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Abstract. The scaling approach is a statistical estimation method which allows for differences 
in the amount of unexplained variation in different types of data which can then be Used together 
in analysis. In recent years, this approach has been tested and recommended in the context of 
combining Stated Preference and Revealed Preference data. The paper provides a description 
of the approach and a historical overview. The scaling approach can also be used to identify 
systematic differences in the variance of choices within a single Stated Preference data set due 
to the way in which the hypothetical choice situations are presented or the responses are obtained. 
The paper presents the results of two case studies - one looking at rank order effect and the 
other at fatigue effect. Scale effects appear to exist in both cases: the amount of unexplained 
variance is shown to increase as rankings become lower, and as the number of pairwise choices 
completed becomes greater. The implications of these findings for the use of SP ranking tasks 
and repeated pairwise choice tasks are discussed. 

Introduction 

Discrete choice analysis using revealed preference (RP) data based on actual 
travel choices has become the dominant estimation approach in disaggregate 
travel demand modelling. A comprehensive treatment of this approach is given 
by Ben-Akiva and Lerman (1985). Since the early 1980's, increasing use has 
been made of stated preference (SP) data based on stated choices under 
hypothetical contexts. With the use of controlled survey contexts, SP methods 
have proven very effective in estimating the relative importance of variables 
which influence travel behaviour. 

Models based on SP data may not be appropriate for predicting behaviour 
if the amount of residual unexplained variation in the SP choice data differs 
from the amount of residual variation in actual (RP) choices. A number of 
authors have discussed the reasons why one might expect differing amounts 
of unexplained variance in choices from RP and SP survey contexts (Bonsall 
1985; Bates 1988; Morikawa et al. 1990; Daly and Ortt~zar 1990; Bradley 
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and Kroes 1992). Because SP experiments can be isolated to some extent 
from influences outside the survey context, one usually expects less unex- 
plained variance in SP choice data. On the other hand, the survey instrument 
itself can introduce influences on choice which are not present in actual choice 
situations. To make SP models more applicable to predicting actual choices, 
there has been a growing emphasis on customising SP choice contexts as 
closely as possible around actual choice situations recently faced by respon- 
dents. 

With the objective of combining the best aspects of RP and SP data, it is 
desirable to use them together in analysis. If possible differences in residual 
variance in the data are not accounted for, however, such analysis may give 
biased results. The scaling approach is a statistical estimation method which 
allows for differences in the amount of unexplained variation in different types 
of data which are used together in analysis. This approach is introduced in 
further detail in the following section. The results of two case studies are 
described in the subsequent sections, and a brief summary is given in the 
final section. 

The Scaling Approach 

The objective of discrete choice statistical estimation techniques such as logit 
and probit is to estimate a utility function which best predicts the choices in 
an observed sample. Supposing that we have two types of data, the utility 
functions to be estimated may appear as: 

U 1 = ~ . X  1 4. a . Y  + 0-1 

U2 = 13.x2 + F .Z  + P-2 

where: 

X1, X2 

Y , Z  

~, F 

0-1, 0-z 

is a vector of parameters to be estimated, assumed to have the 
same values in both data sets; 
are vectors of observed values of variables common to the two 
data sets; 
are vectors of observed variables which may be specific to one 
data set or the other; 
are vectors of parameters to be estimated for the data-specific inde 
pendent variables; 
represent the amount of residual, unexplained variance in the choices 
in the two data sets. 

The correct values of 13 are assumed to be identical for both data sets. In 
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practice, this assumption is not too restrictive, given that the data-specific 
variables in Y and Z can be used for effects which apply only to certain types 
of  data. The random error terms, gl and ~t2 are assumed to incorporate all 
unobserved or unspecified effects on the choices. These terms are assumed 
to be independently and identically distributed across all observations within 
a data set. Since "utility" has no absolute scale, it is not possible to estimate 
optimal values for both the explanatory parameters and the residual error term. 
In typical estimation procedures, the distribution of the residual error term is 
assumed in advance (standard normal for probit, Gumbel for logit) and the 
scale of the coefficients is estimated relative to this distribution. 

