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The solution of arithmetic problems in number theory is characterized by the use of 
methods which are only indirectly related to the statement of the problems. It therefore 
naturally becomes of interest to seek direct methods which rest essentially on the arithme- 
tic nature of the problem studied. 

In problems in the theory of equations over finite fields, the most effective methods 
up to the present time have been those of abstract algebraic geometry. Starting in 1968, 
the author developed a constructive method in the theory of equations over finite fields, 
with the aid of which all the results deduced previously by algebrogeometric methods have 
recently been proved, as well as a number of new results. 

Congruences modulo a prime p lie at the foundation of the theory of equations over fi- 
nite fields. Isolated results concerning the number Np of solutions of the congruences 

f (x, y) __~ 0 (rood p), 

where f is a polynomial in x, y, with integral coefficients, were obtained long ago. Thus, 
Lagrange [i] in his solution of Fermat's problem on the expressibility of every natural num- 
ber as a sum of four squares established that the congruence 

x 2 + y ~ +  l------0(mod p) 

i s  s o l v a b l e .  A f a r - r e a c h i n g  s t u d y  o f  q u a d r a t i c  c o n g r u e n c e s  was u n d e r t a k e n  by  Gauss  [2 ] .  
He also obtained exact formulas for the number Np of solutions of certain cubic and biquad- 
ratic congruences with two unknowns. 

In 1924, Artin [3] conjectured that the number Np of solutions of the hyperelliptic 

c o n g r u e n c e  .y2 - -  ] (x) (mod p), 

where  f ( x )  i s  a p o l y n o m i a l  o f  d e g r e e  n ~ 3, wh ich  i s  s q u a r e  f r e e  modulo  p ,  s a t i s f i e s  t h e  e s -  
t i m a t e  

{(n - I)VT, n--odd, 

[Np--pl< ( n - - 2 ) V > ,  n - - even .  

This conjecture was proved by Hasse [4, 5] for n = 3, 4 using the theory developed by him 
of algebraic functions with a finite field of constants. Subsequently, Manin [6] undertook 
an elementary proof of Hasse's theorem. 

Well [7] extended the Hasse method to the general case of absolutely irreducible poly- 
nomials f(x, y), and he obtained for the number of solutions Nq of equations 

r (x, ~) = 0 (1) 

the es timate 

[ Nq -- q l ~  2 g V ~  (2) 
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in Galois fields Kq consisting of q = pr elements. Here g is the genus of the curve (I). 
This estimate is equivalent to an analog of the Riemann hypotheses for the zeta functions of 
fields generated by the curve (i). As a corollary of this result, the estimate 

fCx)#=o 

was obtained by a number of authors [8-12] for a trigonometric sum with a rational function 
f(x), and in particular, for the Weyl and Kloosterman sums. 

However, Weil's proof of estimate (2) requires the use of methods of modern algebraic 
geometry and is very complicated. 

In Chap. i of this dissertation we propose an elementary method for deriving estimate 
(2) for the case of a hyperelliptic curve 

y~ = ] (x). (3) 

Namely, we prove the following theorem. 

THEOREM i. Let n>3 be an :odd number, r any natural number, p a prime, pr > 9n 2, and 
let ](x) = aoxn~ a12 ~-~ ~ ... ~ an_:x ~a~( be a polynomial with integral coefficients, a0~0 
(mod p). Then if Nq is the number of solutions of Eq. (3) in the field Kq consisting of q = 
pr elements, we have the estimate 

An analogous estimate, which however, covers only the case of the congruences 

ym ____ f (x) (mod p) 

modulo a p r ime  p,  was o b t a i n e d  in  t h e  d i s s e r t a t i o n  o f  t h e  a u t h o r  s u b m i t t e d  f o r  t h e  c a n d i -  
d a t e ' s  d e g r e e  i n  t he  p h y s i c a l  and m a t h e m a t i c a l  s c i e n c e s ,  and i n  t he  p a p e r s  [23,  24 ] .  The 
method o f  p r o o f  o f  Theorem 1 i s  a f u r t h e r  deve lopmen t  o f  t h e  method p r o p o s e d  by t h e  a u t h o r  
in these papers and serves primarily as an illustration of the technical tools employed in 
Chap. II of the dissertation. 

Using the theory of zeta-functions of curves, the result of Theorem 1 can easily be 
strengthened. 

COROLLARY i. In the notation of Theorem 1 we have 

I Nq --  q ] ~ (n - - 1 )  l/-~ (4) 

We remark that for the case of a prime field Kp, some improvements of the method of the au- 
thor [23] permitted Stark [16] and others [17, 18] to obtain a stronger estimate than (4). 
They thereby obtained results stronger than those equivalent to the Riemann hypothesis for 
the zeta functions of the corresponding curves. 

Chapter II of the dissertation is devoted to an elementary proof of the Weil--Bombieri 
estimate for rational trigonometric sums with prime denominator. 

