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1. I n t r o d u c t i o n  

It is generally agreed that one of the most important,  and difficult, problems in 
molecular biophysics and biochemistry is the protein folding problem [2]. The 
protein folding problem, simply stated, is as follows: 

Given a known primary sequence of amino acids, predict its native, or folded, 
state in 3-dimensional space. 

That  is, can one predict how newly made proteins - which resemble loosely coiled 
strands and are typically inactive in their unfolded configurations - will "fold" 
into specifically shaped balls able to perform crucial tasks in a living cell? The 
solution to this problem is of more than academic interest. Many major hoped-for 
products of the biotechnology industry are novel proteins. It is already possible to 
design genes to direct the synthesis of such proteins, yet failure to fold properly, 
which greatly determines the functionality of the protein, is a important  production 
corlcern.  

The value of computation of protein folding patterns is that although it is now 
quite simple to determine the precise amino acid sequence of a protein from DNA 
sequence analysis, such an analysis provides no information as to what the native 
(i.e. folded) 3-dimensional structure of the protein might be, and thus which amino 
acid residues in the protein might be next to which other amino acid residues. 
Knowledge of such 3-dimensional structures could be of great help in determin- 
ing the nature of sites on a protein that  might be involved in enzyme action or 
binding to other proteins, membranes, DNA, small molecules, etc. Currently the 
3-dimensional structure of proteins can only be ascertained from X-ray crystallog- 
raphy analysis, an expensive and time-consuming process that moreover requires a 
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protein to be pure and then to be crystallized - not an easy process. The shortcut 
of direct corrlputation has long been appealing, since it is fairly well documented 
that  the primary structure (the sequence of amino acids) completely determines 
the secondary and tertiary structures (short and long range folding patterns) of 
the protein. Furthermore, the process of folding is spontaneous subsequent to the 
biosynthesis of the protein, and should be predicted from the sequence based on 
energy minimization considerations. 

Unfortunately, direct computation of the native state of a protein, in the absence 
of any simplifying assumptions, has proven to be an intractable problem for all but 
the smallest of proteins. While many computational simplifications are possible 
[14], one simple and popular approach is to model each complex amino acid residue 
as a single "sphere" centered on the C~ carbon position, and to model each peptide 
linkage between residues by a virtual bond between spheres. This Co force field, or 
"string of beads", model ignores the secondary structure of each residue, informa- 
tion which might well be a factor in determining the native state. Hence, it is clear 
that a computational solution to this simplified "molecular conformation problem" 
does not in itself solve the protein folding problem; however, this general approach 
easily allows global optimization techniques to be applied, and could be useful in a 
more generM set of "minimum energy conformation" applications. 

Hence, this paper presents a novel approach for predicting the native structures of 
a linear sequence of beads (residues, in the case of protein folding). This approach 
is based on two important  assumptions: 

1. for any specific molecular conformation, a corresponding potential energy func- 
tion can be computed, and 

2. the native state corresponds to the global (or near global) minimum of this 
energy function. 

These assumptions appear to be valid based on results for small proteins [14]. 
Clearly, the success of such an approach will depend greatly on both the potential 
energy function selected and on the method used to compute the global, or near 
global, minimum of a function with potentially many local minima. In this paper, 
the molecular conformation problem is formulated so that it can be solved by a 
two stage approach. The problem is first modeled by a discrete approximation on a 
3-dimensionM lattice. This discrete la t t icemodel  can be formulated as a quadratic 
assignment problem and then transformed into a continuous concave quadratic 
global minimization problem. The global solution to this concave minimization 
problem can then be used as starting point for the second stage - a "relaxed" 
continuous minimization problem. The result of this second stage should provide 
a global, or near global, minimum of the potential energy function, and hence a 
prediction of the native, or folded, state of the linear molecule. This two-stage 
approach has been used successfully to find the minimum energy conformation for 
very large problems based on a simpler molecular model [16, 5, 15]. 
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2. T h e  M o l e c u l a r  C o n f o r m a t i o n  P r o b l e m  