Suppose we were to combine two types of data in a single model assuming 
a single random error variance. If, in reality, one type of data systematically 
has more unexplained variance than the other, this can lead to two problems: 

�9 The model  parame te r s  may  be biased: The data type with systematically 
larger random variance should receive less "weight" in estimating the 
[3 coefficients for the observed variables. If  this is not the case, the 
estimated coefficients may be biased. 

�9 The mode l  e las t i c i t i e s  may  be too high or  too low: In application, the 
sensitivity of  the choice predictions to changes in the X variables is a 
function of the overall scale of the [3 parameters relative to the variance 
of error term ~t. If, therefore, observations are used in estimation which have 
a variance much different from that in the context for which predictions 
are made, the model will tend to over- or underpredict actual changes in 
choice probabilities. 

In the notation above, such problems could occur if we attempt to estimate 
the utifity functions U~ and U2 in a single model which assumes constant 
variance across observations when, in reality, g~ and ~t2 do not have the same 
distribution. The scaling approach addresses this problem by allowing different 
types of data to have different error variances within a single model. Suppose 
that: 

0 z = var iance(gl ) /var iance(g2)  

Scaling the utility of data set 2: 

U~ = O.U2 

we thus allow U~ to be estimated in a single model with U I in an efficient 
and unbiased manner. With the multiplicative scale parameter 0, however, 
the utility function U~ is no longer linear in the parameters, and standard model 
estimation methods are no longer appropriate. The main challenge has thus 
been to develop a feasible and accessible model estimation procedure to 



170 

estimate the scale factor(s) 0 at the same time as the other unknown parameters 
(I~, ~, r ) .  

Ben-Akiva and Morikawa (1990) applied a procedure to efficiently estimate 
the scale differences between different RP and SP data sources. This proce- 
dure maximises a joint likelihood function for observations from two or more 
data sources used simultaneously. As long as the utility function for each 
data source has at least two 13 parameters in common with those for the other 
data sources, a relative scale factor 0 can be estimated for each type of data 
(except one which is arbitrarily chosen as the base data type with scale of 
1.0). This maximum likelihood procedure was specially programmed in the 
GAUSS language and applied to a data set from the Netherlands which 
contained RP observations as well as observations from two separate SP 
experiments. The results are reported in Morikawa (1989). 

Bradley and Daly (1992) incorporated the one-step estimation approach 
of Morikawa and Ben-Akiva into one which can be carried out with any logit 
estimation software capable of estimating models with nested "tree" struc- 
tures (Daly 1987). They present two case studies, the first of which used the 
same Dutch data set us used by Morikawa and yielded nearly identical results. 
The second case study was based on much larger RP and SP data sets from 
Australia. This was a more rigorous test, given that the RP and SP data sets 
were collected from different samples and survey instruments. The Australian 
case study also demonstrated the ability of the logit-based scaling approach 
to handle multinomial and nested (tree) structures within both the SP and 
RP utility functions - in this case a nested choice from among five long- 
distance travel modes. The scaling approach is implemented using a "artificial 
tree" structure to take advantage of existing software capabilities. More details 
can be found in the Bradley and Daly (1992) paper, in Hensher and Bradley 
(1993), and in the paper by Hensher included in this issue. 

The scaling approach may be useful in other contexts besides the mixed 
analysis of RP and SP data. Ben-Akiva and Morikawa (1990) note other 
possible contexts, such as the mixture of data from different types of RP 
data - e.g. household surveys, roadside interviews, traffic counts, etc. Swait 
and Louviere (1993) use a sequential scaling approach to combine data from 
an SP choice task (choice of A vs. B) and an SP rating task (A is acceptable 
vs. unacceptable), both based on the same set of variables. They found that 
the relative importance of the variables estimated from the two types of 
response data was the same, but that the choice task gave somewhat more 
precise information (less residual variance) than the rating task. 

The sources of variance within a single SP data set can also be investi- 
gated using the scaling approach. An often-discussed feature of SP data is 
the repeated measures aspect - the complex mixture of within-person and 
between-person variance in the responses. Unfortunately, this aspect is not 
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easily addressed using the scaling approach because there is often no way of 
separating specific types of observations as different "data sets". The extreme 
option of treating each person in the sample as a separate data set with its 
own scale factor is not practicaI. A promising approach for dealing with 
some aspects of the SP repeated measures issue may be models which account 
for serial correlation, such as those used in analysing longitudinal data 
(Morikawa et al. 1992). 

