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In earlier work [i, 2] mathematical models have been constructed for 

processes of displacement of oil from a porous medium by a solution of 

an active additive, i.e., an additive capable of changing the hydro- 

dynamic characteristics of the fluid and the medium. An additive of 

this kind that was considered was a polymer that in the dissolved state 

influences the properties of the displacing fluid and in the adsorbed 

state the permeability of the porous medium. Self-similar solutions 

were obtained corresponding to the problem of frontal displacement from 

a homogeneous porous medium, and a number of numerical calculations were 

made. It is natural to generalize this treatment by introducing into the 

problem a second active factor, which is here taken to be the temperature 

of the injected fluid. The analysis of the nonisothermal displacement of 

oil by a solution of an active additive can be transferred without sig- 

nificant modifications to the general problem of displacement of oil by 

a solution carrying two active agents. The names "additive" and "tem- 

perature" are retained here only for convenience of exposition. 

i. Basic Equations 

The system of equations of motion consists of the equations of two-phase flow in 

the porous medium, the balance of the active additive in the dissolved state, the kinet- 

ics of the sorption process, and the thermal balance: 

m + div ui=O, i=1,2 (i.i) 
Ot 

m T~( cs~ ) + div ( c u , ) + q = O  ( 1 . 2 )  

aa 
ui=--k~t-~/~ grad p, a--t = q ( 1 . 3 )  

m ~ (s,C~TiszC2T) + O_Ot (Cy) + div (C~u~T+C2u2T) + ~ = 0  ( 1 . 4 )  

Here, t is the time, s i is the saturation of the pore space by the phase i, u i is 

the flow velocity of phase i, m is the porosity of the medium, k is the permeability of 

the medium, fi are the relative phase permeabilities, ~i are the viscosities of the phases, 

p is the pressure, c is the concentration of the active additive in the solution, a is the 

amount of adsorbed additive, q is the intensity of the sorption process, T is the tem- 

perature, C i are the specific heats of the water, oil, and rock, respectively, and R is 

the intensity of heat transfer per unit volume of the stratum. In what follows, the 

subscripts 1 and 2 are appended to the symbols which represent the displacing and dis- 

placed fluids, respectively. 

Considering large-scale motions, we ignore the capillary discontinuity of the pres- 

sure, the diffusion transport of the additive, and heat conduction. We also ignore the 

heat losses to the rocks surrounding the stratum and assume that the specific heats are 

constants. We do not take into account the nonlinearity of the flow for the polymer 

solution. We restrict ourselves to the one-dimensional problem of frontal displacement, 

assuming that the motion takes place along the x axis, and that the total flow rate U = 
u I + u 2 does not depend on the time. 
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Introducing in the usual manner the Buckley--Leverett function F, which is equal to 

the fraction of the displacing fluid in the total flow, we obtain the canonical system of 

equations of one-dimensional displacement : 

ui=FU, u2=(i-F)U; F=~tJl(~J,+~t/~)-'=F(s, c, T) (1 .5 )  

Os OF 
m - - - t -  U ------0 (1.6) 

Ot Ox 
a 

O-~(CS+m ") + !  ~O---(cF) : O ' m  ox a=a(c) ( 1 . 7 ,  

O. U 0 
-~-(sr +bT) + -~ ~x (FT +hT) =0,  b= (mC2+C~) [ m (C,-C2) ]- ';  h=CJ (C,-C2) ( 1 . 8 )  

The system (1.6)-(1.8) admits discontinuous solutions, and on the discontinuities 

the following obvious conditions must be satisfied: 

mV[s]----U[F(s, c, T) ] (1 .9 )  

mV[sc+a/m]:=U[cF(s, c, T) ] (1 .10)  

mV[ T(s+b ) ]=V[ T (F+h ) ] (1 .11)  

where V i s  the  v e l o c i t y  o f  the  d i s c o n t i n u i t y ;  the  squa re  b r a c k e t s  d e n o t e  the  d i s c o n -  
t i n u i t i e s  o f  the  c o r r e s p o n d i n g  q u a n t i t i e s .  

