
E M B E D D I N G  T H E O R E M S  F O R  W E I G H T E D  C L A S S E S  

OF H A R M O N I C  A N D  A N A L Y T I C  F U N C T I O N S  

V~ L. Oleinik and B, S. Pavlov 

I n t r o d u c t i o n  

In many p r o b l e m s  of ana lys i s  the question a r i s e s  as to the compara t ive  s t rength of var ious  

no rms  on a set  of analyt ic  functions.  For  example  Car leson,  in his ce lebra ted  pape r  on the corona 

p rob lem (see [I]), r e s t s  on the following proposi t ion.  

THEOREM. Let  ]3 be the unit disk, let H e, p~ t be a Hardy  c lass  (see [2]) of functions reg'ular 

in the unit disk, let  3" be a pos i t ive  m e a s u r e  i n / I ,  and let 

In o r d e r  for  the inequali ty 

to hold for  al l  functions 

{I ,ot'd  c !1o II , 
.D 

u e H ~ it is n e c e s s a r y  and sufficient  that 

If we introduce into the d iscuss ion  the c l a s s  ~,,~(~) of functions r egu la r  in the unit disk and 

sat is fying the condition 

(I) 

? 

D 

then (1) is a boundedness-condit ion on the embedding ope ra to r  for  H t in ~ e  (~ , ) .  

Refining Caz l e son ' s  proof,  HSrmander  found n e c e s s a r y  and sufficient conditions for  boundedness 

of the cor responding  embedding ope ra t o r  in spaces  of functions of s eve ra l  va r i ab l e s  (see [3]). 
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The presen t  ar t ic le  is concerned with embedding theorems  for  cer ta in  spaces  of harmonic and 

analytic functions. Let  g6 c 9 ,  be a bounded domain of ~.-dimensional Euclidean space with a smooth 

(G r boundary ~f '~.  We denote by d ~  the distance f rom a point ~ce~t to ~9_, ~ud by De a ball (ar-  

bitra.ry) of radius ~ located in Q_ at a distance ~ f rom the boundary. We denote by ~ . ~  (~ - )  ( p ~ 4, c< > 

- t ,  and ~ ~ o)  is an integer) the Banach space of functions harmonic in gh with norm 

r 

We also denote S[,,~ = S [,,~ 

9.. 

Finally,  let ~ be a nonnegative measure  defined on Borel  subsets of-Q_..%/ong with the Banach 

space $~,~ we consider  the normed space Sp ( ~ )  (in ~enerat,  incomplete) of functions harmonic in 

!9_for which the norm is finite: 

( l 
Following is the fundamental result of the article. 

THEOREM I. In order for the operator of embedding of S t [,,~. into S$ (~, S'~-7~ ~p < ~,) to be 
bounded (completely continuous) it is sufficient and, for  ~ >. 0 ,  neces sa ry  that the measure  ~,~ sat isfy 

the condition 

(2) 

uniformly with respect to all I)?. 

Our method of proof is based on the embedding theorems of S. L. Sobolev and are essentially 

similar to the proof used in [4, 5] to establish certain discreteness criteria for the spectrum of differ- 

ential operators. 

The first section is ~ven over to the derivation of inequalities that will enable us to estimate the 

norms of the derivatives of a harmonic function in terms of the norm of the function itself. In the 

second section we prove the fundamental theorem. In the last section we discuss the necessity of con- 

dition (2) for the boundedness (compactness) of the embedding operator for spaces of analytic functions. 

The authors would like to thank V. G. Maz'e for valuable discussions. 

w I. Auxiliary Inequalities 

Later on we shall have need of estimates of the norms of the derivatives of a harmonic function 

in terms of the norm of the function itself. This type of inequality is met (for analytic functions) in 

Zygmund's book [6]. For harmonic functions analogous inequalities have been obtained by Nikol'skii[7]. 
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While the present manuscript was being prepared for publication the authors discovered a recent arti- 

cle by Fokht [8], in which some of the results of this section have been obtained. 