Certain aspects of the repeated measures problem can be addressed, 
however, if we can account for that part of the within person variance which 
arises from the survey instrument itself. One could imagine, for example, 
that the survey method could introduce differences in variance between 
observations from a single choice experiment. For a ranking exercise, people 
may pay more attention (less "random" error) to the ordering of the best options 
that they do to the ordering of the worst options. For a series of pairwise choice 
exercises, respondent "fatigue" may cause people to make choices less care- 
fully as the number of choices increases. 

The case studies described in the following two sections are meant to 
illustrate the use of the scaling approach to SP data in a context other than 
mixed SP/RP analysis. In the process, we investigate the SP rank order and 
fatigue effects just hypothesised. The questions which we address are: (1) 
do such effects seem to exist and (2) if so, what effect do they have on the 
estimation results? 

Case Study 1: Rank order effects 

The first case study is based on SP data collected during a study conducted 
for Stockholm Transport, described in Widlert et al. (1989). The data was 
collected during home interviews with over 300 people who commuted by bus. 
Separate SP experiments included variables related to bus service levels, bus 
stop facilities and bus vehicle factors respectively. These three experiments 
were administered to each person in random order during the interviews. 

Each experiment contained nine alternatives, created using standard frac- 
tional factorial designs. Two additional alternatives were created - one with 
the best possible levels of all variables, and the other with the worst possible 
levels of all variables. Cards with the two extreme options were placed at 
the ends of a metre stick. The respondent then ranked the other nine design 
option cards in preference order by arranging them along the metre stick 
between the best and worst options. 

Analysis was done using the exploded log# method in which a ranking of 
N alternatives is treated as N-1 independent observations: rank 1 chosen over 
ranks 2 through N, rank 2 chosen over ranks 3 through N . . . . .  rank N-1 chosen 
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over rank N. This analysis method has often been subject to criticism; although 
the required distributional assumptions for logit estimation are satisfied, it is 
questionable whether the utility assumptions underlying discrete choice 
methods such as logit are applicable to rank data (Daly 1990). 

Estimation results for the three experiments are presented in Tables 1 to 
3. The first ("Base") model in each table was estimated using the SP design 
variables in dummy (0/1) variable form. All three experiments had 3 levels 
of  fare, allowing estimation of  two fare variables. Each experiment also 
contained three other variables, each with either 2 or 3 levels. Each experi- 
ment was different in terms of the number of levels and the experimental design 
used. The designs are given in Appendix A. 

In the "Base" models, all coefficients are significant with the expected signs, 
except for "automated ticketing only" in Table 2 which gave a somewhat 
ambiguous result, with some people for it and some against it. Note that the 
significance (t-statistics) for these models may be overstated because the 
repeated measures nature of the data has not been accounted for in any way. 

For the second "Scaled" model in each table, the data was essentially split 
into eight separate data sets, one corresponding to each "chosen" rank in the 
order - all 1st choices as chosen, all 2nd choices as chosen, etc. The first 

Table 1. Experiment 1 - service levels (302 respondents, 2416 observations). 

Model Base Scaled Simulated scaled 

Log-likelihood (b) -3161.2 -3073.2 -3144.0 
(Simulated base = -3145.9) 

Coefficients 
(t-statistics w.r.t. O) 
Fare up by 20% -0.952 (-15.5) -1.425 (-8.9) -0.831 (-9.6) 
Fare down by 20% 0.550 ( 9 . 7 )  1.241 ( 9 . 7 )  0.629 (9.0) 
More punctual 0.792 (14.0) 1.468 ( 9.8) 0.768 (10.0) 
Less punctual -0.939 (-15.3) -1.720 (-10.7) -0.948 (-9.7) 
No interchange 0.561 (11.1) 1.523 ( 8,2) 0.554 (7.6) 
Travel time -20% 0.531 (10.5) 0.656 ( 6,7) 0.578 (9.0) 

Scale factors 
(t-statistics w.r.t. 1) 
Rank 1 (base) 1.000 ( -.-) 1.000 ( - . - )  
Rank 2 0.725 (-3.3) 1.074 (0.7) 
Rank 3 0.704 (-3.7) 1.157 (1.2) 
Rank 4 0.792 (-2.1) 1.098 (0.8) 
Rank 5 0.472 (-8.5) 1.009 (0.1) 
Rank 6 0.217 (-19.1) 1.003 (0.0) 
Rank 7 0,431 (-10.0) 0.939 (-0.5) 
Rank 8 0.241 (-12.6) 1.032 (0.2) 
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Table 2. Experiment 1 - bus stop facilities (294 respondents, 2352 observations). 

