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Abstract. A branch and bound global optimization method, ~tBB, for general continuous optimization problems 
involving nonconvexities in the objective function and/or constraints is presented. The nonconvexities are 
categorized as being either of special structure or generic. A convex relaxation of the original noneonvex problem 
is obtained by (i) replacing all nonconvex terms of special structure (i.e. bilinear, fractional, signomial) with 
customized fight convex lower bounding functions and (ii) by utilizing the a parameter as defined in [17] to 
underestimate nonconvex terms of generic structure. The proposed branch and bound type algorithm attains 
finite e-convergence to the global minimum through the successive subdivision of the original region and the 
subsequent solution of a series of nonlinear convex minimization problems. The global optimization method, 
aBB, is implemented in C and tested on a variety of example problems. 
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1. Introduction 

A significant effort has been spent in the last five decades studying theoretical and algo- 
rithmic aspects of  local optimization algorithms and their applications in engineering and 
science. Comparatively, there has been traditionally much less attention devoted to global 
optimization methods. However, in the last decade the area of  global optimization has at- 
tracted a lot of  interest from the operations research, engineering and applied mathematics 
communities. This recent surge of  interest can be attributed to the realization that there 
exists an abundance of optimization problems for which existing local optimization ap- 
proaches cannot consistently locate the global minimum solution. Furthermore, the steady 
improvement in the performance of computers constantly extends the scope of  problems 
which are tractable with global optimization approaches. 

Existing global optimization algorithms, based on their convergence properties, can be 
be partitioned into deterministic and stochastic. The deterministic approaches include Lip- 
schitzian methods [12], [13]; branch and bound procedures [2], [15], [1]; cutting plane 
methods [32]; difference of convex functions and reverse convex methods [31]; outer ap- 
proximation approaches [14]; primal--dual methods [29], [6], [7], [33], [41; reformulat ion-  
linearization [27], [28]; and interval methods [8]. Stochastic approaches, encompass among 
others simulated annealing [26], genetic algorithms [10], [3], and clustering methods [25]. 
A number of  books [23], [30], [24], [16], [5], [11] summarize the latest developments in 
the area. 

* Author to whom all correspondence should be addressed. 
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Deterministic approaches typically provide mathematical guarantees for convergence 
to an e-global minimum in finite number of steps for optimization problems involving 
certain mathematical structure. On the other hand, stochastic methods offer asymptotic 
convergence guarantees only at infinity for a very wide class of optimization problems. 
It is the objective of this work to extend deterministic guarantees for convergence to a 
very general class of continuous optimization problems and implement this procedure in 
the aBB global optimization package. In the next section, a description of the global 
optimization problem addressed in this paper is presented. 

2. Problem Definition 

The optimization problem addressed in this paper can be formulated as the following 
constrained nonlinear optimization problem involving only continuous variables. 

min f (x)  (PO) 
x 

subject to hi(x) = O, 3 " = l , . . . , M  

g~(x) _< o, k =  1 , . . . , K  

Ax < c 

x L < x < x U 

Here x denotes the vector of variables, f (x)  is the nonlinear objective function, hj (x) is 
the set of nonlinear equality constraints and g~ (x), k = 1 , . . . ,  K is the set of nonlinear in- 
equality constraints. Formulation (P0) in general corresponds to a nonconvex optimization 
problem possibly involving multiple local and disconnected feasible regions. It has been 
observed in practice that existing path-following techniques cannot consistently locate the 
global minimum solution of (P0) even if a multi-start procedure are utilized. For special 
cases of (P0) involving bilinear or polynomial terms [6], [7], signomial terms [18], efficient 
algorithms have been proposed for locating the global minimum solution. For the general 
case, however, of minimizing a nonconvex function subject to a set of nonconvex equal- 
ity and inequality constraints there has been comparatively little work in deriving global 
optimization methods and tools. 

Our approach is based on the convex relaxation of the original nonconvex formulation 
(P0). This requires the convex lower bounding of all nonconvex expressions appearing in 
(P0). These terms can be partitioned into three classes: 

(i) convex, 

(ii) nonconvex of special structure, 

(iii) nonconvex of generic structure. 
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Clearly, no convex lower bounding action is required for convex functions. For nonconvex 
terms of special structure (e.g. bilinear, univariate concave functions), tight specialized 
convex lower bounding schemes already exist and therefore can be utilized. Based on 
this partitioning of different terms appearing in the objective function and constraints, 
formulation (P0) is rewritten equivalently as follows: 

N - 1  N 

min C ~  E NC~(x) + E E b~ ' '~ '~ ' '  (P) 
kE/C o i=1 i~=i+1 

N-1 N 

subjectto C J ( x ) +  E N C J ( x ) +  E E ~, i '~'~i ' '  -< 0 
kEK:J i=1 i~=i+1 

j = 1 , . . . ,  (2M + K) 

A x  = c, x L < x <~ x U 

where NC~(x) withx E ~i : i E  , j = 0 , . . . , ( 2 M + K )  

Note that all nonlinear equality constraints hi (x) = 0 appearing in (P0) have been replaced 
by two inequalities in (P). C~ is the convex part of the objective function; NC~ 
is the set of )E ~ generic nonconvex terms appearing in the objective function; N ~ is the 
subset of variable x participating in each generic nonconvex term k in the objective; and 
b~ the bilinear terms. Similarly, for each constraint j,  there exists a convex part 

CJ(x),  ICJ generic nonconvex terms NC~(x), with Af~ variables x per term, and the 
bilinear terms ~,i, mi$i'- Additionally, linear equality constraints and variable bounding 
constraints appear explicitly in the model (P). Clearly, for each optimization problem that 
falls within formulation (P0) there exist several ways of reformulating it into (P). In the 
current implementation of aBB the only nonconvex terms recognized as having special 
structure are the bilinear terms. Work is currently under way to include in the set of 
nonconvex terms of special structure additional nonconvex functions such as univariate 
concave, signomial functions, and products of univariate functions [19]. In the next section 
the derivation of a convex relaxation (R) of (P) is discussed. 