Let ~q. be an arbitrary .,-dimensional domain with boundary a~, let ~'~ ~ be the & -neighborhood 

of ~'~ in ~_, and let Q.a--~\S-Z a . We prove the following proposition. 

LEMMAo For an arbitrary function u. harmonic in ~ , *  any a>o,~>-{ - o ~ <  ~ < ~ , ?# {, 

and integers 6 z O the following inequality holds: 

(3) 

Proof. We note that if one of the integrals on the right-hand side of inequality (3) is divergent, 

the lemma is trivial. We assume, therefore, that the right member of (3) is finite-va/ued. We parti- 

tion the entire domain ~). into "layers": 

We also let ~ (~,) be a smooth finite nonnegative function: ~(,x,)= 0 for I~:I> { . Hereinafter 

we use the averaging operator 

where  

"We assume that in the layer ~-~ the averaging ~$ is carried out over a re,on of radius~ ~ &~-' 

It is clear that for a harmonic function K,~ u -- u and, hence, for ~-e~'~ K we have 

The latter at once yields the estimate 

f ~' ~ , . V  _o.., u_q. ,,, ~ 

Recogn iz ing  that  f o r  ~e ~t. the condi t ion Z~a < ~ ~_ 

6. 

Z~*~& holds, we obtain for any 7e (.- r ~) 

*In other words, harmonic in any compact subdomain of _Q. 
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(4) 

Summing inequality (4) on ~ and assuming that 'T= c< for ~ < O and that 7-- ~ for ~ >~ 0 ,  we a r -  

rive at the desired inequality. 

Remark 1. if ~Q-is a bounded domain with CZ-boundary,  the lemma can be restated as follows: 

For  a harmonic function ue  S ?,~ the derivat ive ~r e Sl~,, ~ +Fe,, and the following est imate holds: 

(5) 

Remark 2, Est imates  analogous to (5) can be obtained in spaces of harmonic functions other than 

5t,.~, for example in spaces with norm 

Remark 3. Le t /& be the exter ior  of a bounded domain; then in the integral  on g'~" in inequality 

(3) we can c lear ly  replace d~_with l~l �9 

b 

2.  T h e  E m b e d d i n g  T h e o r e m  f o r  ~ , ~  in  S ~  ( T )  

In this section we prove Theorem 1 stated in the Introduction. 

In the proof of sufficiency we are  only required to verify the following inequality for some ~ > 0:  

(6) 

To do so,we use the parti t ion of ~'~e into layer  ~ .  ~ 4 o  (see ~1). We construct  a special  

covering of -Qe ; we cover  each l a y e r . ~  with a finite number of balls of radius b t * ~  6. We place 

the centers  of the balls on a surface located a distance % ~*-~ ~. f rom ~-~  and pick them in such a way 

that the multiplicity of the covering of ~"~ does not exceed a fixed number (which is the same for all 

). This step is permit ted by the smoothness of 3 ~_ for sufficiently small  6.  ~ We observe that the 

radius of each ball involved in the covering of ~e .  is equal to the distance between the ball and the 

boundary. As before, we denote any such ball by E)?, where ~ is the radius of the ball. We now choose 

an integer tt such that p ~, > ~.. It follows from the embedding theorems ([9], p. 372) that the follow- 

mg estimate holds in every D ~ :  

*In proving the sufficiency of condition (2) we do not even need smoothness of a~'~, but merely  the 

existence of a finite-fold covering of -qe for some ~ > o by balls g. 
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Also, on account of the relation ~ <~. < ~ for ~ ~, we have 

- ("*"r g / F  

%t 

Summing on all balls with regard for the finite-multiplicity of the covering and making use of the lem- 

ma from ~1, we obtain 

5 ~ 
(7) 

Inequality. (6) and, hence, the boundedness of the embedding opera tor  for  S ~ ~,~ in $.~ (~) follow from 

(2) and (7). 