Model Base Scaled Simulated scaled 

Log-likelihood (b) -2915.7 -2846.4 -2880.9 
(Simulated base = -2883.6) 

Coefficients 
(t-statistics w.r.t. O) 
Fare up by 10% 
Fare up by 20% 
Bus shelter present 
Real time inform. 
Automated ticketing 

Scale factors 
(t-statistics w.r.t. 1) 
Rank 1 (base) 
Rank 2 
Rank 3 
Rank 4 
Rank 5 
Rank 6 
Rank 7 
Rank 8 

-0.902 (-14.9) -1.496 (-10.7) 
-1.861 (-26.6) -3.436 (-12.3) 

1.840 (29.2)  3.802 (11.1)  
1.131 ( I 9 . 8 )  1.693 (11.5)  

-0.242 ( -4 .6 )  -0.054 ( -0 .4 )  

1.000 ( - . - )  
0.631 ( -5 .8 )  
0.391 (-13.4) 
0.493 ( -9 .4 )  
0.533 ( -7 .4 )  
0.317 (-12.1) 
0.276 (-11.8) 
0.239 (-11.1) 

-0.843 (-12.2) 
-1.740 (-15.4) 

1.779 14.1) 
1.034 14.4) 

-0.210 --4.1) 

1.000 - . - )  
1.077 0.9) 
1.125 1.3) 
1.043 0.4) 
1.053 0.5) 
1.269 1.6) 
0.981 (-0.2) 
1.006 (0 .0)  

Table 3. Experiment 3 - bus vehicle factors (300 respondents, 2400 observations). 

Model Base Scaled Simulated scaled 

Log-likelihood (b) -3021.6 -2904.4 -2995.0 
(Simulated base = -3001.1) 

Coefficients 
(t-statistics w.r.t. O) 
Fare up by 20% 
Fare up by 40% 
No seat for 2 rain. 
No seat for 10 rain. 
Clean inside 
Clean inside + out 
Destination signs 

Scale factors 
(t-statistics w.r.t. 1) 
Rank 1 (base) 
Rank 2 
Rank 3 
Rank 4 
Rank 5 
Rank 6 
Rank 7 
Rank 8 

-0.584 (-10.I) -2.150 (-7.6) 
-1.871 (-26.4) -5.574 (-9.0) 
-1.063 (-18.0) -3.201 (-8.9) 
-1.974 (28.5)  -5.748 (-9.7) 

0.374 ( 6 . 4 )  1.650 (5.8)  
0.387 ( 6 . 5 )  2.915 (6 .0)  
0.270 ( 5 . 4 )  0.100 (0 .6)  

1.000 ( - . - )  
0.541 ( -7 .8 )  
0.430 (-11.0) 
0.457 ( - 8 . 7 )  
0.281 (-17.1) 
0.125 (-35.1) 
0.190 (-26.9) 
0.190 (-27.9) 

-0.528 ( - 7 . 9 )  
-1.856 (-11.9) 
-1.047 (-11.8) 
-1.995 (-12.4) 

0.334 ( 5 . 0 )  
0.344 ( 4 . 2 )  
0.224 4.4) 

1.000 - . -)  
1.043 0.4) 
0,931 (-0.7) 
0.920 (-0.8) 
1.141 (1 .1)  
1.074 (0 .5)  
1.329 (1 .8)  
0.912 (-0.5) 
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rank was set as the "base" data set, and the logit scaling approach was used 
to estimate seven scale factors for ranks 2 to 8 relative to rank 1. The model 
was specified in the ALOGIT package using an "artificial tree structure" to 
nest the alternatives corresponding to each rank order, as illustrated in 
Appendix B. 

The scale factor estimates are shown in the tables along with the t-statis- 
tics relative to 1.0 (no difference in variance) All scale factors are significantly 
less than 1.0, indicating that the amount of unexplained variation increases 
with lower rankings. For all three models, the scale factors for ranks 2 to 4 
are roughly in the range 0.50 to 0.75, while the scale factors for ranks 5 to 
8 are roughly in the range 0.20 to 0.50. The decreasing trend can be seen clearly 
in Figure 1. 