3. Convex Relaxation 

A convex relaxation of (P) can be constructed by replacing each generic nonconvex term, 
NC~(x),  and each bilinear term, ~,i,a~i~i,, j = 0 , . . . ,  (2M + K), with one or more 
convex lower bounding functions. 
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3.1. Nonconvex Terms of Special Structure 

As it is shown in [2], the tightest possible convex lower bounding of a bilinear term bi,i, zi zl, 
inside some rectangular domain [@, ~:]  x [@, z/v,] (convex envelope) corresponds to 
the maximum of the following two linear cuts. 

bi, i ,z i~i ,  ~ $i , i , (z i ,  z i , )  -- m a x ( Y i L z i  , + YiL~i  -- g iLYi  L, 

Y i % i ,  + YiV, z i  - y/vy/V) 

where Yi L = min (bi,i,:~L, bi,i,zu), 

y/,L = min (bi,vzL,,bi,v~u), 
L U Yi U = max  (bi,i,zi , bi,i,z i ) ,  
L U Yi U = max  (bi,i,zi, , bi,i,zi, ) 

si,i, (zi, zi') is the convex envelope of bi,i,z{zi, inside the rectangular domain [@, :~u] • 
L U [:~i,, zi,] and therefore, it can become arbitrarily close to bi,i,::i:~i, for a small enough 

rectangular domain. 
It can be shown that the maximum separation between hi,/,z/s/, and si f  t, inside the 

domain [z L, z~] x [@, z~] can be at most one fourth of the area of the rectangular 
domain multiplied by the absolute value of hi,i,: 

Ib,,,  t ( : 4  - ( z 7  - 
4 

This maximum separation occurs at the middle point 

2 ' 2 

LEMMA 1 The maximum separation of the bilinear term ~y from its convex envelope, 
max (~L y + zyL _ zLyL zU y + ~yU _ zUyU), inside the rectangle [zL, $ U] X [yL, yU] 
occurs at the middle point 

~L j_ T U yL + yU 
z m  _ _ _  , ym _ 

2 2 

and is equal to one fourth of the area of  the rectangular domain, 

4 

Proof: This can be formulated as the following optimization problem. 

max z y _  max (~Ly + ~yL ~LyL, ~Uy + ~yg _ ~UyU) 
x,y 
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subject to zL ___< ~ ___< ~U 
yL <_ y <_ yU 

By substituting in the objective function m = zL or ~ = m U or y = yL or y = yU the 
maximum separation becomes zero. This implies that for any point in the perimeter of  the 
rectangle [mn, mC] X [yL, yV] ~y matches its convex envelope and thus the point where 
the maximum separation occurs must be an interior point. After replacing the maxc,y (-) 
operator with the equivalent - min, ,y - ( . )  operator and eliminating the m a x  over the two 
linear cuts at the expense of  two new inequality constraints we have: 

- min - m y  + z 
z,y 

subject to z >_ sLy + myL _ ~3L yL 
Z >_ ~Uy + zyU _ xUyU 

yL <_ y <_ yU 

Let #1,/~2 > 0 be the multipliers associated with the two new inequality constraints. 
Clearly, the multipliers associated with the variable bound constraints are zero since the 
solution will be an interior point. The KKT conditions yield the following stationarity 
conditions: 

#i+#2--i = 0 

]2,1 mL -~- ~2 mU -- m ---- 0 

I, Zly L "b tz2y U - -  y -~ 0 

(-z  +mLy + myL _ mLyL) ~i = 0 

( - z  + ~uy + ~yu _ ~UyU) 1~2 = 0 

1~1,1~2 >_ 0 

Clearly, at least one of/zl, /z2 must be nonzero, leading to the following three cases: 

(i) /zl = 0, /z2 = 1 

(ii) #1 = 1, /~2 = 0 

(iii) /zl > 0, #2 > 0 

If  #1 = 1 or/~2 = l then we have --z + s L y  + zyL -- mLyL = 0 o r - - z + z U y +  
zy  u -- zUy u = 0 respectively. Both cases (i) and (ii) lead to a zero maximum separation 
implying that they correspond to local minima. The single remaining case (iii) yields the 
following linear system of equations in #1,/~2, ~, y, z 

#i+#~--i ---- 0 
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/z15 L + / z 2 z  U - z  = 0 

I.zly L -I- Iz2y U -- y = 0 

--z  + z L y  -I- ~3y L -- z L y L  = 0 

- - z + z V y + ~ y V - - z V y V  = 0 

Solution of this system gives: 

~L + T U 

z - -  2 ' Y - -  

yL + yU ~UyL + ~LyU 1 

2 , z = 2 , #1 = Iz2 = ~ 

The maximum separation therefore is 

$ y - - Z  = 
_ .,L ) _ yL ) 

[ ]  

3.2. N o n c o n v e x  Terms o f  Gener ic  S t ruc ture  

The convex lower bounding of the generic nonconvex terms N C ~  is motivated by the 
approach introduced in [17], For each one of the generic nonconvex functions, 

NC~(x),  j = 0 , . . . , ( 2 M + K ) ,  k e /C j 

where NCJ(x)  wi thx E {~0i : i E N ' ~ } ,  j = 0 , . . . , ( 2 M + K )  

a convex lower bounding function N C  j 'c~ can be defined by augmenting the original 
nonconvex expression with the addition of a separable convex quadratic function of (z,:, i E 
:v Z) 

N C { ' ~ ~  = YC{(x)  

+ E c~j (xL xU~ ' "" i,kk ' ] (~L __ $i)  (~7  -- ~'i) j = O, . , ( 2 M  + K),  k �9 E j 

iEAf~ 

a i k ( x  , x  tr) > max 0 , - -  mm ;~(x) 
' -- 2 xL<x<x U 

Note that ai, b j are nonnegative parameters which must be greater or equal to the negative 

one half of the minimum eigenvalue of the Hessian matrix of ~rrvJ'~~ "' ~k over @ < ~i _< 
�9 J can be estimated either through the solution of an ~u~, i E N'~. These parameters ai,  k 

optimization problem or by using the concept of the measure of a matrix [17]. The effect 
of adding the extra separable quadratic term on the generic nonconvex terms is to construct 
new convex functions by overpowering the nonconvexity characteristics of the original 
nonconvex terms with the addition of the terms 2a{,k to all of their eigenvalues. These new 
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�9 j ~ COnY functions N C  k defined over the rectangular domains @ _< :ei _< ~u~ , i E N'~ involve 
a number of important properties. These properties are as follows: 

