BOUNDS FOR THE SPECTRAL RADIUS OF POSITIVE OPERATORS

P. P. Zabreiko, M. A. Krasnosel'skii,
and V. Ya. Stetsenko

Beginning with the work of M. G. Krein and L. V. Kantorovich, methods of partially ordered spaces
have been used to derive bounds for characteristic values and spectral radii of linear operators. We
present below some new resuits in this direction.

1. Let Kbe a cone in the real Banach space E (for an explanation of our terminology see [1, 2]).
An element vy € K is called a quasi-interior element of K if I (vy) > 0 for any nonzero functional [ of the
conjugate semigroup K.* For example in the cone of nonnegative functions in Lp, a quasi-interior func-
tion is-a function taking positive values on a set of complete measure.

THEOREM 1. Let the positive, completely continuous, linear operator A satisfy the inequality
L Arp < o, (1)
where v, is a quasi-interior element of the cone K. Then
rA<Vx, _ : (2)
where r(A) is the spectral radius of A.

THEOREM 2. Let K be a normal and reproducing cone. Let the positive linear operator A be un-
bounded above and satisfy the inequality (1). Then (2) holds.

These theorems supplement and generalize the results stated above concerning upper bounds of the
spectral radius and also results concerning inconsistent inequalities [2~6].

2. Before proving the above theorems we state and prove a simple auxiliary result.
LEMMA 1. Let [, bea ﬁon-null positive linear functional such that
‘ Idz) > r(d)l(z)  (z=K), 3)
where A is a positive linear operator. Let (1) hold for some quasi-intéripr element v,. Then (2) holds. . |

PROOF. Firstlet a > 0. We write
’ 1 2

= 1— =
wy=a Tuvyt+a ™Avgd .- -+ A", 4)

Clearly w, is a quasi-interior element (since v, is a quasi-interior element). Since

1 1

2
—_—— 1— =
m
Awg=a mAUo—l—-d mAZUo+"'+A Un,

it follows from (1) that

1

Awy << a™w. (5)
Agsume that (2) does not hold; we have
r{d)w, — Aw, > 6w,
where 6 is positive. This implies that T(A)W, is a quasi-interior element and so

r(A) ly{ivg) — lo(Awgy) >0
and (3) is contradicted.
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Now let @ =0. For any £ >0 we have
AT < ey

and what has already been proved implies r(A) = &, It remains to note that e is positive.
The lemma is proved.
We now prove Theorems 1 and 2.

In the proof of Theorem 1 we use a theorem due to M. G. Krein [1] stating that the spectral radius
(if it is positive) of a positive completely continuous operator is a chafacteristic value of the operators A
and A,* corresponding to characteristic vectors in the cones K and K if the linear span of K is dense E.
Under the conditions of Theorem 1 the density of the linear span of the cone K in E follows from the exis-
tence of quasi-interior elements in the cone. Let I; be a positive functional satisfying the equation
A*lo =7r(A) ;. (Frein's theorem shows that such a functional exists). It follows from the definition of
a conjugate operator that

lo(A.r)‘ = r(d)ly(z) (z = E). (6)
It only remains to use Lemma 1.

We now turn to Theorem 2. We recall that the uy-boundedness above of the operator A implies the
existence of a nonzero element uy€ K and a positive integer n such that

We write Euo for the set of x€ E, for which the so-called uy-norm

jzf, =  inf

{B: —Buy<x<Hth}

is finite, It is known that the normality of K implies the completeness of the space Euo in the uy;-norm

[1, 2]. The intersection Ky, =K Ey, is a solid and normal cone in Ey, (it is also sharp in the sense of
M. G. Krein). The operator B= ANIM maps Kuo into itself and so [1] B* has in E"{lo a characteristic vector
L, of K"{lo_corresponding to a characteristic value equal to r(B): '

B'ly=r (B)l,. (8)
We are clearly interested only in the case in which r(A) > 0; in this case r(B) >0. We write
1
lo(z) = -5 lo(Bz) (z=E). (9)

This functional is posifive and thus continuous since we are dealing with a reproducing cone [10]. The
relation (9) can be considered to be equivalent to condition (3). The equality (1) implies that Bvy= a"v,.
Hence Lemma 1 yields the inequality '

r(B)y<a”, (10)
which in turn yields (2).
Theorems 1 and 2 are proved.