In terms of model fit, the addition of seven scale parameters in the "Scaled" 
models adds 88, 69 and 117 log-likelihood units for the three experiments with 
respect to the "Base" models. These are highly significant improvements 
according to the likelihood ratio test. The t-statistics of the design variables 
are generally reduced by one half to one third in the "Scaled" models relative 
to the "Base" models. One could consider these values to be closer to the "true" 
significance of the effects, since more aspects of behaviour have been 
accounted for. Note that the two smallest coefficients, for automated tick- 
eting and destination signing, are no longer significant. 

LL 

0'3 

2 

1.8  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 .6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 .4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .)& .it.. 
1 . 2  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  _ .~ : : :  . . . . . . . . . . . . . . . . . . . . .  ~- - - : :~" : : ' - - "2 . ;~" : "  . . . . . . . .  --. . . . . . . . . . . . . . .  
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O'it ..................................................... .4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ~ . . . . . . . . . . . . . .  

R a n k  O r d e r  

- - , , - -  Expe r .  1 - - , , - -  Expe r .  2 = Expe r .  3 

..,3-.. S imul .  1 ..N... S imu l .  2 - - ~ - -  S imu l .  3 

Fig. 1. Scale factors for exploded rank models. 
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Not only does the scale and significance of the coefficients change in the 
"Scaled" models, but the relative magnitudes sometimes shift as well. In 
Table 1, for instance, no interchange becomes more important relative to the 
other variables, while travel time savings becomes less important. In Table 
3, cleanliness of the buses becomes more important relative to the other 
variables, while destination signing becomes less important. Grouping the data 
from different rankings without accounting for scale differences thus appears 
to have biased some of the results away from the values obtained when scale 
differences are accounted for. 

An even stronger test than estimating scale factors is to estimate completely 
separate models for each of the eight rank "data sets" and then look at the 
change in total likelihood. Such tests (not shown in the tables) gave improve- 
ments of 175, 108 and 180 log-likelihood units with respect to the three 
"Scaled" models, for the addition of 36, 30 and 42 parameters, respectively. 
These are significant improvements, indicating that the scale differences 
along do not explain all of the differences between the rank orders. Ben- 
Akiva et al. (1991) also found significant parameter differences corresponding 
to rank order. 

We were concerned that our results might be an artefact of the analysis 
method used. To test this, the estimated utility functions from the "Base" 
models were used to simulate rank-order responses, and these were substituted 
for the actual responses in the SP data sets. The simulated responses assumed 
no rank-order scale effects: the same error variance was assumed for every 
alternative (simulated error terms were drawn randomly from a standard 
Gumbel distribution). 

The same "Base" and "Scaled" model specifications shown in Tables 1 to 
3 were estimated using the simulated rankings for the three experiments. The 
"Simulated Base" model results (not shown) were essentially the same as 
the "Base" results for the actual rank data in terms of coefficients, t-statis- 
tics and likelihood. The "Simulated Scaled" model results are shown in the 
final column of each table. The estimates remain close to the "Base" model 
coefficients used to simulate the data, and, contrary to the models on the actual 
data, the rank-specific scale factors are not statistically different from 1.0. 
Figure 1 shows the contrast between the actual and simulated scale results more 
clearly. Furthermore, the improvements in log-likelihood over the "Simulated 
Base" models are only 2, 3 and 6 units, which are not significant for the 
addition of 7 scale parameters. Further tests estimating completely separate 
models for each simulated rank (not shown) gave improvements of 15, 11 
and 22 log-likelihood units over the "Simulated Scaled" models - again not 
significant. The simulation results provide strong evidence that the scale effects 
are due to differences in the way in which real respondents make decisions 
at different points in the ranking process. 
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Our findings are corroborated by those from an earlier study by Hausman 
and Ruud (1987), who also identified increasing amounts of unexplained 
variance corresponding to lower rankings. These findings have negative 
implications for the use of rank-order SP data and exploded logit, which are 
discussed further in section 5. 

Case Study 2: Fatigue effects. 