The main a p p l i e d  and t h e o r e t i c a l  s i g n i f i c a n c e  i s  a s s o c i a t e d  w i t h  the  problem o f  
decay of  a d i s c o n t i n u i t y  w i t h  i n i t i a l  and boundary  c o n d i t i o n s  o f  the  form 

S=So, C=Co=0, T=To=0 (t----0), s=s ~ c:=c~ T = T ~  (x=0) (1 .12)  

Such a choice of the initial and boundary conditions corresponds to an admissible 

normalization of the temperature and the concentration in Eqs. (1.7) and (1.8). This 

problem admits a self-similar solution s = s(~), c = c(~), T = T(~), ~ = mx/Ut, the 

solution to the boundary-value problem 

ds dE d " / \ a  d(cF) 

c(~)  =c0=O, T(oo)----ro=O, 

d , d 
- - , ,  ~-~(T(s-l-b) )=-~(T(F+h) ), s(oo)----so 

s(0)=s ~ , c(0)=c~ T(0)=T~ 

( 1 . 1 3 )  

2. Analysis of the Construction of the Self-Similar Solution 

The self-similar solution to the problem (1,13) is "fitted together" out of sections 

of continuous variation of the unknown functions, which are joined by discontinuities. In 

the case of a convex sorption isotherm ~"(c) < 0), the solution can consist of the fol- 

lowing elements: sections of continuous variation of s with s'(~) ~ 0 for constant c and 

T and ~ = F,s(S , c, T); sections of constancy of s, c, and T; discontinuities of s with 

constant c and T; connected discontinuities of c and s or T and s. A decisive circum- 

stance is that the solution in the case of convex sorption isotherm does not contain 

sections of continuous variation of the concentration and the temperature. 

Even the simplest examples show that the solution is not constructed uniquely from 
these elements. A physically meaningful solution is identified by the additional re- 

quirement that the discontinuities be stable. 

It follows from the above that it is sensible to seek the distributions c(~) and 

T(~) in the form of "steps": 

c(~)i=i , ~ < ~ ,  c(~)=O, ~>~o, T(~)=I ,  ~<~r, r ~ ) = O ,  ~>~r (2 .1)  

The form of a solution with such concentration and temperature distributions is 

completely determined by the behavior of the function F(s, c, T) as a function of s for 

c = 0 and 1 and T = 0 and i. Thus, instead of a function of three variables it is suf- 

ficient to consider a family of four functions of one variable s: 

F~j(s) ~F(s, i, ]), i, ]=0,  I (2 .2)  

For what follows, it is convenient to transform the jump conditions (1.9)-(1.Ii), 

reducing them to the form 
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F+_F-  
= s ~ _ s : ,  F •  t, c • r • 

a+--a- ~ - '  [ C ] ~ 0  ~=F~ s~+ (e+-c - )m  / ' 

F• 
~=~s~+b, [T]§ 

T h e  r e l a t i o n s  ( 2 . 4 )  a n d  ( 2 . 5 )  d i f f e r i n g  i n  t h e  c h o i c e  o f  t h e  s i g n s  a r e  c o n s e -  

q u e n c e s  o f  e a c h  o t h e r  a n d  t h e  r e l a t i o n  ( 2 . 3 ) .  I n  p a r t i c u l a r ,  a t  a " c o m p l e t e "  d i s -  
c o n t i n u i t y  o f  t h e  c o n c e n t r a t i o n  ( c -  = 1,  c + = 0 )  

~ = F • 1 7 7  -~ 

I t  i s  e a s y  t o  g i v e  a g r a p h i c a l  i n t e r p r e t a t i o n  o f  t h e  j u m p  c o n d i t i o n s .  On t h e  s ,  