In the string of beads model, the molecule to be folded consists of a linear sequence 
ofn  beads a l ,  a2, . . ' ,  an ,  where ai denotes the ith bead in the primary sequence. For 
every pair of consecutive beads ai and a i+ l ,  let li be the bond length representing 
the distance between them. Also, for every three consecutive beads a i - l , a i ,  and 
ai+l, let Oi represent the bond angle corresponding to the relative position of the 
third bead with respect to the line containing the previous two. Likewise, for every 
four consecutive beads a i - 2 ,  a i - 1 ,  ai ,  and a i+l ,  let r represent the torsion angle 
corresponding to the relative position of the fourth bead with respect to the plane 
containing the previous three. Hence, the molecular conformation problem is to 
determine a set of bond lengths li, i = 1, �9 �9 n - 1, bond angles Oi, i = 2, �9 � 9  n - 1, 
and torsion angles r i = 3 , . . . ,  n -  1, which properly represent the native state of 
the molecule. See Figure 1 for an example. 
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Figure 1. Native conformation for a four "bead" sequence 

If y E R 3n-3 is defined to be the vector of (l i ,  Oi, r triples for i = 1 , . . . ,  n - 1 
(where 0] = r = r = 0 can be assumed) and f ( y )  is an appropriate potential 
energy function, then the continuous global minimization approach for solving the 
molecular conformation problem is simply 

m i n f ( y )  (1) 

Because of the large number of state variables needed to define a minimum energy 
conformation and the possibly exponential number of local minimizers which can 
occur on the energy surface [3], a direct computation of the global minimum in this 
fashion is not practical. Instead, the minimization can be carried out in two stages 
[16, 5, 15]. In the first stage the state variables are discretized in order to form a 
3-dimensional lattice. A minimization over this discrete space provides a suitable 
starting point for the second stage. In this second stage, the lattice restrictions are 
relaxed, and a possibly lower energy function value may be obtained by a cont inuous  
minimization with respect to the variables y. 
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3. Q u a d r a t i c  A s s i g m n e n t  F o r m u l a t i o n  

In order to formulate a discrete approximation to the molecular conformation prob- 
lem, the original continuous problem in 3-dimensional space is approximated by a 
discrete problem using a suitable 3-dimensional lattice with N sites, N > n. If sj 
represents lattice site j ,  for j = 1, �9 �9 N,  then a total of n N  zero-one variables xq  
are sufficient to completely determine the assignment of the beads ai to the lattice 
sites sj.  More precisely, if Xij : 1, then ai is assigned to lattice site sj.  If xij = O, 
then ai is not assigned to lattice site sj~ Only two types of constraints are required: 

1. Each bead must occupy exactly one lattice site. Hence, 

N 

E xij = 1 , i =  1 , . . . , n .  
j = l  

(2) 

2. At most one bead occupies each lattice site sj, Tha t  is, 

f i x i i  _< 1 , j  = 1 , . . . , N .  (3) 
i----1 

The objective function consists of both a linear and a quadratic term. The linear 
term 

E \i E Y=I d jx j 
represents the "direct" contribution dij to the totM potentiM energy when the bead 
ai is assigned to lattice site sj. For example, the polarity (or lack of it) of bead ai 
might affect which lattice sites are preferred (hydrophobic beads might prefer to be 
more in the interior of the folded chain and hence more in the center of the lattice 
structure, but this is by no means guaranteed). The quadratic term 

2 
i----1 j = l  k----1 1=1 

represents the "pMrwise" contribution Pljkz to the total potential energy when t h e  
bead ai is assigned to lattice site sj and bead ak is assigned to lattice site sl. For 
example, if each bead represents an amino acid residue, then the pairwise Lennard- 
Jones potentiM energy [1] between amino acids is a function of the types of the two 
amino acids and their distances apart in the lattice structure. Tha t  is, the term 
Pijkz depends only on al, ak, and ]]sj - szll2. Hence, it is convenient to write the 
total potential energy function in the quadratic form 

E ( x )  = cTx + l x T Q x  (4) 
Z 
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where x E R nN denotes the zero-one vector with elements xij, c E RnN denotes 
the vector with elements dij, and Q E R (ny)x(nN) is a real symmetr ic  (typically 
indefinite) mat r ix  with elements Pijkl. It follows that  the 3-dimensional min imum 
energy conformation of the bead sequence restricted to the discrete lattice structure 
is given by the solution to the following quadratic assignment problem: 

m i n E ( z )  (5) 
xEP 

where P consists of constraints (2), (3), and the integer restrictions x~j E {0, 1} for 
i = l , . . . , n a n d j =  1 , . - . , N .  