The second case study is based on SP data collected for the Dutch Railways 
to study train/car mode choice for intercity travel in the Netherlands, described 
in Bradley et al. (1988). This same data has been used in the context of joint 
RP-SP analysis by Morikawa (1989) and Bradley and Daly (1992). Here, we 
use only the data from the within-mode SP experiment which offered choices 
between train service options. 

The survey was administered using the MINT computer-assisted personal 
interview (CAPI) software. Four design variables were used, each with two 
or three levels. The levels are given in Appendix C. An orthogonal fractional 
factorial design of nine alternatives was randomly selected for each respon- 
dent from the full factorial design of all possible combinations. Respondents 
were presented with a series of pairwise choices from among these nine 
options. The first pair offered was a "dominant" choice, where one option 
was clearly superior to the other. This first pair served as a lead-in to the 
experiment, allowing the interviewer to check whether the respondent under- 
stood the choice task. From the second choice onwards, pairs of alternatives 
were presented in random order, until the point where the software could 
infer a full preference ordering across the nine alternatives, assuming transi- 
tivity. On average, each respondent completed about 13 pairwise choices, 
with all respondents completing between 10 and 16 choices. 

Binary logit models were estimated on the pairwise choice data, using linear 
functions of the four design variables - train fare, travel time, number of 
interchanges and comfort level. Estimation results are presented in Table 4. 
Model 1 is the "Base" model, assuming no scale differences between obser- 
vations. The coefficients are all significant with the expected sign. 

The second column shows the "Scaled A" model. Here, the data was 
separated into 15 "data sets": all choices which were done 1st, all which 
were done 2nd, and so on. Because the first choice faced by each respon- 
dent was an obvious dominant comparison, the second choice was specified 
as the base "data set" with scale 1.0. Fourteen scale factors were estimated 
for the other response orders relative to the second response. The same four 
design variable coefficients were specified to apply to all responses. The 
"artificial tree" structure used in ALOGIT is shown in Appendix D. 



Table 4. Train service pairwise choices (243 respondents, 2929 observations). 

Model 1-Base 2-Sealed A 3-Scaled t3 

Log-likelihood -1724.2 -1668.2 -1670.1 

177 

Coefficients 
(t-statistics w.r.t. O) 
Train fare (fl) -0.1484 (-19.9) -0.1723 (-6.3) -0.1900 (-9.2) 
Travel time (rain.) -0.0287 (-10.7) -0.0332 (-5.4) -0.0356 (-6.6) 
No. of transfers -0.3263 ( -5 .5)  -0.3412 (-3.3) -0.3884 (-3.9) 
Comfort level 0.9457 (14.6) 1.1400 (5.8) 1.2500 (8.1) 

Scale factors 
(t-statistics w.r.t. 1) 
Response 1 3.392 (2.8) 
Response 2 (base) 1.000 ( - . - )  
Response 3 1.219 (0.8) 
Response 4 0.962 (-0.2) 
Response 5 0.735 (-1.5) 
Response 6 0.830 (-0.9) 
Response 7 0.729 (-1.5) 
Response 8 0.694 (-1.7) 
Response 9 0.752 (-1.3) 
Response 10 0.629 (-2.0) 
Response 11 0.616 (-2.3) 
Response 12 0.365 (-3.8) 
Response 13 0.355 (-3.2) 
Response 14 0.588 (-1.7) 
Response 15+ 0.242 (-4.0) 

3.096 (3.2) 
1.000 (-.-) 

0.764 (-1.9) 

0.709 (-2.4) 

0.657 (-2.9) 

0.565 (-3.6) 

0.332 (-5.7) 

0.363 (--4.7) 

The resulting improvement in log-likelihood relative to the "Base" model 
is 56 units, which is highly significant for the addition of 14 parameters. The 
scale for the 1 st response is quite high, as one would expect - there is little 
chance for error to affect such obvious choices. The scale for the 3rd response 
is somewhat higher than for the second, but from the 4th response onward 
the scale is consistently less than 1.0. Although the standard errors for the scale 
factor estimates are fairly high due to the limited sample size in each "data 
set", one can see in Figure 2 that a clear trend is present. A "fatigue" effect 
(higher unexplained variance) appears to set in around the time of the 5th 
response and to become much stronger by the time of the 12th response. 
Because the scale of the first choice appears to be quite different than the 
rest, the models were reestimated omitting the first observation per respon- 
dent. The results did not change noticeably from those in the table. 