F p l a n e  we p l o t  t h e  c u r v e s  F •  c •  T •  I f  t h e r e  i s  a d i s c o n t i n u i t y  o f  t h e  c o n c e n t r a -  
t i o n ,  t h e n  t h e  c o n d i t i o n s  ( 2 . 3 )  a n d  ( 2 . 4 )  a r e  s a t i s f i e d  s i m u l t a n e o u s l y ,  w h i c h  c o r r e -  
s p o n d s  t o  t r a n s i t i o n  o f  t h e  r e p r e s e n t a t i v e  p o i n t  o n  t h e  s ,  F p l a n e  f r o m  t h e  c u r v e  F -  t o  
t h e  c u r v e  F + a l o n g  a s t r a i g h t  l i n e  p a s s i n g  t h r o u g h  t h e  p o i n t  0 c = ( - - S a ,  0 ) ,  w h e r e  s a = 
(a + -- a-)/(c + - c - ) m .  

S i m i l a r l y ,  i f  t h e r e  i s  a d i s c o n t i n u i t y  o f  t h e  t e m p e r a t u r e ,  t h e  r e p r e s e n t a t i v e  p o i n t  
g o e s  o v e r  f r o m  t h e  c u r v e  F -  t o  t h e  c u r v e  F + a l o n g  t h e  s t r a i g h t  l i n e  p a s s i n g  t h r o u g h  t h e  

p o i n t  0 T = ( - - b ,  - - h ) .  

F i n a l l y ,  a t  a d i s c o n t i n u i t y  o f  t h e  s a t u r a t i o n ,  w h i c h  t a k e s  p l a c e  w i t h o u t  a c h a n g e  
i n  t h e  c o n c e n t r a t i o n  a n d  t h e  t e m p e r a t u r e ,  o n l y  t h e  c o n d i t i o n  ( 2 . 3 )  i s  s a t i s f i e d .  T h e  
c u r v e s  F -  a n d  F + m e r g e ,  a n d  t h e  d i s c o n t i n u i t y  c o r r e s p o n d s  t o  t r a n s i t i o n  f r o m  o n e  p o i n t  
o f  t h i s  c u r v e  t o  a n o t h e r .  

( 2 . 3 )  

( 2 . 4 )  

( 2 . 5 )  

( 2 . 6 )  

We take the stability condition for the discontinuities in the form in which it 

is usually stated in the theory of shock waves [3, 4]: the number of character- 

i st ic s leaving a discontinuity line mus t be one less than the 

number of relations satisfied at the discontinuity (i.e., in the 

given case equal to two). A feature of the considered problem is that the function 

F(s) has sections of convexity (F s s < 0). Therefore, retaining the previous formula- 

tion of the stability conditions, we shall also regard the characteristics whose ve- 

locity is equal to the velocity of the discontinuity as incoming characteristics. 

In the cases for which there exists a rigorous theory (Eq. (1.6) with c = const, 

T = const), such a formulation is identical to the well-known condition for stability 

of a generalized solution [5]. Applied to the present problem, this condition can be 

regarded as heuristic. 

The characteristics of the system (1.7)-(1.9) are given by the relations 

dt vt Os ' --~-= v i=  s +  ' dt d--7 =va s+ b ' dt 

We s h a l l  c a l l  t h e  c h a r a c t e r i s t i c s  o f  t h e  f i r s t ,  s e c o n d ,  a n d  t h i r d  f a m i l i e s  t h e  s ,  c ,  

a n d  T c h a r a c t e r i s t i c s ,  r e s p e c t i v e l y ,  a n d  d i s c o n t i n u i t i e s  a t  w h i c h  t w o  c h a r a c t e r i s t i c s  o f  
t h e  c o r r e s p o n d i n g  f a m i l y  a r r i v e  s ,  c ,  a n d  T d i s c o n t i n u i t i e s ,  r e s p e c t i v e l y .  

o o 
S u p p o s e  t h e  i n s t a n t a n e o u s  s t a t e  i s  c h a r a c t e r i z e d  b y  t h e  t r i p l e t  o f  v a l u e s  ( s  , e ,  T ~  