Now we have only to verify that the condition 

implies the complete continuity of the embedding opera tor  for  ~,r in 5? (~) �9 We note f i r s t  of all 

that the compactness  of the embedding of ~ ~ (~"~) in ~o~(~, ~ _ \ S ' ~  for  eve ry  6 > o  is cer ta inly  true.  ~,~ 

In order to arrive at the proper result, we need merely (see, e.g., [4]) verify for every set bounded in 
b $~,~ the equiconvergence to zero of the integral 

I t~ l ed?  -~ o a s  ~--,- o .  (9) 

But (7) and (8) are  at once implied by (9)~ This proves  the suff iciency of condition (2). 

By vir tue of the lemma~ the necess i ty  of condition (2) for  ~ ~ 0 only has to be proved for ~- 0 .  

Let  ~ be small ,  and ~ ?  c ~ ; let us construct  a ball ~ t of radius ~ lying outside ~Z and tangent to 

-~E'~ at a point whose distance f rom ~ ?  is exact ly equal to ~.  We adopt the center  of this baLI as the 

coordinate omgino We d i rec t  the axis =~ toward the center  of ~ y. We consider  a function ~ harmonic 

in ~ ,  namely:  

"b 

in which ~ ( s is a Gegenbauer polynomial,  ~ =  E = ; ~o~ 01 = ~ -c Inasmuch as C,~ 

~ 0 , it is c lea r ly  possible to choose ~ and co in such a way that C ~ ( c~  0f >~ Co when 

~- e " ~ ,  where ~ and Co axe independent of %~. Then the following es t imates  hold: 

%#,....L " - t  

M? "6 
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By the premise of the theorem ~he embeddin~ operator for ~q~,~ in ~9C (~] ~, , is bounded, so that, 

using estimates (I0) and (II), we obtain 

_< .<C7 -~. '/'~(~,")-< I1~ ils~,(~ ) C It~ lls~.~ 

Consequently. the boundedness of the embeddin~ operator for Sp.x in %~ (~'~ for ~ ~ 0 implies 

satisfaction of the required relaxion (2). 

We now assume that the embedding opera tor  for  Sp,a in S? (~) is completely continuous. We 

then show that condition (8) holds for  o< ~ O o 

Let us suppose that (8) does not hold. whereupon there must exist a sequence of nonintersecting 

balls DT~. ~,-~ 0 as ~-~ such that 

~ ~ ~ O o > o. (12) 

Also, let u.~ be the harmonic function constructed above and corresponding to the oall ~ T o  

Then the sequence ~r ~u-~ ~ "  is bounded in S~,~ on account of (I0). However, this sequence is not 

compact in $,/(~). because for any a~o there is a function ~ ~-- ~(%) [see (II) and (12)] such that 

-(-*~)%/p 

9-6 %~, 

contradicting the complete continuity of the embedding opera tor  for  S~,~ in 5% (I~). This proves  the 

theorem.  

Remark 1. As evident f rom the proof of Theorem 1, condition (2) only has to be ver i f ied for  

balls '%~ forming some covering of the support,  closed ins'a, of the measure  ~. 

Remark  2. Theorem 1 with [ = o is also valid for  the embedding opera tor  for  the corresponding 

c lasses  of subharmonic functions. 

w 3o E_-nbedding Theorems for Spaces of Analytic 

Functions 

Let ~_ be a bounded domain in C ". We denote by ~ 2,~t (~] stud ~ (~ ; g~ ) the subspaces of 

5~,~ (~-~) and 5p ( ~, s-a), respectively, consisting of functions analytic in g'r Clearly, the satisfaction 

of condition (2) implies boundedness (complete continuity) of the embeddin~ operator for ~ ~ <~) in 

"~V C ~;~). The converse, in ~eneral, is not true (for e.x~mple, if 5~_is not a domain of holomorphicity), 

but for m=- ~ , ot ~ 0 condition (2) is a necessary condition for boundedness (complete continuity) of the 

embeddin~ operator. The proof of this proposition is entirely analogous to the proof of necessity of 

condition (2) for boundedness (complete continuity) of the embedding operator for Sp,~<~> in 5%< T~ 

140 



in }2. Here,  instead of a function u (~) harmonic  in gg.it is requi red  to analyze the function ~-(e)=~-" 

analyxic in&q, where ~< is an integer  > ~ -  ~?.  Note that the origin is si tuated outside ~ct. 