Clearly, the usefulness of this approach is very heavily dependent on the selection 
of the "proper" lattice structure, and on the choice of the most  appropriate  poten- 
tial function. In the absence of any a priori knowledge about  the folded structure 
of the molecule, the selection of the best lattice structure can be extremely diffi- 
cult. Obviously, determining this "proper" ,  i.e. perfect, selection is as hard as the 
conformation problem itself. Hence, it should be clear that  a very fine grained, but 
sufficiently large, lattice must  be selected - the exact structure of which could be 
spherical, rectangular,  or even random. Tha t  the lattice might not allow for the 
global min imum conformation, or even for any stable conformation at all, is not 
important .  The lattice restrictions will be removed prior to the second stage of the 
method,  and the "non-stable" conformer will be used as a start ing point for a local 
minimization in which the conformer is allowed to relax into a stable "min imum" 
(albeit local) energy configuration. 

The appropriate  choice of the potential  energy function is also a crucial factor in 
guiding the search for conformers toward the min imum energy configuration. As 
stated above, the energy term Pijkl represents the pairwise contribution to the total  
potential  energy when bead ai is assigned to lattice site sj and bead a~ is assigned 
to lattice site sl. More specifically, the diagonal elements of Q are zero, i.e. Pljkl = 0 
for i = 1, - - -, n and j = l, �9 �9 -, N since the energy contribution of bead ai when 
located at lattice site sj is already provided by the term dij. Furthermore,  the 
constraints (2) and (3) can be enforced by simply assigning an appropriate  penalty 
value to some of the off-diagonal terms in Q. Specifically, for a sufficiently large 
constant 7 > 0, set pijkt = 7 for all i , j , l  with j 5s l, and Plj~l = 7 for all i , j , k  
with i 7~ k. The first of these will not allow xij and xit to both  be unity (i.e., bead 
ai can occupy at most  one site). The second of these will not allow xij and x~j to 
both  be unity (i.e., beads ai and ak cannot both occupy lattice site sj). For each 
bead ai, there will usually be a number  of sites sj for which dij < 0, so tha t  ai will 
be assigned to some lattice site. Note that  if this cannot be guaranteed, then the 
requirement that  each bead be assigned to exactly one lattice site could always be 
satisfied by adding the single constraint 

x i j  = n .  ( 6 )  
i=1 j----1 
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Finally, in order to enforce the requirement that  two consecutive beads a~ and 
ai+l remain within an allowable distance of the required bond lengths (i.e. an 
approximate  bond length between two consecutive beads is typically known, but 
a small deviation f rom this value may  be permit ted) ,  the term Pij(i+l)z must  be 
very large if the distance between lattice sites sj and sl is not within an allowable 
tolerance. For example, if li represents the approximate  bond length between beads 
ai and ai+l ,  then one possible choice is to let 

= 9 (lls  - s ,  - 

where /3i is some constant that  determines the penalty to be imposed for large 
deviations away from li. Similarly, it may be desired to force a sequence of three 
consecutive beads to remain within an allowable tolerance of a predetermined (i.e. 
fixed) bond angle. Unfortunately, incorporating this component  into the pairwise 
energy term Pijbl is not possible because of its dependence on a sequence of three 
beads. Hence, this potential  requirement is not explored further in this model. 
Note, however, that  such a requirement may be enforced during the second, or 
relaxed, stage given by (1). 

For all other terms Pijbl any appropriate  energy potential  function may be used. 
One such function of current interest is Pijbt = fib(rj t) ,  where fib is called the 
Lennard-Jones pairwise potential  between the beads ai and ab, and rjt is the dis- 
tance between the lattice sites sj and st. The function f ib(r)  has the following 
form: 

= - 2 ~ ) 

where ~b and ~/b are constants related to the two specific beads (e.g. amino acids) 
involved. Notice that  the min imum of f i k ( r )  = -ei~ and is obtained at r = ~rib. A 
plot of the function fik(r)  for cib = ~ik = 1 is given in Figure 2. Also notice that  
the Lennard-Jones pair potential  has the property that  plj~t = Pbt~j, since f~b(rjt) 
depends only on the types and relative positions of the beads ai and ab. 

