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The Dirichlet and Neumann zero boundary value problems on a rectangle for the equation Au + sinh u = 0 
are considered. Exact solutions are constructed by means of finite-gap integration theory. 

Let R be a rectangular domain, namely, 

R = {(z,y) I x e [0, x],  y e [0,Y] }. 

In the present article we construct the solutions of the boundary value problem 

i 02 02 Au + sinh u O, A = ~ + cOy---~, (1) 

OR = 

with Neumann or Dirichlet zero boundary conditions on the edges of R, such that different boundary conditions are 
admitted on different edges. 

This problem arises in differential geometry in the construction of tori with constant mean curvature [1]. 
Equation (1) is one of the real reductions of the sine-Gordon equation, which is well known in the theory of 

solitons. Finite-gap solutions of the latter equation, which were first constructed in [2], can be used to solve the 
problem (1), (2). 

We consider the RJemann surface C of genus g of the hyperbolic curve 

g 

~2 = a I~(A - ci) (A - 1 /~) ,  Icd # 1. (3) 
i=1  

The surface consists of two copies of the complex plane pasted together along the cuts [0, cx3] and [ci, 1/~i]. We take 
a contour s on C that encompasses the cut [0,cr and we choose a canonical basis of cycles on C in such a way 
that ai encompasses the cut [ci, 1/~i] and s = al + as + . . .  + %. We fix a branch of the function v/X on C \ s 
U = (Uz, . . . ,  Ug) and V = (V1,... ,  Vg), where 

u. = f anl, w. = f ,zn  

are the vectors formed by the b-periods of the normalized Abelian differentials of the second kind with singularities 
of the form 

du,, denote holomorphic differentials normalized in the chosen basis in such a way that fadum = 27ri~,,~, and 
Bnm -- fb,, dum is the matrix of periods, which determines the corresponding Riemann theta function 

O ( p ) :  E e x p ( l ( B k ,  k ) + ( p , k ) ) ,  

k E Z  g 

P - ( P z , . . . , P a )  E Cg- 
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For the curve (3) there is the antiholomorphic involution r : A ---* l/X, the action of which generates the following 
transformations: 

g 1 
ran = - a n ,  ~'bn = h a - a n  + E a i ,  r V ~ =  - ~ ,  r ' d ~ l  =dfl2,  (4) 

i = l  

from which it follows that  [7 = V. 

THEOR EM ([3]). AH real-valued finite-gap solutions of Eq. (1) are given by the formula 

= In ko( -jb + A ) ]  ' 

A = ~ri(1, 1 , . . . ,  1), iD E l~ 9, 

i 
= 5 ( a *  - fly), (5) 

U = a + ifl, a, fl E l~ g, 

where O(p) is the theta function of the curve (3) and D is an arbitrary vector. All of  the solutions are nonsingular. 

Let now r : A --+ 1/A be an involution of C. It is not difficult to show that  the basis of cycles on C can be chosen 
in such a way that ,  apart  from (4), it also undergoes the transformations 

. . .  1 

~ra = all,  rrb = bII, II = .. . , a = (al ,  . . . .  %),  b = ( b l , . . . ,  bg) (6) 

. , .  0 

under the action of r .  Since r * v ~  = - 1 / v ~ ,  the Abelian differentials of the second kind are transformed into each 
other under the action of r :  

r* dftl = -dr't2. (7) 

In turn, equalities (6) and (7) ensure that  the following symmetry properties hold for the theta  function and the 
vectors o~ and fl: 

O(p) : 0 ( v i i )  = 0 ( - v i i ) ,  = - a n ,  = (8 )  

Let us note that  all the arguments of the theta  function in (5) are purely imaginary. The theta  function is 
periodic with periods 2 t i N ,  where N is a g-dimensional vector with integral entries. Equality to within such periods 
will be written in the following way: 

zl = z2 ~ zt = z2 + 2r iN,  N E Z 9. 

LEMMA. I f  D = DII, then u ( - x , y )  = u(x ,y) .  
I f  D =  DH + A,  then u ( - x , y ) =  - u ( x , y ) .  
I f  D =- - D I I ,  then u ( z , - y )  = u(x ,y) .  
I f  D = - D H + A ,  then u ( z , - y ) = - u ( z , y ) .  

This assertion is a direct consequence of (8) and the fact that  A - A I I  _= - A H .  Using this assertion one can 
easily prove the following result. 

TI IEOREM. The solution (5) of  Eq. (1) constructed from the Riemann surface C with the involution ~r satisfies 
the Dirichlet (7)) or Neumann ( X )  zero boundary conditions on the edges of R i f  the following conditions are satisfied: 

OR N 7) 

z = 0  D=_DH D --- DII + A 
y = 0 D = - D I I  D = - D I I  + A 
z = X a X  -- D H -  D a X  = D H -  D + A 
y = Y  f l Y = D I I + D  f l Y . -  DH + D + A .  

In particular, if the Neumann zero boundary conditions are satisfied on the entire boundary OR, then we get 
a X  = flY = O, D = ~ri(e, e) if g = 2k, and D = ri(e, e~+l, e) if q = 2k + 1, where e = (el . . . . .  ek) with ei E {0, 1}. If 
the condition uto n = 0 holds, we have g = 2k, a X  =_ f lY - O, and D = ri((r  e ) +  (1, 0)), where 1 is a k-dimensional 
row whose entries are equal to 1. 
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By virtue of (8), the equalities aX =_ fly =_ 0 represent g conditions for g free parameters (branching points) of 
the Riemann surface C. 

The curve C is a two-sheeted covering of C/Tr. Using the reduction technique for theta  functions [4], one can 
easily show that  the original g-dimensional theta function can be expressed in terms of the product of two theta 
functions of dimension k + 1 and k if g = 2k + 1, or k and k if g = 2k in such a way that  the variables x and y are 
separated, i.e., they appear in the arguments of different theta functions. 

It turns out that  we have constructed all solutions of the boundary value problems posed. This fact can be 
proved with the aid of the following important theorem. 

THEOREM. All double-periodic nonsingular solutions of Eq. (1) are finite-gap solutions. 

PROOF: We denote by A the lattice of periods of the solution u(x, y). We "include" the "higher" flows of 
Eq. (1). In this case u depends on infinitely many "higher" times tk and u(z,y ,  tx, t2, . . . )  as a function of x and y 
satisfies Eq. (1) as before. We have 

(A + cosh u)u,~ = 0 (9) 

for all partial derivatives utk. Since (9) is an operator on the torus ]I(2/.~, it has a finite-dimensional kernel. It follows 
that u~ are linearly dependent and there exists a "higher" time t with respect to which the solution is stationary, 
i.e. us = 0, which proves that  u is a finite-gap solution. 

Final remarks: 
1. Finite-gap solutions of a boundary value problem were first constructed in [5] for the nonlinear SchrSdinger 

equation on an interval with a general boundary condition. 
2. In analogy with the case considered, one can construct all the solutions of the Dirichlet and Neumann problems 

on a rectangle with zero boundary conditions for other elliptic equations with important physical applications, namely, 
the real reductions Au = sin u, Au = sinh u, and Au = cosh u of the sine-Gordon equation. 
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