The following is the re fo re  -valid. 

THEOREM 2. Let-Q.be a bounded domain of the complex plane with C" -boundary.  In o rde r  for  

the embedding opera tor  for  ~ ~,~ (~k) in 7 ~ / ( j , ,  g~_) to be bounded (completely continuous) it is suf-  

ficient,  and for  ~, >~ 0 necessa ry ,  that the measure  ~ sat isfy the condition 

uniformly on the ent i re  ~ ? .  

We prove the following proposi t ion as a represen ta t ive  application of Theorem 2. 

THE OREM3.  If ~ , 

sa t is f ies  the condition 

(z3) 

-- ~, ~- . . . .  is a sequence of (distinct) points in the open unit disk rI~ and 

i ~ K '  where ~ = ( - l _ ~ t ,  

i ~ . i - ~ -  . [>-~r"Qx(~;,~Kh / f o r  a11 5 ,~ - - , , ~ ,  . . . .  , 

then for  any function ~ ~ ~ ~.~ ( ~ >~ 0 we have 

(14) 

Proof.  It suffices to show that for  a measure  • having mass ( ; -  i m K 1 ~ ' * "~ at points m~ and 

equal to zero  at all other  points,  condition (13) is sat isfied.  According to Remark 1 of 32 we confined 

ourse lves  to a set  of nonintersect ing [by vir tue of (14)] disks t e - ~ , / < ' / Z  ~ , ~  (~', 0 ,  for which con-  

dition (13) is c lear ly  satisfied.  Since the disk %? with center  a~ can be covered with a finite number 

(independent of ~) of disks of the form In-no I~ '/~ I~-ao I ~a- (~,0, condition (13) is also sat isf ied for  

all ~ with cen te rs  ~ ,  Q.E.D. 

Inequality (15) and condition (14) are  re la ted  to the interpolat ion problem ~ ~I~F~ and Hr (see 

Shapiro and Shields [10]; inequality (15) is also der ived in this paper  for  ~-- ~ and ~ = 0.1). 

L I T E R A T U R E  C I T E D  

1. L. Carteson,  "Interpolat ion by bounded analytic functions and the corona problem,"  Ann. of Math. 

(2), ~ 547-559 (1962). 

2. K. Hoffman, Banach Spaces of Analytic Functions, P ren t i ce -Ha l l  (1962). 

3o L. HSrmander ,  "L -e s t ima t e s  for  (pluri-) subharmonic functions," Math. Scand., 20, 65-78 (1967). 

4. M. Sh. Birman and B. S. Pavlov, "Complete continuity of cer ta in  embedding ope ra to r s , "  Vest. 

Leningrad. Univ., Set.  Matem. Mekh. Astron. ,  1, No. 1, 61-74 (1961). 

141 



5. Vo L. Oleinik and B. S. Pavlov, "On boundedness and complete continuity criteria for certain 

embedding operators," in: Problems of Mathematical Physics [in Russian], No. 4, Izd~ LGU, 

Leningrad (I 970). 

6. A. Zygrnund 9 Trigonometric Series, Vol. If, Cambridge Univ. Press (1959). 

7. So Mo Nikol'skii, ~A boundary estimate for a function harmonic in an N-dimensional domain, ~ 

Sibirsk. Matem. Zh., !_, No. I, 78-87 (1960). 

8. A.S. Fokht, "An integr~tl estimate of the derivatives of a harmonic function in an XJ-dimensions/ 

domain in L~ ~-rnetric and applications thereof," Differents. Uravnen., 6, No. 7 (1970). 

9. V. L Smirnov, Course in Higher Mathematics [in Russian], VOlo 5, Fizmatgiz, Moscow (1960)o 

1O. H.S. Shapiro and A. L. Shields, "On some interpolation problems for analytic functions," Amer. 

J. Math., 83, No. 3, 513-532 (1961). 

142 