In the third model in Table 4 ("Scaled B") the response orders are grouped 
into pairs, so that only 7 scale factors are estimated. Compared to the "Scaled 
A" model, the loss in log-likelihood is not significant - only 2 units with 7 
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fewer parameters. With the larger sample sizes, the scale parameters are now 
significantly different from 1.0. The trend in the scale factors shows in Figure 
2 appears virtually unchanged from that of the "Scaled A" model. 

The t-statistics for the "Scaled B" model are one half to one third lower 
than those for the "Base" model - the same result was found in the first case 
study. In contrast to the first case study, however, the scaling approach here 
has almost no effect on the relative magnitude of the coefficients. The inferred 
monetary values of time for the three models in Table 4 are 11.60, 11.56, 
and 11.24 guilders per hour. Also in contrast to the rank-order case study, 
estimating completely separate models for each response order (not shown 
in the table) gave no significant improvement in total likelihood over the scaled 
models (33 log-likelihood units for the addition of 45 parameters). Possible 
reasons for the contrasts between the rank order and fatigue results are dis- 
cussed in the final section. 

We tested whether the results in Table 4 were due to the scaling approach 
itself. The estimated utility function from the "Base" model was used to 
simulate pairwise choice responses, which were substituted for the actual 
responses in the SP data. The "Base" and "Scaled B" model specifications 
in Table 4 were then estimated on the simulated choices. None of the estimated 
scale factors were significantly different from 1.0 (results not shown in the 
table.) Figure 2 shows the clear difference between the results for the actual 
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and simulated choices. For the simulated data, the "Scaled B" model increased 
the log-likelihood by only 4 units with respect to the "Base" specification, 
not significant for the addition of 7 scale parameters. Again, the simulation 
tests provide evidence that the "fatigue" effect is a real-world phenomenon. 

Summary and conclusions 

The logit scaling approach provides an efficient one-step estimation proce- 
dure to account for differences in the amount of unexplained variance when 
using different types of data together in estimation. The approach has usually 
been presented in recent literature in the context of combining RP and SP data. 
In this paper, we demonstrate the use of the logit scaling approach to account 
for survey effects within SP data from a single experiment. In two case studies, 
we have tested for the presence of a "rank-order effect" in rank data and of 
a "fatigue effect" in repeated pairwise choice data. 

The results from the two case studies show a number of similarities. Scale 
effects appear to exist in both cases: the amount of unexplained variance is 
shown to increase as rankings become lower, and as the number of pairwise 
choices completed becomes greater. In both cases, the t-statistics of the design 
variable coefficients generally decrease by one half to one third compared to 
the base "naive" estimation results. The overall fit of the models, however, 
substantially improves due to the addition of the scale parameters. In both 
cases, these effects could not be reproduced using simulated response data, 
indication that the rank-order and fatigue effects are caused by the influence 
of the experimental tasks on real respondents. 

We also obtained some contrasting results from the two case studies. For 
the pairwise choice data, the addition of the scale factors to account for 
respondent fatigue did not significantly change the relative magnitude of the 
model coefficients. For the rank-order data, on the other hand, some coeffi- 
cients became more or less important relative to the others, and estimating 
entirely separate models for different positions in the rank order gave a 
significant improvement in likelihood relative to using only scale factors. 
Similar results were obtained by Ben-Akiva et al. (1991). 

The pairwise choice data used in the second case study was collected using 
a computer-based approach which presented the pairs of alternatives in a 
different random order for each respondent. As a result, any adverse influ- 
ence of the order-related fatigue effect may have been "randomised out" of 
the data. If a survey approach had been used where everyone received the same 
pairs of alternatives in the same order, the task order could be correlated 
with the design levels, and thus the scale differences could influence the relative 
parameter estimates. For SP ranking exercises, where the rank order is deter- 
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mined by the respondent, it would be difficult to eliminate any relationship 
between the rank order and the levels of the design variables. Some of the 
effects may be eliminated, however, by using block experimental designs which 
present different groups of respondents with different sets of alternatives for 
ranking. 