This analysis shows that  the quadratic assignment problem (5) is equivalent to 
an unconstrained quadratic zero-one program. One way to solve this is by a branch 
and bound method applied directly to the quadratic zero-one program. Several 
such methods are known, but  probably the most  efficient is one which uses bounds 
on the gradient components to fix many  of the zero-one variables at their opt imal  
values early in the solution process [7, 8]. 

4. A S i m p l i f i e d  A s s i g n m e n t  P r o b l e m  

A simplified quadratic assignment problem can be formulated for the case where the 
linear molecule consists of a total  of n identical elements. For this simpler situation, 
the problem reduces to assigning one element to each of exactly n selected lattice 
sites. For a lattice with N sites (N > n), this gives a tos of only N zero- 
one variables xi, i = 1 , . . . ,  N.  If  an element is assigned to site sj ,  then xj = 1, 
otherwise xj  = O. 



QUADRATIC ASSIGNMENT FOR MOLECULAR CONFORMATION 235 

~ ( r )  
A 

1 8~ 
I 
I 

! 

4 ' 

u 

~ i -2 

F i g u r e  2 .  

I ' I l } r  
~ 2  3 g 

Lennard-Jones pair potential ftmction for e l k  = a i k  = 1 

As in the more general case, the total potential energy consists of a linear and a 
quadratic term. The linear term, representing the direct energy contribution dj of 
an element assigned to site sj, will be given by 

~N=I djzj.  

The sum of the pairwise energy contributions Pij, when two elements are assigned 
to sites si and sj, gives the symmetric quadratic term 

1EN=I N 
-2 ~ j = l  Pij xixj 

where Pii = 0 since the direct contributions are already accounted for by the linear 
term. For this simpler case, the total potential energy can be written 

E(x) = cTx + �89 

where x E /~N with zero-one elements xi, c E R N with elements di, and Q E R N• 
is a real symmetric matrix with elements plj. This problem can therefore be stated 
in the form 

min~p~ E(x) 

where 

p~ = ~ :  ~ ~, = n, ~, e (o,  l}  . 
i=1 
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5. C o n c a v e  Q u a d r a t i c  G l o b a l  M i n i m i z a t i o n  F o r m u l a t i o n  

The (discrete) quadratic assignment problem (5) can easily be shown to be equiva- 
lent to the (continuous) minimization of a strictly concave quadratic function over 
a polytope. In particular, let Am~x be the maximum (real) eigenvalue of the ma- 
trix Q E R (~N)x('~N), and let # = 1 + ~m~x. Then, since (xij) ~ = xij (recall that 
xij E {0, 1}), the energy function E(x)  can be rewritten as 

E'(x) = c'Tx + ~xTQ'x  (7) 

where c' = c + (#/2)e, and Q' = Q - # I  is a symmetric negative definite matrix. 
Note that E(x) = E'(x). 

It is well known that the global minimum of a strictly concave quadratic function 
is attained at an extreme point of the feasible polytope [13]. By relaxing the integer 
restrictions in the polytope P above to get the new polytope P~ consisting of the 
constraints (2), (3), and the bounds 0 _~ xij _~ 1 for i = 1 , . - . ,  n and j = 1 , - . . ,  N, 
it is easy to see that  the extreme points of P~ correspond to the feasible points of 
P.  tIence, a global minimum for the strictly concave quadratic problem 

min E'(x) (8) 
x E P  j 

will also be a global minimum of the discrete quadratic assignment problem (5). 
The original quadratic assignment problem (5) is therefore equivalent to the min- 

imization of a concave quadratic function on the unit hypercube with (possibly) 
the one linear equality constraint (6) and n N  variables, each of which is restricted 
to the interval [0,1]. The global, or near global, solution to this problem provides 
a convenient starting point for the "relaxed" local minimization problem (1). 

Two different computational methods for this class of problem have recently been 
developed. The first such method finds the global minimum of a concave quadratic 
function on a polytope by the use of linear underestimating functions [9]. An 
important  feature of this method is that for every local minimum obtained, a bound 
is also computed which bounds the difference between the locM and (unknown) 
global minimum function values. Furthermore, this bound can be made as small as 
desired, at the cost of additional computation. Some recent improvements in this 
algorithm are described in [11]. 