On t h e  p l a n e  ( s ,  F ) ,  we p l o t  t h e  c u r v e  F ( s ,  c ~ , T~  T h e n  t h e  t h r e e  c h a r a c t e r i s t i c  
v e l o c i t i e s  v i a r e  g i v e n ,  r e s p e c t i v e l y ,  b y  t h e  a n g u l a r  c o e f f i c i e n t s  o f  t h e  t a n g e n t  t o  t h e  

o 
c u r v e  F ( s )  a t  t h e  p o i n t  s = s a n d  t h e  r a y s  d e s c r i b e d  t o  t h i s  p o i n t  f r o m  t h e  p o i n t s  ( - - a  s /  
m, 0 )  a n d  ( - - b ,  - - h ) .  T h u s ,  t h e  c h a r a c t e r i s t i c  v e l o c i t i e s  v i  a l s o  a d m i t  a p e r s p i c u o u s  
g r a p h i c a l  i n t e r p r e t a t i o n  o n  t h e  s ,  F p l a n e .  

T h e  a b o v e  m a k e s  i t  n a t u r a l  t o  a t t e m p t  a g r a p h i c a l  c o n s t r u c t i o n  o f  t h e  s e l f - s i m i l a r  
s o l u t i o n .  We c o n s t r u c t  t h e  c u r v e s  F i j ( s )  = F ( s ,  i ,  j ) .  f o r  i ,  j = O, 1 .  To  c o n s t r u c t  

t h e  s o l u t i o n ,  i t  i s  n e c e s s a r y  t o  f i n d  a c o n t i n u o u s  p a t h  f r o m  t h e  p o i n t  ( s  ~ , F l l ( S 0 ) )  t o  
t h e  p o i n t  ( s  o , F 0 0 ( s 0 ) )  c o n s i s t i n g  o f  p i e c e s  o f  s e c t i o n s  o f  t h e  c u r v e s  F i j  a n d  s e g m e n t s  
of straight lines corresponding to the discontinuities. At the same time, the discon- 

tinuities must satisfy the stability condition formulated above. Motion along the Fij 

curves corresponds to sections in which the saturation changes. On them, the derivative 
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dF/ds is equal to the self-similar variable ~ and, therefore, must increase along the path. 

The condition that ~ increases together with the stability condition for the discontinuities 

gives the necessary condition for joining a discontinuity to a continuous part of the 

solution. 

3. Construction of Self-Similar Solution 

The structure of the self-similar solution is determined by the mutual disposition 

of the Fij curves on the plane (s, F). We shall assume that the derivatives F c and F T 
do not change sign. The pieces out of which the solution is "constructed" are'determined 

by the signs of these derivatives. The simplest cases are those when these derivatives 
have the sa~.le signs. 

Suppose first F c ~ O, F T ~ 0. Then the solution can be constructed by direct 
generalization of the graphical procedure used in [I] (the problem of one "thickening" 
additive). The disposition of the Fij curves on the s, F plane is shown in Fig. i. To 

the curve FII we draw the tangents from the poles 0 c and'0T_ , corresponding to possible 
c and T discontinuities. With a view to the subsequent continuation of the solution, 

we actually make a transition to the tangent with the least slope (in this case, the 

c tangent, and the transition occurs to point 2 on curve F01). The further development 
of the solution is governed by whether or not it is possible to have a discontinuity 

(a T discontinuity) directly from point 2 to curve F00. If point 2 lies below point 5, 
at which the T ray touches the curve F01 , then the T discontinuity is from point 2 to 

point 3 on curve F00 along the straight line 0T-2 (shown in Fig. 1 by the continuous 
Curve). If point 2 lies abo~e point.6, then the T discontinuity occurs along the straight 
line 6-7 (the broken line), and it is preceded (corresponding to smaller ~) by the con- 

tinuous section 2-6 of motion along the curve F01. The s discontinuity is constructed 

similarly (the s ray is drawn from point 4 with coordinates (So, F00(s0) ). 