Let  p be a pr ime number,  P ( x ) =  x m ~ alx  ~-1 + . . .  ~ a m, Q ( x )  = x ~ b:x ~ - : ~  ... ~ b~ mutu-  
a l l y  p r ime  p o l y n o m i a l s  w i t h  c o e f f i c i e n t s  i n  t he  r e s i d u e  f i e l d  mod p,  and pu t  f ( x )  = P ( x ) /  
Q(x). We put 

= e 

O(x)~o 

where  q = p r  and sv/  (x) = / (x) ~ / (x) v ~ ... + f (x) p~-I. 

THEOREM 2. Le t  m ~ n ,  d ~ max (m, n) ~ 2, p > d, and r > 12. I f  Nq i s  t he  number o f  
s o l u t i o n s  o f  t he  e q u a t i o n  

y~ - 9 = / (x) ( 5 )  

in fields Kq consisting of q = pr elements, we have the estimate 

- -  q I <  :5d p  W 

COROLLARY 1. Le t  m:--/=n and r > 1. Then i f  Nq i s  t he  number o f  s o l u t i o n s  o f  Eq. (5) 
in the fields Kq consisting of q = pr elements, we have the estimate 
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where g is the genus of (5). 

COROLLARY 2. If m 5f= n and ~ ~ 0 (mod p) we have 

l 
I s$)l < (l - z + Y' =1 a0 r = I, 2 ..... 

where I is the number of distinct poles of f(x) counting the point at infinity, and di is 
the multiplicity of a pole. 

We note two interesting special cases of inequality (6) leading to estimates for the 
classical sums of Weyl and Kloosterman. 

COROLLARY 3, Let m be a natural number, p > m a prime, and let f(x) be a polynomial 
Of degree m with integer coefficients. Then 

COROLLARY 4. 

(6) 

L e t  v~ i~0(modp) .  Then f o r  p > 2 

(7) 

I ~'J~=~ e2giY(x+a/x)/P I < 2 VP" ( 8 ) 

Estimates (4), (7), (8) are of fundamental importance in many questions in number theory 
such as the distribution of power residues and nonresidues, estimates of rational trigonome- 
tric sums, the representation of natural numbers by means of quadratic forms, etc. 

Chapter III of the dissertation is devoted to the study of congruences 

f (x, y) ----0 (modp) (9) 

With a polynomial f(x, y) of general type. 

Let m, n>2 be mutually prime numbers; p > 196mSn(n -- i) a a prime number; Kp the resi- 
due field mod p; f(x, y) a polynomial in x, y with coefficients in Kp. The following theorem 
is proved. 

THEOREM 3. Let /(x, y) = yn-~-a I ~)yn-l~_ ... +a n (x) be irreducible over the field Kp and 
assume the degrees of the polynomials ai(x) satisfy the conditions 

degas (x )  = m ;  n d e g a i ~ ) < i m ,  i = t , 2  . . . . .  n - - i .  (10) 

Then if Np is the number of solutions of (9), we have the estimate 

I - p t < 14 (n - V F .  
Like the proofs of Theorems i and 2, the proof of Theorem 3 is based on the construction 

of a polynomial R(x) of degree which is not too high and having as roots of sufficiently 
high multiplicity those values of the variable x (with the exception of 0(i) many values) 
which are solutions of congruence (9). Comparison of the number of roots of the polynomial 
R(x) taken with multiplicity with the degree of R(x) gives an upper bound for the number Np. 
A lower bound for Np is obtained analogously. 

The principal factor in all these constructions is the existence of Fermat's little 
theorem stating that 

xq=x. 

We emphasize that we do not require in Theorem 3 the condition that the polynomial f(x, y) 
be absolutely irreducible, which is hard to verify, but instead require only that it be ir- 
reducible in the field Kp and that the simple conditions (i0) hold. We remark that these 
conditions can be regarded as a new criterion for the absolute irreducibility of the polyno- 
mial f(x, y). 

The method of the author has been extended by Schmidt [19] to the general case of arbi- 
trary finite fields. In Bombieri [21], this method was significantly simplified by not in- 
sisting on explicit constructions. It should, however, be remarked that explicit construc- 
tions have the advantage that they can be used to obtain stronger results than those follow- 
ing from general theories. 

Finally, the above method permitted Schmidt [20] to strengthen somewhat the previously 
known [22] estimate for the number Nq of solutions over a field Kq of equations in several 
unknowns. 
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The results of the dissertation were reported at the All-Union Conference on Number 
Theory in Tbilisi (1970), at the International Conference on Number Theory dedicated to the 
80-th anniversary of academician I. M. Vinogradov in Moscow (1971), at the All-Union School 
of Number Theory in Minsk (1972), at the All-Union Conference on Number Theory in Samarkand 
(1972), and at the International Congress of Mathematicians in Vancouver (Canada, 1974), and 
they have been published in [25-30]. 
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