For pairwise choice data, the results indicate that strong fatigue effects 
should be avoided by not offering more than 10 or so choice comparisons 
within a single experiment. This number, of course, may vary with the diffi- 
culty of the choices offered and the total length of the survey. If one can 
randomise the order in which pairs of alternatives are presented, the relative 
magnitudes of the model coefficients will not be biased. Such randomisation 
is greatly facilitated by computer-based interviewing. 

For ranked data, the results suggest that one should not go beyond using 
the first three or four ranks as choices in exploded logit, that one should 
check the extent to which the results change as more ranks are used, and 
that scale factors should be estimated to avoid biased estimates. If possible, 
different blocks of alternatives should be given to different groups of respon- 
dents for ranking, and the ranking task should be administered ifl way which 
encourages respondents to give equal attention to the ranking of the more- 
preferred and less-preferred alternatives. 

The types of experimental designs and interview methods used to collect 
the data in the two case studies presented here are typical of those used in 
many recent transport SP studies. While we cannot prove the general existence 
of rank order and fatigue effects based on these case studies alone, we can 
assert that all SP studies are at least susceptible to these effects. One should 
therefore (a) use blocked experimental designs and randomised task ordering 
to the greatest extent possible, (b) keep SP choice or ranking tasks as brief 
and stimulating as possible, and (c) avoid using exploded logit analysis with 
rank order data unless one explicitly estimates scale differences across the 
rankings. 
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E x p e r i m e n t  1 - 

Experimental designs for Case Study 1. 

Bus service levels 
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Alternative Fare Punctuality Interchanges Travel time 

Best down by 20% better none 20% less 
Worst up by 20% worse one current 

A current better one 20% less 
B current current none 20% less 
C current worse one current 
D down by 20% current one current 
E down by 20% worse none 20% less 
F down by 20% better one 20% less 
G up by 20% worse one 20% less 
H up by 20% better none current 
I up by 20% current one 20% less 

E x p e r i m e n t  2 - Bus stop facilities 

Alternative Fare Ticketing Information Waiting 

Best current automated real time shelter 
Worst up by 20% current current none 

A current current real time shelter 
B current automated current none 
C current automated current shelter 
D up by 20% current current shelter 
E up by 20% automated current shelter 
F up by 20% automated real time none 
G up by 10% current current none 
H up by 10% automated real time shelter 
I up by 10% automated current shelter 
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E x p e r i m e n t  3 - Bus vehicle factors 

Alternative Fare Seat avail. Cleanliness Information 

Best current available clean in + out destination sign 
Worst up by 40% no seat 10 mn current none 

A current available current destination sign 
B current no seat 2 min clean inside none 
C current no seat 10 min clean in + out destination sign 
D up by 40% available clean in + out none 
E up by 40% no seat 2 min current destination sign 
F up by 40% no seat 10 min clean inside destination sign 
G up by 20% available clean inside destination sign 
H up by 20% no seat 2 min clean in + out destination sign 
I up by 20% no seat 10 min current none 

Appendix B: Artificial tree structure for Case Study 1. 
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129: 

$2-$8: 
alternatives ranked 1 to 9 
scale factors for ranks 2 to 8 (1 is base) 
chosen alternative in "branch" of tree 



A p p e n d i x  C :  Experimental levels for Case S t u d y  2. 
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Variable  Actual  car users Actual  train users 

(A) Rail 1 - Current  level* 

fare 2 - 10, 15, 20 or 25% lower* 

3 - 20, 30, 40 or 50% lower* 

(B) Journey 1 - Current  level t 

t ime 2 -  15% shorter 

3 - 30% shorter 

(C) Inter- 1 - Current  number* 

changes  2 - 1 less, i f  possible 

3 - 2 less, i f  possible 

(D) Comfort  1 - Current  level 

level** 2 - Improved level 

1 - Current  level* 

2 - 10, 15, 20 or 25% higher* 

3 - 20, 30, 40 or 50% higher* 

1 - Current  level* 

2 -  15% longer 

3 - 30% longer 

1 - Current  number* 

2 - 1 more 

1 - Current  level 

2 - Worsened  level 

= current  level  reported by respondent  

* = set of  percentages selected at r andom for each respondent  

** = detailed verbal  descriptions were used for comfor t  levels 

A p p e n d i x  D :  A r t i f i c i a l  tree structure for Case S t u d y  2 
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