~ ,'TJ'c~ underestimator of N C j. Property 1: . . . .  k is a valid 

�9 ~ o ~  NCflx) .  Vzi  6 [ @ , z v ] ,  i 6 A r ~ w e h a v e N C  k' (x) _< 

Proof: For every i = 1 , . . . , N  we have (:e L - : e i )  ( : eu_ : e i )  < 0 and also by 

defini t iona j (x L xUh > O. Therefore, V x E [xL x U] N O  kj,eonv(x) < N C J ( x ) .  
[] 

j,~on~ NC~ at all points. Property 2:. N O  k (x) matches corner 

Proof: Let x c be a corner point of [ x L , x  U] then for every i = 1 , . . . , N  (:eL - :el) = 

j,co~ ~ = N C J ( x  c) either case. 0 or ( zu  _ :e~) = 0. Therefore, N G  k ( x )  in 
[] 

Property 3:. N r176 v k (x) is convex in :ei E [@, :e/v] , i E A;~. 

Proof: It is a direct consequence of the defnit ion of the parameters J L U ai ,k(x  , x  ), (See 
[17]). [] 

Property 4:. The maximum separation between the nonconvex term of generic structure 
NC~ 'c~ and its convex relaxation NC~ is bounded and proportional to the positive 

parameters ~i,k j and to the square of the diagonal of the current box constraints. 

(x)) 
xL<x<x U 

I 
-- ~ ~ 2  ~,k,~xL , x ~,  (:e7 - :e~)2 

ieX~ 

Proof: 

jlCO~%V (x)) 
xL<x<X u 

xL<x<X u i,kk ~ ] 

iex~ 

= - mi~ ~ "~ ~ x ~ (~ ~) ('7 ~) 
xL <x<x u i,k k ~ ] -- -- 

1 
= - -  i,kk ~ ) . 

ie~r~ 
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Property 5:. The underestimators constructed over supersets of the current set are always 
less tight than the underestimator constructed over the current box constraints for every 
point within the current box constraints. 

Proof: See [17]. �9 

Clearly, the smaller the values of the positive parameters a{, k, the narrower the separation 
between the original nonconvex terms and their respective convex relaxations will be. 
Therefore fewer iterations will also be required for convergence. To this end, customized 

parameters are defined for each variable, term and constraint. Furthermore, an updating 
procedure for the a 's  as the size of the partition elements decreases is currently under 
investigation. 

This type of convex lower bounding is utilized for nonconvex functions which lack any 
specific structure that might enable the construction of customized convex lower bounding 
functions. Clearly, the c~-based convex lower bounding can be applied to bilinear terms 
as well without having to introduce additional variable and constraints. However, in this 
case the maximum separation will be larger than the one based on the linear cuts. More 
specifically, the maximum separation for the a convex lower bounding scheme is, 

( ~  _ ~L)2 + (y~ _ y~)2 

8 

This is always greater than 

( ~  _ ~L) (yu _ r  
4 

unless ~u _ sL = yU _ yL. Based on the aforementioned convex lower bounding 
procedures for bilinear terms and generic nonconvex terms, a convex relaxation (R) of (P) 
is proposed. 

min C~ + ~ NC~ (R) 
kEK o 

"4- ~_~ Ot 0 [X L ~,~, ,x U) (.~ _ .~) (.~ .~) + ~ o  
ieH~ 

subject to C~(x) + ~ NC~(x)  
k E lCJ 

+4~(x L x ~) ~ (.~ - . i ) ( * 7 -  *,) + 4,~, __ 0, 

j = 1 , . . . , ( 2 M  + K)  
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~/',il > 
m a x  ( y / ' L z i ,  +  J,'Lzi -- Y/'LYi 'L , 

j = 0,.. . ,  (2M + K) 

where 

y/,L = 

y/,U = max( ,i, L 

y/j,u .=-- max( ,i,zL 

Ax = c, x L < x < x U 

and NCJ(x)  wi thx  E ( z i  : i E A f ~ } ,  j = O , . . . , ( 2 M + K )  

Formulation (R) is a convex programming problem whose global minimum solution 
can be routinely found with existing local optimization solvers such as MINOS5.4 [22]. 
Formulation (R) is a relaxation of 0 a) and therefore its solution is a valid lower bound on 
the global minimum solution of (P). 

In the next section, we will see how this convex lower bounding formulation (R) can be 
utilized in a branch and bound framework for locating the global minimum solution of (P). 

4. Global Optimization Algorithm, aBB 

A global optimization procedure, aBB, is proposed for locating the global minimum 
solution of (P) based on the refinement of converging lower and upper bounds. Lower 
bounds are obtained through the solution of convex programming problems (R) and upper 
bounds based on the solution of (P) with local methods. 

As it has been discussed in the previous subsection, the maximum separation between the 
generic and bilinear nonconvex terms and their respective convex lower bounding functions 
is bounded. For the generic nonconvex terms this maximum separation is proportional 
to the square of the diagonal of the rectangular partition element and for the bilinear 
terms proportional to the area of the rectangular domain. Furthermore, as the size of the 
rectangular domains approaches zero, these maximum separations go to zero as well. This 
implies that as the current box constraints Ix L, x U] collapse into a point; (i) the maximum 
separation between the original objective function of (P) and its convex relaxation in (R) 
becomes zero; and (ii) by the same argument, the maximum separation between the original 
constraint set in (P) and the one in (R) goes to zero as well. This implies that for every 
positive number ey and x there always exists a positive number 6 such that by reducing 
the rectangular region [X L, X U] around x so as [Ix tr - x[[ _< 6 differences between the 
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feasible region of the original problem (P) and its convex relaxation (R) become less than 
e:. Therefore, any feasible point x ~ of problem (R) (even the global minimum solution) 
becomes at least e:-feasible for problem (P) by sufficiently tightening the bounds on x 
around this point. 