The path 0 12 34 of the representative point in Fig. 1 corresponds to the de- 

pendence s(~) shown in Fig. Ib; in Fig. Ic, we have plotted the dependence s(~) for 

the path 0 12 6 7 4. 

To list all possible types of structure of the solution, we introduce the following 
notation. Sections of the type of simple waves on which the values of all the three 

variables remain constant (s = const, c = const, T = const) will be denoted by the letter 

P; sections of continuous variation of s with motion of the representative point along 
the curve Fij will be called S waves and denoted by the letter S; the discontinuities 
will be denoted as follows: an s discontinuity by J, a c discontinuity by JC, and a 
T discontinuity by JT, Then 0 12 34 corresponds to the formula 

( 1 , 1 ) - s - ] c - +  ( 0 , l ) - P - l r ~  (o,o)-P-1-~ (o,o) (3. ~) 
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In the brackets, we specify here the pair of (c, T) values that determines the curve 

Fij on which the representative point is situated after the corresponding discontinuity~ 

The complete set of possible variants of the solution under the condition F ~-~ 0, ~c 
0 can be represented by the branching formula F T 

]C-+ (0, l) - P -  (S) - ] T  ~ ~ (0,0) - P -  (S) - ] ~  (0,0) ( 3 . 2  ) 
( l , i ) . s -  t ]r--,-(~,o)-p-(s)-~]cj 

Here, the S waves shown in the brackets may be absent. In this case, there are al- 

together eight possible types of solution. Note that the mutual disposition of the curves 

FI0 and F01 does not influence the structure of the solution. 

We now consider the case F c ~ 0, F T ~ 0 (Fig. 2). In this case, the construction 

begins at the "end" -- at the point (So, F00(s0)) -- and is a generalization of the pro- 
cedure described in [2] for one additive that increases the mobility of the displacing 

fluid. The solution ends with an S discontinuity (4-5), which is preceded by an S wave 

(3-4), and it by a T discontinuity (2-3), as in Fig. 2a, if the T tangent to the curve 

F00 has a greater angular coefficient than the c tangent, and a c discontinuity otherwise. 
The further development of the solution is determined by the position of point 8, at 

which F01 touches the c ray, relative to point 2. If point 6 is below point 2, then the 

c discontinuity is along the straight line 1-2; if point 7 lies above point 2, then the 
c discontinuity is along the tangent 8-7 to the curve F01 and it is preceded by the con- 
tinuous section 7-2 of motion along F01. The corresponding dependences s(~) are shown 
in Figs. 2b and 2c. 

The complete set of possible solution types corresponds to 

r yC-~ (0, l) - ( S ) - P ' Y T  / 
(i, i ) - s - P -  (o, o)-s-1  (o, o) 

( t ,0)  (s) J 
( 3 . 3 )  

There are altogether four possible types. The mutual disposition of the curves FI0 

and F01 does not influence the structure of the solution. 

We now investigate the more complicated situation when the derivatives F c and F,T 
have opposite signs. We consider the case F c ~ O, F T ~ O. At the same time 

F(s,l,O)~F(s,l,t)~F(s,O,l); F(s, l,O)~F(s,O,O)~F(s,O,t) ( 3 . 4 )  

We d r a w  t h e  c and  T t a n g e n t s  t o  F l l  a n d  a s s u m e  t h a t  t h e  a n g u l a r  c o e f f i c i e n t  o f  t h e  
T tangent is smaller. Then the initial section of the solution is the s wave 0-1 and 
the T discontinuity I-2 to point 2, which is the lower intersection of the T ray 0T-I 

with the curve FI0. We now draw the c tangent to the curve F00. The form of the solu- 
tion is determined by the possibility of joining the T and e discontinuities correspond- 

ing to transition along these tangents. Suppose the upper point of intersection 3 of the 

c tangent to F00 with FI0 lies below point 2. Then the solution can be readily 
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constructed to the end and has the simple form 

