom §1, we obtain

3 ~(n+a) :
| < C ! {%( v S*(@Q]I put”, @

N(ﬂ)

Inequality (8) and, hence, the boundedness of the embedding operator for SF,?“ in S,' () follow from
(2) and (7).

Now we have only to verify that the condition

(maj W/F
(80 (5" g
2
implies the complete continuity of the embedding operator for SP < in "D ( g*) We note first of all
that the compactiness of the embedding of SP % (Q.) in S (gu, R\ -Q;_/ for every ¢é >0 is certainly true,
In order to arrive at the proper result, we need merely (see, e.g., [4]) verify for every set bounded in

S;j, the equiconvergence to zero of the integral
WL
Xfu[cfgl—> 0 as &= 0. )
53

But (7) and (8) are at once implied by (9). This proves the sufficiency of condition (2).

By virtue of the lemma, the necessity of condition (2) for X > 0 only has to be proved for =0,
Let § be small, and R < £2; let us construct a ball Mg of radius § lying outside 52 and tangent to
242 at a point whose distance from R¢ is exactly equal to §, We adopt the center of this ball as the
coordinate origin. We direct the axis =, toward the center of (Q?. We consider a function w harmonic
in &2, namely:

( 591)
uee)= —f‘—;’%ﬁzr—

in which C (fz) is a Gegenbauer polynomial, <'=Z =, w4 8, =<%,T'. Inasmuch as C,: (0=

% + 0, it is clearly possible to choose M and ¢, in such a way that C:‘ (cos 8, )z ¢, When

* € fu?, where M and ¢, are independent of QS" Then the following estimates hoid:

N ® n—{
Z i -7
Sd: lulfde < C gi—Pﬁ:'::‘j:')dz sCs P (10)
@ Mo

G-ﬂ"'co(_ﬁ-{*(""'d)/P and
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-~ -(m‘o()‘v/f
flulVdp > (iulVdgzcg™ o (). (1)
2

Re

By the premise of the theorem the embedding operator for 3?, « in Sa, ( 3“) is bounded, so that,

using estimates (10) and (11), we obtain

g "< hut e Clluly <0

?,o(.
L
Consequently, the boundedness of the embedding operator for SP-‘ in Sﬁ, () for « » O implies
satisfaction of the required relation (2).

We now assume that the embedding operator for SF: « in S"r ( 3‘4) is completely continuous. We
then show that condition (8) holds for « 3 0.

Let us suppose that (8) does not hold, whereupon there must exist a sequence of nonintersecting

balls V¢ , ¢ = O as x—=oo such that
w X

—tmea) 9 /p
w

Iy ((Ds,ﬁz a,>0. (12)

Also, let w, be the harmonic function constructed above and corresponding to the pall N
Then the sequence v, =Wy ¢.7 is bounded in Sr'd on account of (10}, However, this sequence is not
compact in SW(S“): because for any £ >0 there is a function v, «=« (%) [see (11) and (12)] such that

¥y -"""H/P 0
S\’\&[dg“zg“’ lquﬂ‘* (Q )z Ca, >0,
2 Re,
contradicting the complete continuity of the embedding operator for SI”‘* in 51, (¢+}. This proves the
theorem.

Remark 1. As evident from the prooi of Theorem 1, condition (2) only has to be verified for
balls QS‘ forming some covering of the support, closed ins, of the measure (1.

Remark 2, Theorem 1 with =0 is also valid for the embedding operator for the corresponding

classes of subharmonic functions.

§3. Embedding Theorems for Spaces of Analytic

Functions

Let & be a bounded domain in C™. We denote by ?’Ct‘ (S2) and R (¢; R ) the subspaces of
SP « (52} and S (e, 82}, respectively, consisting of functmns analytic in 5'?.. Clearly, the satisfaction
of condition (2) implies boundedness (complete continuity) of the embedding operator for ”?CF, « (R) in
?Cq/ (@; ®). The converse, in general, is not true (for example, if S2 is not a domain of holomorphicity),
but for n={ , «z Q condition (2) is a necessary condition for boundedness (complete continuity) of the
embedding operator. The proof of this proposition is entirely analogous to the proof of necessity of
condition (2) for boundedness (complete continuity) of the embedding operator for Sp%(R) in Sq, ()
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in §2. Here, instead of a function u (x) harmonic in $Xit is required to analyze the function §(z)=2"%

analytic in§2, where « is an integer > &+ ’7’9. Note that the origin is sifuated outside $2..
The following is therefore valid.

THEOREM 2. Let $¢.be a bounded domain of the complex plane with c* ~boundary. In order for
the embedding operator for ”K?, « () in Hy, (5, §2) to be bounded (completely continuous) it is suf-
ficient, and for X >0 necessary, that the measure g“ satisfy the condition

(8)+0 (5=

(5 @yeo (57Y)

(13)

uniformly on the entire R o
We prove the following proposition as a representative application of Theorem 2.

THEOREM 3. If 2z, ., X=1,2,.. is a sequence of (distinct) points in the open unit disk ‘N and
satisfies the condition

fzs-zK [ngux(?;,g,() for all §,x=t3,., (14)
y*k. where g =(~[2], then for any function *¢ ¥, (p> {) we have
2+ 4 P o
Z () 5@l C {15 Gripl (12 dxdy. (15)
R

Proof. It suffices to show that for a measure M having mass (!~ i2.]) **% at points z, and
equal to zero at all other points, condition (13) is satisfied. According to Remark 1 of $2 we confined
ourselves to a set of nénintersecting [by virtue of (14)] disks (2-%,|<"2 § mw (9,4}, for which con-
dition (13) is clearly satisfied. Since the disk Qe with center 2, can be covered with a finite number
(independent of «) of disks of the form |z-2,]< 2 (2-2.|ww (J,4), condition (13) is also satisfied for
all Re with centers 2., Q.E.D.

Inequality (15) and condition (14) are related to the interpolation problem in .‘R'?A and H, (see
Shapiro and Shields [10]; inequality (15) is also derived in this paper for p=2 and «= 0.1).

LITERATURE CITED

1. L. Carleson, "Interpolation by bounded analytic functions and the corona problem,” Ann. of Math.
(2), 76, 547-559 (1962).

2. K. Hoffman, Banach Spaces of Analytic Functions, Prentice~-Hall (1962).

3. L. Hormander, "L-estimates for (pluri-) subharmonic functions,” Math. Scand., 20, 65-78 (1967).

4, M. Sh. Birman and B. 8. Paviov, "Complete continuity of certain embedding operators,” Vest.
Leningrad. Univ., Ser. Matem. Mekh. Astron., 1, No. 1, 6174 (1961).



[#1}
*

V. L. Oleinik and B. S. Pavlov, "On boundedness and complete continuity criteria for certain
embedding operators,” in: Problems of Mathematical Physics [in Russian], No. 4, Izd. LGU,
Leningrad (1970).

A. Zygmund, Trigonometric Series, Vol. II, Cambridge Univ. Press (1959).

S. M. Nikol'skii, "A boundary estimate for a function harmonic in an N -dimensional domain,*
Sibirsk. Matem. Zh., 1, No. 1, 78-87 (1960).

A, §. Fokht, "An integral estimate of the derivatives of a harmonic function in an V-dimensional
domain in L o-metric and applications thereci," Differents. Uravnen., §, No. 7 (1970),

V. I. Smirnov, Course in Higher Mathematics [in Russian], Vol. 5, Fizmatgiz, Moscow (1960),
H. S. Shapiro and A. L. Shields, "On some interpolation problems for analytic functions," Amer.
J. Math., 83, No. 3, 513-532 (1961). '

142