The next step, after establishing an upper and a lower bound on the global minimum, is to 
refine them. This is accomplished by successively partitioning the initial rectangular region 
into smaller ones. The number of variables along which subdivision is required is equal 
to the number of variables x participating in at least one nonconvex term in formulation 
(P). The partitioning strategy involves the successive subdivision of a rectangle into two 
subrectangles by halving on the middle point of the longest side of the initial rectangle 
(bisection). Therefore, at each iteration a lower bound of the objective function of (P) is 
simply the minimum over all the minima of problem (R) in every subrectangle composing 
the initial rectangle. Therefore, a straightforward (bound improving) way of tightening the 
lower bound is to halve at each iteration, only the subrectangle responsible for the infimum 
of the minima of (R) over all subrectangles, according to the rules discussed earlier. This 
procedure generates a nondecreasing sequence for the lower bound. An nonincreasing 
sequence for the upper bound is derived by solving locally the nonconvex problem (P) and 
selecting it to be the minimum over all the previously recorded upper bounds. Clearly, if 
the single minimum of (R) in any subrectangle is greater than the current upper bound we 
can safely ignore this subrectangle because the global minimum of (P) cannot be situated 
inside it (fathoming step). 

Because the maximum separations between nonconvex terms and their respective convex 
lower bounding functions are bounded and continuous functions of the size of rectangular 
domain, arbitrarily small e: feasibility and e~ convergence tolerances are reached for a 
finite size partition element. 

The basic steps of the proposed global optimization algorithm are as follows: 

STEP 1 - Initialization 

A convergence tolerance, e~, and a feasibility tolerance, e:,  are selected and the iteration 
counter I ter  is set to one. Current variable bounds x L,It~€ x U,It~€ for the first iteration 
are set to be equal to the global ones x LBD , x UBD. Lower and upper bounds L B D ,  U B D  
on the global minimum of (P) are initialized and an initial current point x ~,xr is selected. 

STEP 2 - Local Solution of  Nonconvex NLP and Update of  Upper Bound GUo B D 

The nonconvex optimization problem (P) is solved locally within the current variable 
bounds x LBD , x UBD. If the solution f[ot2a~l of (P) is e:-feasible the upper bound U B D  is 
updated as follows, 

U B D  = mln (UBD,  Slob:I,) 

STEP 3 - Partitioning of  Current Rectangle 

The current rectangle [x LJ'~r, x U,I~r] is partitioned into the following two rectangles 
(r = 1, 2): 



GENERAL CONSTRAINED NONCONVEX PROBLEMS 3 4 7  

L , I t e r  U,I~er 

L,I tcr ~U, Iir 
L , I t e r  (~;~I,er -}- , I ter ) 

~l  I~er 2 

L , I t e r  U, I t e r  

u, I ier 
X~It*r ) U,I ter  k l I ter -- 

2 ~I  I~er 

s L ,  I t e r  U, I t e r  

where l z*~r corresponds to the variable with the longest side in the initial rectangle, 

S T E P  4 - Update o f  a{, k' s inside both subrectangles r=1,2 

The positive parameters a~, k ( x U,I te~ , x L,I*~ ) are updated inside both rectangles r=1,2. 

S T E P  5 - Solution o f (R)  inside both subrectangles r=1,2 

The convex optimization problem (R) is solved inside both subrectangles (r = 1, 2) 
�9 r , I t e r  using any convex nonlinear solver (e.g. MINOS5.4 [22]). If a solution l,o I is less than 

�9 �9 �9 r , I t e r  the current upper bound, U B D  then it is stored along with the solution point X~o 1 . 

S T E P  6 - Update Iteration Counter Iter~ and Lower Bound L B  D 
The iteration counter is increased by one, 

I t e r  ~ - -  I t e r  + 1 

and the lower bound L B D  is updated to the minimum solution over the stored ones from 
previous iterations. Furthermore, the selected solution is erased from the stored set. 

L B D  I rJ ' I ter '  

where  l r''I*~r' = m i n  1 ~ ,  r = l , 2 ,  I =  1 , . . . , I t e r - 1 .  
sol r , I  

L , I t e r  S T E P  7 - Update Current Point x c,z t~r and Current Bounds x , x U,z*~r on x 
The current point is selected to be the solution point of the previously found minimum 

solut ion in S T E P  6, 

xC , I t e r  rt,l~er ~ 
Xso I 

and the current rectangle becomes the subrectangle containing the previously found solu- 
tion, 
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[xL , I t e r  xU , I  ter] 

L,I~er' U,l*er j 

: 

L,I~er t U , I ~ r  t 
L,I~,rt (~lItert + lI,er t ) 

~lI*ert 2 
: 

L , I ter  ~ U,Iter ~ 
mN ~ N  

L , I ter  ~ U,Iter I 

~L,I~r / 
( lI'er' + lliert ) ~U~I,,?t 

2 l I*~vt 
: 

~ 'I*er~ ~NU'Itert 

, i f  r I = 1 

if r I = 2 

STEP 8 - Check for Convergence 

IF (UBD - LBD) > ec, then retum to STEP 2 

Otherwise, ec-convergence has been reached and the global minimum solution, and solution 
point are: 

f ,  ~__ f ~ , I ~ "  
X* ~ X c ' I ter"  

where It, e~' = arg{f~ ' l )  = UBD, I = 1 , . . . , I t e r } .  
I 

A mathematical proof that the proposed global optimization algorithm converges to the 
the global minimum is based on the analysis of standard deterministic global optimization 
algorithms presented in [16] as shown in [17] and [18]. 