( t i ) - S - ] T ~  ( I , 0 ) - P - ( S ) - P - ] C ~ ( 0 , 0 ) - S - 1 ~  (0,0) (3 .5 )  

We b e g i n  t o  s h i f t  t h e  p o i n t  0 c t o  t h e  l e f t ,  t h e r e b y  d e c r e a s i n g  t h e  s l o p e  o f  t h e  c 
t a n g e n t  ( i n  w h a t  f o l l o w s ,  i t  i s  a s s u m e d  t h a t  F ( s ,  0 ,  0) ~ F ( s ,  1, 1 ) ) .  At t h e  same t i m e ,  
p o i n t  3 w i l l  a p p r o a c h  p o i n t  2,  and  when t h e y  m e r g e  t h e  S wave  i n d i c a t e d  by t h e  b r a c k e t s  
i n  ( 3 . 5 )  w i l l  d i s a p p e a r .  W i t h  f u r t h e r  d i s p l a c e m e n t  o f  p o i n t  3 t o  t h e  r i g h t ,  t h e  " l e a d i n g "  
and " t r a i l i n g "  p a r t s  o f  t h e  s o l u t i o n  no l o n g e r  m a t c h  one  a n o t h e r  and t h e r e  i s  an a d d i -  
t i o n a l  S discontinuity 2-3 joining them, this being accompanied by an increase in the 

saturation with an increase in the self-similar variable (path 0 12 34 56 (Fig. 3)). The 

formula for the solution is 

( i , l ) - S - S r ~ ( t , 0 ) - P - J - ~ ( l , 0 ) - P - ~ C ~ ( 0 , 0 ) - S - ] ~ ( 0 , 0 )  (3.6) 
Naturally, for the existence of a solution of this type it is necessary that the 

velocity of the S discontinuity 2-3 be less than the velocity of the c discontinuity 3-4. 

We now shift the point 0 c to the left. When the lower point of intersection of the 

c tangent to F00 with FI0 rises above point 2, a solution of the form (3.6) becomes impos- 

sible. Then the S-discontinuity--simple wave--c-discontinuity structure (2-3-4) is re- 

placed by just a c discontinuity, which is no longer determined by the c tangent but by 

the c ray 0c-2-7. The corresponding solution has the structure 

(i,l) - s - J r  ~ (t,0) - p - ~ c ~  (0,0) - p -  (s) - s ~  (0,0) (3 .7 )  

and c o r r e s p o n d s  t o  t h e  p a t h  0 1 2  7 (5)  6 ( F i g .  3 ) .  

Finally, shifting the point 0 c further to the left, we arrive at a situation in which 

the T tangent to FII is steeper than the c tangent. In this case the T tangent for the 

curve F01 is also steeper than the c tangent and there exists a self-similar solution cor- 

responsing to the path 0 12 34 (5)-6 (Fig. 4) with the structure 

(t , i)  - s - P - J C - ~  ( o , l ) - s - s r - ~  (o,o) - P -  (s) - ] - .  (o,o) (3. s) 

A singular case in these constructions arises when the straight line passing through 

the points 0 c and 0 T lies above the curve F01 but intersects the curve FII. In this case, 

solutions of two types can be constructed: with first discontinuity of the temperature 

(the path 0 12 34 6 (Fig. 4)) and the structure (3.8) and with first discontinuity of the 

concentration (path 0 78956) and structure (3.7). One can also have a disposition of 

the points 0 c and 0 T for which a solution with the structure (3.6) is obtained. It is 

readily verified that both solutions are admissible with respect to all the criteria 

listed above. Here, one can also have a construction containing a double (c, T) dis- 

continuity from the upper point of intersection i0 of 0c, 0 T with the curve F I. to its 

last point of intersection Ii with F00. Depending on the mutual disposition o~ the 

points ll and 5 on curve F00 , the further continuation of the solution contains P, a 

simple wave, or a combinat2 ~n of it with an S wave, ending with an S discontinuity. The 