The second method is essentially stochastic, and finds a large number of local 
minima by solving multiple cost row linear programs [10]. This method is very 
well suited for parallel implementation because each local minimization can be per- 
formed as a completely independent calculation. A detailed computational compar- 
ison of these two methods has recently been completed [10] and shows that the first 
method is faster in most cases, but  the second method often gives additional useful 
information on local minima with function values close to the global minimum. 

The solution of the quadratic assignment problem via global minimization (8) 
will give the conformation with the minimum potential energy over all possible 
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conformations on the chosen lattice. Clearly the requirement that each bead must 
be located exactly at a lattice site is a restriction on the allowable conformations, 
which may prevent at ta inment  of the minimum energy state. Therefore the lattice 
minimization given by the solution of (8) is considered to be the first stage of a 
two-stage process. The second stage consists of eliminating the lattice restriction 
and directly minimizing the potential energy function f (y)  a~,~ described in section 
2. The key to this second stage computation is that only a ]ocal minimization of 
f (y)  is required starting with y -- Y0, where Y0 represents 1;he minimum energy 
configuration obtained from the first stage. This second stage minimization is 
therefore an unconstrained local minimization with 3(n - 1) variables (recall that 
81 = r = r = 0 are fixed). Several efficient computational methods are available 
for this purpose as well [4, 6]. 

6. L a t t i c e  A s s i g n m e n t  to  Sa t i s fy  a D i s t a n c e  M a t r i x  

An important  molecular structure problem, closely related to the molecular con- 
formation problem, is that of finding a configuration (although not necessarily a 
minimum energy one) which satisfies a specified "distance matrix".  The distance 
matr ix  consists of up to n ( n - 1 ) / 2  positive quantities 5ik which specify the (approx- 
imate) distance between some, or all, pairs of elements a~ and ak (e.g. amino acids, 
atoms, etc.) of the molecule (note that not all of the distances between pairs need 
to be specified). That  is, the quantity 6ik, usually measured experimentally, is the 
approximate "desired" distance between elements ai and ak. Hence, the problem 
is to find a lattice assignment of the elements ai, for i = 1 , - . . ,  n, which gives the 
"best fit" (in the least squares sense) to the specified distance matrix. 

The distance between lattice sites sj and sz is given by Ilsj - s i l l 2 ,  so if an 
assignment of ai to site sj and ak to site sl is made, then the error in satisfying the 
specified distance 5ik (from the distance matrix) can be measured by (Sik - I l s j  - 
sill2) ~. Therefore, an assignment is desired such that the sum of all such terms is 
minimized. 

Let K = {(i, k) : 5ik > 0} be the set of all specified distances. Then the desired 
assignment is that which minimizes the quadratic function 

where Pijkl = ( ~ i k  - -  ] ] S j  - -  S/l12) 2. This problem is therefore of the form (5), with 
E(x)  given by (4) with c = 0. A significant fact about this special case is that the 
lower bound E(x)  > 0 is known. If the lattice permits an assignment which exactly 
satisfies the distance matrix, then E(x)  = 0 for any optimal assignment. 

7. A S a m p l e  Tes t  P r o b l e m  

As initial test cases, the global optimization techniques described above can be 
applied to several simple, tractable molecular structures for which the conforma- 
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tional space has been exhaustively explored. One such simple structure is butane, 
a system of four hydrocarbons which satisfy the same characteristic folding models 
as do small peptides. The 3-dimensional trans conformation for butane (the con- 
formation with minimum energy) is well known and is shown in Figure 3. In this 
case, since all of the molecules are actually identical hydrocarbons, the complexity 
of the energy potential function should be reduced. One energy potential function 
f(y), y E ~9 (with fixed 91 = r = r = 0), for butane that has gained widespread 
acceptance is 

I(l ~ 3 = 1 ( l i - 1 0 ) 2  "[- go  3 ~i=2(  i - ~?0) 2 + V3/2(1 + cos(3r + e14((~'~, ) '2 - 2(~-~, ) 6) 

where r14 is the distance between the first and fourth molecules (and is there- 
fore completely dependent on the variables l,O, and r Kz = 310.0 kcal/ang 2, 
K0 = 40.0 kcal/rad 2, V3/2 = 1.3 kcal, e14 = 0.06 kcal, ~r14 = 3.6 ang (i.e. the well 
depth and location for the minimum of the lone Lennard-Jones pairwise term are 
0.06 kcal and 3.6 ang, respectively), l0 = 1.526 ang, and O0 = 70.5 (recall that  in 
this formulation Oi represents the bond angle corresponding to the relative position 
of the third bead with respect to the line containing the previous two). 