5. I m p l e m e n t a t i o n  o f  a B B  

One of the key characteristics of the aBB method is that it is a generic global optimization 
method for constrained optimization problems involving only continuous variables. The 
algorithm is implemented in C and at this point the user has the capability of selecting from 
four different types of functional forms to define the optimization model. These forms 
include (i) linear, (ii) convex, (iii) bilinear, and (iv) nonconvex terms. The original data 
are pre-processed so that any linear parLin the model~ (i.e. ~ linear congtrMnts and linear 
cuts), are identified at the very beginning thus reducing the amount of time that is needed 
to set up the problem in subsequent stages of the algorithm. The user has the capability to 
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supply the values for the parameters a which are defined for each variable i = 1 , . . . ,  N 
participating in term k E EJ and constraint (or objective function) j = 0 , . . . ,  M. In 
principle, tailoring the a parameters for each variable, term and constraint generates tighter 
convex underestimators than by simply defining a single generic a for all the variables and 
nonconvex terms. Furthermore, the user also decides along which variables branching will 
be performed. These variables are typically the ones that appear in at least one nonconvex 
term. 

The information required by the user, in the current implementation, consists of an input 
file and a set of user specified functions. 

Input File : This file provides, in a user-friendly format, information such as (i) the 
number of variables and constraints; (ii) the number of different functional forms (i.e. 
linear, convex, bilinear, and nonconvex) appearing in the model; (iii) the actual linear 
and bilinear entries; (iv) values for the parameter ai, kj for each variable, term, and 
constraint or objective function; and finally (v) the variables along which branching 
will be performed. 

User Specified Functions : The nonlinear, (i.e. convex and nonconvex), terms of the 
formulation have to be explicitly provided by the user in a form of a C or F77 subroutine. 
Here the user specifies, for each function (as defined in the input file), the convex and 
nonconvex terms. 

An efficient parsing phase which would significantly simplify the problem input and 
declaration is currently under development and is going to be incorporated in the version 
of aBB. Further work is in progress towards the evaluation of customized parameters a for 
different partition elements. 

6. Computational Studies 

The aBB method has been tested on a variety of nonlinear optimization problems which 
are described in the following subsections. The selected convergence tolerance is 10 -4 and 
computational requirements are reported for an HP-730 workstation. 

6.1. Bilinearly Constrained Optimization Problems 

The simplest type of non-linearities present in the formulation are bilinear terms in either 
the objective or the constraint set. The first three examples to be considered are the Haverly 
Pooling Problems [9]. The three instances of of the Haverly Pooling problems are the 
following: 

�9 Case I : 

rna$ 9z + 15y - 6A - 16B - 10(c~ + Cy) 
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s.t .  P x + P v - A - B  = 0 

$ - P , - C ~  = 0 

v - P y  - C y  = o 

pP~ + 2C~ - 2.5z < 0 

pPy + 2Cy - 1.5y _< 0 

PPz + PPy - 3 A -  B -- 0 

z < i 00  

u _< 200 

In this first instance, there are three linear equality constraints, two bilinear inequalities 
and one bilinear equality. The three bilinear constraints will be underestimated using 
linear cuts [2]. There is a total of  9 continuous variables, however, branching is required 
on only three of them, (i.e. p, P~, Pu), which participate in the bilinear terms. The 
algorithm converges to the global minimum in about 2.7 seconds and a total of 89 
nodes of  the complete binary tree are expanded. This means that 89 lower bounding 
problems were solved to meet the selected convergence tolerance of  10 -3  . The global 
minimum solutionis located at : p = 1, B = Py = Cy = 100, y = 200, G'~ -- A = 0. 

Case II : 

This problem is identical to Case I, except that the upper bound on variable ~ is changed 
from 100 to 600. The global minimum is now at: p = 3, A = P ,  = C~: = 300, z = 
600, G'u -- B = 0. The solution is found in about 3.0 seconds and a total of  97 nodes 
are investigated. 

Case III : 

In Case III, the value of  the coefficient of  B in the objective function is changed from 16 
to 13. The solution, located in about 2.2 seconds, is p = 1.5, A = 50, B = 150, Py = 
200, y = 200, P~ = ~ = 0, and a total of 91 nodes needed to be investigated. 

6.2. Bilinearly Constrained with Bilinear Objective Optimization Problems 

The next degree of  difficulty is to consider bilinearities in both in the objective as well as in 
the constraint set. As such an example we will consider the following formulation which 
describes the optimal design of a separation system involving three mixers, a splitter, a 
flash unit, and a column. The optimization problem is defined as follows : 

m i n  -- 87 .5~i  - 3 1 6 . 5 6 2 5 ~ 3  - 352.3438~i~4 - 143.5~i~5 -- 175~2 

- 271.875~2~3 -- 307.8125~2~4 - 62.5~2~5 + 1250~6 + 50~7 
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s.t. 13.9375~153 + 13.96885154 - ~4 + 2551~5 

+13.12552~3 + 12.8125~2~4 + 2 5 ~ -  2~5 < 15 

--25~i~3 -- 25~2~3 + 62.5~7 < 0 

25~I~3 + 25~2~3 -- 62.5~7 < 0 

--25~i~ 4 -- 25~2~4 + 62.5~6 < 0 

25r + 25r 62.5r ~ 0 

31.2551r - 2.6875~1r - Ii.1563r162 

+37.552~5-- 0.625~2~3- 9.6875~2~4 ~ 0 

-30~1r + 25r + 29.375~2~3 -- 35.9375r 25r < 0 

25r -- 13.9375~r - 13.9688r - 2 5 ~ 5  

+2552 -- 13.125r -- 12.8125r162 -- 25r162 ~ 18 

This problem involves seven variables and branching is required in all of them. Conver- 
gence to the global minimum solution (~1 =- 0.3200, z2 - 1.0000, ~3 = 0.7920, ~4 -- 
0.0629, ~5 = 0.0000, ~6 = 0.0033, ~7 = 0.0418), takes 28.5 seconds and requires the 
solution of 153 linear programming subproblems. 