structure of the solution 

( l ,J)  - -S--P--JTC-+ (0,0) - -P- -  (S) --J-->- (0,0) ( 3 . 9 )  
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Figure 4 shows the path 0 I0116, which does not contain an S wave. In this case, 

the disposition of the s characteristics has an unusual form. In the neighborhood of the 
double (c, T) discontinuity, both s characteristics leave the discontinuity. The sta- 
bility of the discontinuity is ensured by the circumstance that both the T and c char- 

acteristics arrive on it, i.e., altogether four characteristics, as is required by the 

stability condition. Thus, in the given case the self-similar solution is not unique. 

If the curve F00 lies below the curve FII, there are some particular features of 
the construction associated with the circumstance that now the c and T tangents drawn 

to F00 lie to the right of and lower than the corresponding tangents to FIt. 

Suppose the position of the point 0 T is fixed, and, as before, we move the point 
0 c to the left. First, we obtain a solution with the structure (3.5), and then (3.6) 

(path 0 12 34 56 (Fig. 5)). In this case, the lower point of intersection of the c 

tangent to F00 with FI0 always lies below the lower point of intersection of the T 

tangent to Fll with FI0 , though a solution with the structure (3.6) is only possible 
when the angular coefficient of the T tangent to FII is less than the angular coef- 

ficient of the straight line 2-3 (Fig. 5). The construction becomes impossible when 

the c tangent to F00 intersects Fl0 further to the right than the T tangent to Fll. 
A new structure corresponding to the path 0 7895 6 (Fig. 5) arises. The point 8 is 

the upper intersection of the c tangent to F00 with FI0, and the transition 7-8 occurs 
along the straight line 0T8. The formula for the solution is 

( l , t  ) - S - P - J T - - ) -  ( t ,0)  - P - J C  ~ (0,0) - S - 1 - +  (0,0) ( 3. l o )  

At the T discontinuity, there is an increase in the saturation. 

When the angular coefficient of the T tangent to F00 becomes greater than that of 

the c tangent to F00, we obtain a solution with the structure (3.9) in which a discon- 
tinuity of the temperature comes first. 

There again exists a range of parameters of the problem for which all three con- 

structions leading to three different self-similar solutions are possible; with dis- 
continuity of the concentration first, with discontinuity of the temperature first, and 

with double (c, T) discontinuity. This happens if the straight line 0cO T intersects 

the curve F00 but not F01. 

If, preserving the mutual disposition of the curves FII and F00, we reverse the signs 
of the derivatives F and F then for the cases for which the solution above was con- ,c ,T' 
structed uniquely the new structure is obtained by replacing c by T and T by c. The in- 

complete symmetry of the variables c and T is due to the circumstance that the point 0 c 
always lies above the point OT, and the incomplete symmetry is manifested when the solution 
is not unique. The unique solution containing double (e, T) discontinuity with the 

structure (3.9) corresponds to the three-valued case. 

4. Numerical Analysis of the Solution 

The calculations were based on corresponding generalizations of the difference 
scheme used earlier in [2] to calculate isothermal displacement of oil by a solution of 

an active additive, which, in its turn, was based on experience in solving the Buckley-- 

Leverett problem [6, 7]. To eliminate "spreading" of the contact discontinuity "of the 

temperature, an artificial nonlinearity was introduced in the specific heat of the rock. 

The results of the calculations agree with the above qualitative analysis of the structure 

of a self-similar solution. In the cases of nonuniqueness of the analytic solution the 
numerically realized regime corresponded to greater velocities of the discontinuities 

(i.e., with discontinuity of the concentration first).* 

We thank A. A. Barmin, A. G. Kulikovskii, and L. A. Chudov for helpful discussions. 
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CHARGING OF DISPERSE PARTICLES IN TWO-PHASE MEDIA 