a4 
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Figure 3. " U n i t e d  a t o m "  b u t a n e  i n  i t s  t r a n s  c o n f o r m a t i o n ;  11 = 12 = /3 = 1 . 5 2 6  a n g ;  02 = 03 - -  
7 0 . 5 ~  r  = 1 8 0  ~ 

Discretizing this problem using a 5 • 5 • 5 lattice with a uniform grid spacing 
of 1.4 aug, we get the quadratic assignment problem (5) with 500 zero-one vari- 
ables and 129 linear constraints. Of course the equivalent concave quadratic global 
minimization formulation also requires 500 variables (although not restricted to 
be zero-one), but only requires one linear constraint (6) and 500 upper and lower 
bounds on the values of the x~ i. The terms p~jm of energy function E(x) defined 
in (4), which are used to construct the concave function E'(x) defined in (7), can 
be chosen as follows: where M is a sufficiently large penalty term, and fik(rjl) is 
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the Lennard-Jones pair potential with elk = 0.06 kcal, ~ik = 3.6 ang for all i and k. 
Notice that  the terms in f(y) involving 0 and r were not included in the discrete 
approximation E(x), since they cannot be modeled as pairwise interactions. 

(0.0,4.2,4.2)  = a 4 

a 3 = (1.4,5.6,2.8) 

~ }  a 2 = (2.8,4.2,2.8) 

} a 1 = (2.8,2.8,2.8)  

Figure ~. Lattice global minimum conformer for "mfited atom" butane; 5 • 5 • 5 grid with 1.4 
ang uniform spacing 
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Figure 5. " U n i t e d  a t o m "  b u t a n e  i n  i t s  Gauche- c o n f o r m a t i o n ;  11 ---- 12 ---- 13 = 1 . 5 2 6  a n g ;  
02 = 03 ---~ 7 0 . 5 0 ;  ~b 3 = - - 6 0  ~ 

The global, or near global, solution (there were a total of 23 local minima found) 
to this lallice reslricled problem has an energy of 319.293 kcal with a 3-dimensional 
configuration as shown in Figure 4. The result of this minimization provides the 
values 11 = 1.4 ang, 12 = 1.98 ang, /3 = 2.42 ang, 02 = 03 : 03 ~-- 45 ~ and 
r14 = 3.43 ang. This particular lattice restricted result is closest to the gauche- 
conformation of butane (see Figure 5), which corresponds to a local minimum of 
the energy function, but not the global one (trans is global). Because of the small 
size of the lattice (125 total sites) and the relatively large spacing between lattice 
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points (1.4 ang spacing with all desired bond lengths of 1.526 ang), the lattice 
result cannot obtain a min imum energy conformer without violating some of the 
desired bond lengths. In addition, because the lattice used was only five sites wide 
in each dimension, and the first two beads were fixed in the center of the lattice, it 
was not possible to obtain a conformer close to the the global trans conformation 
(this would require a lattice with a width of at least six sites in one dimension). 
As stated at the end of section 5, this conformer should now be used as a start ing 
point for the local minimization of f(y) over a continuous domain in 3-dimensional 
space. The t ime to obtain this approximate  solution (the first stage result only) 
to a very simple example was approximately 25 minutes on a Cray X-MP/464 
supercomputer! Hence, we can only suggest that  this approach be considered as a 
purely theoretical method unless/until  more efficient global optimization techniques 
are developed. 

8. C o n c l u s i o n s  

The molecular conformation problem is a difficult and complex problem. This pa- 
per has presented an approach that  models folding as a two stage process. The first 
stage involves a discrete latt ice-type approximation that  permits the original con- 
tinuous model to be formulated as a "zero-one" quadratic assignment problem, and 
then further, as a continuous concave quadratic global minimization problem. The 
solution to this first stage is then used as a start ing point for a relaxed continuous 
local minimization step which, given the correct energy function, should provide an 
accurate prediction of the native state of the molecule. 
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