6.3. Nonlinear Unconstrained Optimization Problems 

The next degree of difficulty consists of optimization problems with nonconvexities in the 
objective function and simple variable bound constraints. An example corresponding to 
a robust control synthesis problem which has been very challenging to solve for the local 
solver MINOS5.4 is addressed. The problem is formulated as follows: 

min-T~,~ = -  (~MMff) 

w h e r e  M 1 = 

M2 = 

+ 

],1'6 ~"  

l J,5 -.~ 

1~4 = 

~ 3  ---- 

/./,1 = 

(/z~3 -/Zl/Z4) 2 + (/zllz3 +/z2]z4) 2 

{ 1  -I- (]3'2 - -  ]3'5)]2'3 - -  (]2'1 - -  ~ 6 ) ] / ' 4 }  2 -I- {/7,2 - -  17,5)/7,4 

( , 1  - 

- 

+ 1 

+ 

(3w) 2 + 1 

3w - ew 
0.5{ ( ~ ) ~  g i}  

1 + 3 e w  2 } 
(ew) 2 + 1 

~1 (m2w) 2 + 1 
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~ = ~1 (~2w) 2 + 1 
0.00 < w <  1.00 

1.00 _< ~1_<3.00 
2.00 < ~2_<4.00 

4.00 < za_<6 .00  

The following two cases for the parameter e are considered. 

. e = 3.00 : The problem involves only four variables, however, after 100 multi-start runs 
using the local solver MINOS5.4 [22], the global minimum was identified only 5 times. 
The method aBB consistently located the global minimum solution ~1 = 3, ~2 = 
2, ~a = 4, w = 0.6670 with an objective function value of -2.8765. Computational 
requirements for different values of  a are shown in Table 1. Apparently, there is a very 
strong local minimum solution with a value of  -2.7072, and a corresponding solution 
vector ~1 = 3, ~2 = 2, ~a = 6, w = 0.0 which was most of  the time the convergence 
point of  the local solver MINOS5.4. 

Table 1. Results for 
the robust control synthesis 
problem r = 3.00. 

a Ni ter  CPU (s.) 

0.50 16 0.61 
0.75 17 0.62 
1.00 18 0.67 

. e = 10.5101 : This selection for the parameter e makes the problem even more difficult 
for the local solver MINOS5.4 to generate the global minimum solution. In fact, in 
only one out of  100 times was the local solver able to find the global minimum 
located at ~1 = 3, ~2 = 4, z3 = 6, w = 0.0959 with an objective function value 
of  -1.0507. A very strong local minimum of -1.000 located at z l  = 2.806842, z~ = 
3.126284, z3 = 4.183029, w = 0.0 again dominated the reported solutions by the local 
solver. Computational results are shown in Table 2. 

6.4. Linearly Constrained Nonlinear Optimization Problems 

The examples of this section are taken from [20]. They correspond to three very challenging 
phase equilibrium problems, and are defined as follows: Given i components participating 
in up to k potential phases under isothermal and isobaric conditions find the mole vector 
n that minimizes the value of  the Gibbs free energy while satisfying appropriate material 
balance constraints. 
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Table 2. Results for 
the robust control synthesis 
problem �9 = 10.5101. 

a Niter CPU (s.) 

0.50 203 5.94 
0.75 488 14.9 
1.00 511 16.2 

Problem I: 

The first physical system describes the phase equilibrium of a systems containing 
n-Butyl-Acetate - Water. The formulation is as follows : 

+ ,~l,~ ,~1 ~ + ,~gl,~ ,~g - [,~ + ~] l ,~  [,~ + ,~] 
T 1 r~l 

+ G n  12nl 1 +G21r21n~ 1 n~ 
n 2 + G12n~ n 1 + G21n~ 

+ C1~n2,~ 2 n~ n 2 + G12n~ + G12T12n~ 1 n~ n 2 + G n n ~  

,.~. ~ + ~ = o.~ 

O < n ~ ,  1 2 n~, nl, n~ < 0.5 

The terms of the form nln(n) have been shown to be convex [20]. Therefore, the 
optimization problem contains an objective function that has a convex term and four 
additional non-convex terms. 

The global minimum solution is presented in Table 3. Computational results are 

Table 3. Global minimum of example I. 

obj ,,~ ,,~ ,,~ ,,~ 
Global -0.00202 0.00071 0.49929 0.15588 0.34412 

shown in Table 4. 

Problem II: 

The second system describes the phase equilibrium of the ternary system n-Propanol 
- n-Butanol- Water. The minimization of the Gibbs free energy takes the form : 
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Table 4. Results for the 
first phase equilibrium ex- 
ample. 

a N~er CPU (s.) 

0.10 18 0.41 
0.25 49 0.99 
0.50 105 2.46 

min G~ 

s.~. 

+ ,~,~ ~ + ,~,~ 

-t- n~ [a12T12 nl  -F 

1 
-F ns[Gzl"r31 n~ -q-- 

n 2 + 

2 
+ n3[G31"r31 1 n~ -q- 

,~ + ,~ = ,~2 ~ , 
,~ + , ~  = , ~ ,  

,~ + ,~l,~ ,~ - [,~ + ,4 + ,@lr~ [,~ + ,~ + ,~] 

G12n~ + G32n 1 + G13r13 1 n 3 + Glsn~ + G23n2]l 
G21n~ + G31n~ + G23"r23 1 n s + G13n~ + G23n~ ] 

n 2 + Gz2n~ + 

+ ~2 ,~  + c ~ - ~  ,~2 + ~1~,~ + c~,~]- G12nl  2 

G21n~ + G31n~ + 6237"23 

G21n~ + G31n~ + G327"32 

o <_ ,~,,~ <_ ,~ 
o <_ ,~, ,~ <_ ,~ 
o <_ ,~, ,~ <_ ,~ 

,~ + c13,~ + a~3,~ ] 
n~ 

,~ + c1~,~ + c3~,d ] 

The extremely difficult instance with n T = {0.148, 0.052, 0.800}, due to the very small 
objective value difference between the global and a local solution, was successfully 
solved. 

The global minimum solution is presented in Table 5. 