WITH UNIPOLAR CHARGE 

N. L. Vasil'eva and L. To Chernyi UDC 5 3 2 . 5 8 4 : 5 3 7 . 2 4  

Charging of disperse particles with good conduction in two-phase media 

with unipolar charge is considered in the case when the volume concentra- 

tion of the particles is low. For this, in the framework of electrohydro- 

dynamics [I, 2], a sSudy is made of the charge of one perfectly conducting 
liquid particle in a gas (or liquid) with unipolar charge in a fairly strong 

electric field. The influence of the inertial and electric forces on the 

motion of the gas is ignored, and the velocities are found by solving the 
Hadamard--Rybczynski problem. We consider the axisymmetric case when the 
gas velocity and electric field intensity far from the particle are parallel 

to a straight line. The analogous problem for a solid spherical particle 

was solved in [3-6] (in [3], the relative motion of the gas was ignored, 
while in [4-6] Stokes flow around the particle was considered). The two- 

dimensional problem of the charge of a solid circular, perfectly conducting 
cylinder in an irrotational flow of gas with unipolar charge was studied in 
[7]. 

1. I n  t w o - p h a s e  m e d i a  c o n s i s t i n g  o f  d i s p e r s e  p a r t i c l e s  a nd  a gas  ( o r  l i q u i d )  w i t h  
u n i p o l a r  c h a r g e ,  t h e  p a r t i c l e s  may be  c h a r g e d ,  c o l l e c t i n g  i o n s  f rom t h e  s u r r o u n d i n g  g a s  
( o r  l i q u i d ) .  To s t u d y  t h i s  p h e n o m e n o n  i n  t h e  c a s e  o f  a low v o l u m e  c o n c e n t r a t i o n  o f  t h e  
d i s p e r s e  p a r t i c l e s ,  we c o n s i d e r  t h e  c h a r g i n g  o f  a s i n g l e  s p h e r i c a l  l i q u i d  ( o r  s o l i d )  
p a r t i c l e  i n  a q u a s i h o m o g e n e o u s  ( o v e r  d i s t a n c e s  o f  t h e  o r d e r  o f  t h e  p a r t i c l e  r a d i u s  a )  
i n c o m p r e s s i b l e  v i s c o u s  e l e c t r o h y d r o d y n a m i c  f l o w .  We s h a l l  a s s u m e  t h a t  t h e  p a r t i c l e  i s  
p e r f e c t l y  c o n d u c t i n g  and  t h a t  a l l  i o n s  w h i c h  r e a c h  i t s  s u r f a c e  r e m a i n  on i t .  I n  c o n s i d e r -  
i n g  t h e  e l e c t r o h y d r o d y n a m i c  f l o w  p e r t u r b e d  by t h e  p a r t i c l e ,  we i g n o r e  i n  t h e  N a v i e r - -  
S t o k e s  e q u a t i o n  t h e  i n e r t i a l  t e r m s  and  t h e  e l e c t r i c  Coulomb f o r c e s  compared  w i t h  t h e  
v i s c o u s  t e r m ,  t h e  p e r t u r b a t i o n  o f  t h e  e l e c t r i c  f i e l d  due t o  t h e  c h a n g e  i n  t h e  c h a r g e  
d e n s i t y  i n  t h e  n e i g h b o r h o o d  o f  t h e  p a r t i c l e  c o m p a r e d  w i t h  t h e  u n p e r t u r b e d  e l e c t r i c  f i e l d ,  
t h e  d i f f u s i o n  o f  t h e  i o n s  o v e r  d i s t a n c e s  o f  o r d e r  a c o m p a r e d  w i t h  t h e i r  c o l l e c t i v e  t r a n s -  
p o r t  and  m i g r a t i o n  u n d e r  t h e  i n f l u e n c e  o f  t h e  e l e c t r i c  f i e l d ,  and  a l s o  t h e  d e p a r t u r e  o f  
t h e  p a r t i c l e ' s  s h a p e  f r o m  s p h e r i c a l  due t o  t h e  i n f l u e n c e  o f  t h e  i n e r t i a l ,  A r c h i m e d e a n ,  
and electric forces. 
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