Table 5. Global minimum of example II. 

obj n~ n~ n~ n~ n~ n~ 

Global -0.27081404 0.0456 0.0063 0.6550 0.1450 0.1280 0.0200 

Computational results are presented in Table 6. 
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Table  6. Results for the sec- 
ond phase equilibrium prob- 
lem. 

a N~,~ CPU (s.) 

0.025 208 7.10 
0.05 320 10.4 
0.I0 772 24.6 

P r o b l e m  I I I :  

The  final  examp l e  desc r ibes  the  p h a s e  e q u i l i b r i u m  o f  Toluene - Water. 

z~ = 5q~-1 z #  = 5q~-1 
r l  r 2  

--  3 .53316  = 6 .52174  

R m i n  { R n Z M ---- } Z 1 ~ Z2  

= z f  
= 3 .53316  

2:A B 
= ~ .  + ( ~  - ~ ; )  + ( @  - ~f~) 

= 6 .5 2174  

R R 

--  2 .98858  -- 0 

~01 : -  ql  -6 r l  - z A ---- 28 .53522  

~02 : q~2 -6  r 2  " Z A : 7 .0 

m i n  G I  
z z 

+ ~A [r:~ + r :~]  In [~: i  + ~:~] + ~ : ~  in 

+ zA [~:~ + ~:~] 1~ [~:~ + r :~]  + ~ : ~ l ~  ~ ~ 
+ r 2 n  2 

+ ~q~,~ 1~ q : l  + q:~ q:~ + q:4 

+ ~q~,~ 1~ q~,~ + q:~ + ~q~,~ 1~ q~,~ + q~,~ 

t 1 s 1 t 1 ! 1 
qln I l 1 -6 [qlnl -6 q2n2] In -6 q~n2] -6 qlnl  In I 1 i 1 qi ni  -6 r2i q2n2 

i 1 
+ q2n2 In s 1 t 1 

T12qlrL 1 -6 q2~,2 
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s.t. 

t 2 t 2 [qtr~2 / 2 qtr~2 r~2 + [q1,~1 + q ~ ]  in L ~ 1 + q2~]  + ~ ~ in qt n2 i 2 1 1 +r21q2n2 

t 2 + q2n2 In 
/ 2 / 2 r12qlnl + q2n2 

- ~ [n~ In n~ + ~ In n~] - ~2 [ ~  In ~ + ~g in n~] 

,~I + , ~  = 0.5 

,4  + , ~  = 0.5 

o - < , q , , 4 ,  ~ ,~1, , ~5<o .5  _ 

The global minimum solution is presented in Table 7. 

Table 7. Global minimum of example III. 

obj n I n~ n~ n~ 

Global -0.01975944 0.0004 0.4996 0.4772 0.0228 

Computational  results are shown in Table 8. 

Table 8. Results for 
the third phase equilibrium 
problem. 

" Niter CPU (s.) 

0.50 51 1.95 
0.75 55 2.08 
1.00 63 2.27 

6.5. Nonlinearly Constrained Nonlinear Optimization Problems 

The problems of  this section involve nonconvex terms of  generic structure in both their 
objective function and constraints. Two examples will  be presented, a small one in order 
to illustrate all possible combinations of  functional forms that can be present in a general 
nonconvex optimization problem, and a larger one in order to illustrate the applicabil i ty of  
the method on a rea l -wor ld  problem. 

�9 Example I: This example is taken from the manual of  MINOS5.4 [22]. The formulation 
is as follows : 

min  (~i  -- 1) 2 § (~I - ~2) 2 -I- (~2 -- ~3) 3-I. (~3 - ~4) 4 + (~4 -- ~5) 4 
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s .L 

z 2 - z ~ + z 4  = 2 v ~ - 2  
$ I z 5  : 2 

The aBB input file for this problem is shown in the appendix. This examples involves 
linear, convex, bilinear, and non-convex terms. The global minimum solution along 
with four local solutions are shown in Table 9. Computational requirements for 

Table 9. Global and local minima of example I. 

o b j  x 1 x 2 ~73 x 4 x 5 

Global 0.0293 1 .I 166 1 .2204  1 .5378  1 .9 7 2 8  1.7911 
Local 1 27.8719 -1.2731 2.4104 1 .1949 -0.1542 -1.5710 
Local 2 44.0221 -0.7034 2.6357 -0.0963 -1.7980 -2.8434 
Local 3 52.9026 0.7280 -2.2452 0 .7 7 9 5  3 .6 8 1 3  2.7472 
Local 4 64.8740 4 .5695  -1.2522 0 .4 7 1 8  2.3032 4.3770 

different values of a are presented in Table 10. 

Table 10. Computational 
results for example I. 

a Niter CPU (s.) 

0.05 35 13.87 
0.25 81 30.80 
0.50 335 99.76 

Example II: This test example addresses an optimal blank nesting problem involving 
important industrial applications. The objective is to minimize the "scrap" metal and 
the problem is formulated as follows: 

m i n  w p  
01,02,Ax,Ay,w,p 

8 . ~ .  "tO : -  "tO 1 - - " t O  2 

wl _> 9~, a = i , 2  

w2 ~ y ~ ,  a : l , 2  

+ _< (z? - y') j 

ri ~ y 1 ~ w - -  ri 

ri < y~ < w -  ri 

NB Ns N,  

i : 1  i : 1  i = l  
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v,,,b �9 {1,1+,2},vi, { I . . .N , }  
1 where ~i = ClZi -- 81Yi 

yl  = 81Zi ..~ Clyi 

$1+ : Cl:~i -- s l y i  + p 

y~+ : sLzi  q- c ly i  
2 

z i : c2~i -- s2yi q- A s  

y~ : s2z i  + c2yi + A y  

c l  : c o , ( O l ) ,  81 = ,i (ol) 

The results o f  local  min imiza t ion  runs f rom 50 randomly  generated starting points  

using M I N O S  5.4 [22] are shown in Table 11. The  g lobal  solut ion is identif ied by a B B  

in 250 i terat ions and 3,153 seconds o f  C P U  time. It is shown,  a long with  some local  

solut ions in Table 12. 

Table 11. Sample Local Runs 

Run No. obj. fun. Run. No. obj. fun. 

0 299.230856 (0) 
2 Failure 
4 Failure 
6 350.065316 (0) 
8 344.095172 (0) 
10 350.065316(0) 
12 Failure 
14 350.065316(0) 
16 350.065316(0) 
18 350.065316(0) 
20 Failure 
22 Failure 
24 344.095172 (0) 
26 299.230856 (0) 
28 Failure 
30 Failure 
32 Failure 
34 350.065316(0) 
36 350.065316(0) 
38 344.095172(0) 
40 350.065316 (0) 
42 350.065316(0) 
44 350.065316(0) 
46 350.065316(0) 
48 Failure 

1 299.230856 (0) 
3 350.065316 (0) 
5 344.095172(0) 
7 350.065316 (0) 
9 Failure 
11 Failure 
13 350.065316(0) 
15 Failure 
17 350.065316(0) 
19 Failure 
21 350.065316(0) 
23 Failure 
25 235.721608 (0) 
27 Failure 
29 Failure 
31 235.721608(0) 
33 350.065316 (0) 
35 350.065316(0) 
37 Failure 
39 350.065316(0) 
41 Failure 
43 350.065316 (0) 
45 Failure 
47 350.065316(0) 
49 Failure 

As can be  seen f rom these results, in only two out  o f  the 50 runs the g lobal  m i n i m u m  

is identified. 
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Table 12. Local and global solutions 

f 01 02 dx dy w p 

235.721608 2.755873 5.897465 -12.660181 -3.62188 8.394903 28.079134 

299.230856 2.783586 5.925179 -14.000000 0.000000 13.283868 22.525884 

344.095172 2.315182 5.456775 -13.767864 0.000000 15.000000 22.939678 

350.065316 2.362680 5.504273 -14.000000 0.000000 14.004254 24.997070 

7. Conclusions 

In this paper, the global optimization method aBB, is introduced for solving continuous 
constrained nonlinear optimization problems with nonconvexities both in the objective 
function and constraints. These nonconvexities are partitioned as either of special struc- 
ture, if there exist tight convex lower bounding functions for them, or otherwise generic. A 
convex relaxation of the original problem is then constructed by (i) replacing all nonconvex 
terms of special structure (i.e. bilinear) with customized tight convex lower bounding 
functions and (ii) by utilizing the a parameter, as defined in [17], to underestimate noncon- 
vex terms of generic structure, aBB attains finite E-convergence to the global minimum 
solution through the successive partitioning of the feasible region coupled with the solution 
of a series of nonlinear convex minimization problems. The key feature of aBB is that it is 
applicable to a large number of optimization problems. Comparisons with other methods 
on test problems indicate the efficiency of aBB. 
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Appendix 

Sample c~BB Input File 

# Note: 
# (i) 
# 

# (2) 
# (3) 
# 
# 

BEGIN 
OBJTYPE 

Lines starting with a "#" or "!" are comment 

lines. 
Empty lines are ignored. 
Fields can be separated by any non-zero 
number of spaces or tabs. 

mhw4d # Problem name 
Nonconvex # Type of objective function 
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CONTYPE 
NXVAR 
NCON 
EPSA 
EPSR 
YSTART 
OBJCONST 
USERFUNC 
# 

Nonconvex 
5 
5 

i. 0E-05 
i. 0E-03 

-I 

0 
default 

# Rows section 

# Type of constraints 
# Number of X variables 
# Total number constraints 
# Absolute conv. tolerance 
# Relative conv. tolerance 
# Type of starting point desired 

# Constants in the objective 

# this section will perform a complete description 
# of all the rows in the problem. 

# A row is defined by 
# 1 a number 
# 2 a relationship type ( <=, >= , == ) 
# 3 a RHS value 

# 4 number of linear terms 
# 5 number of convex terms 
# 6 number of bilinear terms 
# 7 number of nonconvex terms 
# All constraints should appear in this section 
# and all constraints are assumed to have a default 
# linear. This will help the consistency 
# of the model and the handling of the different 
# formulations. 

# Format : 
# Row_No Row_sense RHS_Value Linear_terms 

# Convex_terms Bilinear_terms Nonconvex_terms 
# 

ROWS 5 
0 -i 0.0 1 1 0 1 0 
1 -i 6.242641 1 1 0 1 0 
2 -i -6.242641 1 0 0 1 0 
3 -i 0.828427 2 0 0 1 0 
4 -i -0.828427 2 1 0 0 0 
5 0 2.0 0 0 1 0 0 
# 

# Columns section 
# Format : 
# Row_Number X- Index Y- Index Coefficient 
# 

# The objective function is denoted by Row Number 0. 
# 

COLUMNS 0 
0 1 0 0.0 
1 1 0 1.0 
2 1 0 -i.0 
3 2 0 1.0 
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BOUNDS 
L 1 
L 2 

L 
L 
L 

U 
U 
U 
U 

U 
# 

3 4 0 1.0 
4 2 0 -i.0 
4 4 0 -i.0 
5 1 5 1.0 

# 

# Bounds Section 

# Format : 
# Bound_Type X - Index 
# 

i0 

0 
0 

3 0 
4 0 
5 0 
1 0 
2 0 
3 0 

4 0 
5 0 

Y- Index Value 

# Total nu~er of bounds specified = 2 

-65 
-65 
-65 
-65 
-65 

65 
65 
65 
6.5 

6.5 

# Alpha Section 

# Format: 
# Obj. Function / Constraint X-Index Value 
# 

# 

# Case (a) : all alphas will correspond to the 

# same fixed values 
# ALPHA -i 
# 0 0 i0.0 

# Case (b) : user specified alphas 

ALPHA 9 

T1 1 1 0 25 
T1 1 2 0 25 
T1 1 3 0 25 
T1 1 4 0 25 
T1 1 5 0 25 
T2 2 3 0 25 
T3 3 2 0 25 
T3 3 3 0 25 

T4 4 3 0 25 
BRANCH 5 
V1 1 
V2 2 
V3 3 
V4 4 
V5 5 
END 
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