Theorem 1 can also be proved by first establishing the inequality ( 10) without having recourse to
the construction of the element (4); in our opinion, however, the derivation of (5) from (1) is of independent
interest. We note that the essential part of the reasoning in the proof of Theorem 2 was used by one of
the authors in an investigation of irresolvable linear operators [7].

3. As an example we consider the intéegral operator
- Az () =S K(t, s) z (s) ds, (11)
Q

where @ is a bounded closed set of a finite~dimensional space. We assume that the kernel of this operator
is finite. We also assume that A is completely continuous in some Lp space. Let t=Q

S K(t, 5) va(s) ds < awo(t), (12)
Q

for almost all t€Q, where vy(t) € Lp and v,(t) is almost everywhere positive. Then Theorem 1 implies that
rA)= o
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4, The natural question arises of whether (2) follows from (1) for arbitrary positive linear opei‘ators
A. Tt turns out that (2) does not follow from (1), and we give a commter-exa.mple (we stress that the cone K
is solid in this example).

Let E be the space of functions f(z) analytic in the disc |z| =1, continuous in f (z), and takmg real
values for real z. This space can be considered as a real Banach space with norm
ifl= max LF(2) |s (13)
| <1
Let K be the set of functions f(z) € E, taking nonneg;a.twe values for real z€[—1,—1/2]. We easily see that

the cone K is solid (it does not possess the property of normality). F. Bonsall [8] considers this space
from another point of view,

In E we define the linear operator
- ’ Af(z) = —(z +1/2) f (2).

(14)
The spectrum of this operator coincides with the dise |A .+ 1/2] =1 and so
r(A) = 3/2.
But
Avy < vy/2,

where vy(z) = 1. Hence (1) does not imply (2) for the operator (14).
This example supplies a negative answer to one of the questions posed in [6].

5. We now present another theorem concerning spectral radii; this theorem is similar to some as-
sertions proved in [9] for spaces with mini-hedral cones. :

Let E, and E, be Banach spaces with cones K; and K, respectively. Let K; be reproducing and let
K, be normal. Let T be a mapping of K, into K, satisfying the inequality

1Tz >c]z] (z =Ky, (15)
where ¢ is a constant, ¢ > 0 (We do not assume that T is linear). _
THEOREM 3. Let A and B be positive linear operators with domains in E; and E, respectively, Let
T4z < BTz (z=K). ' (18)
Then we bave - v
rd) < r(B). am
PROOF. Let f K, f=0. From (16) we have
TAM < B'Tf  (n=1,2,...), (18)

and, since K, is normal, we have
ITA|<MIB'TH)  (n=1,2,..), 19)

where M is a positive number. Moreover (15) yields
A< EIBTH (n=1, 2.0 (20)

Hence v
Tm | 4"/ < T | B (A4 77 1) = Tim [ B"]™
Using this result and the formula '
r(B) = lim| B"'"
-0
due to L M. Gel'fand, we obfain
Hm| "1 <r(B)  (fEK). (21)
Any element f € E, can be expressed in the form f=f—f, where f,, f3€K;. Clearly,
im | 4" (h—f2) [ < TR (| 47A1 + [ 47" < T {2"“max 4R (4 1.
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Hence (21) yields ) . ) .
Hm| A" <r(B) (f=Ey). (22)
N0 -

The inequality (22) implies that, for |A|> r(B), the equation

A=Az + f ‘ (23)
has the solution

= 2:;0 A A, (24)
the series on the right converging in norm.
Hence (17) holds and the theorem is proved. .
We note that in the proof of Theorem 3 we have used the following useful corollary to Gel'fand's
formula: 'the inequality
Tm{A%["<a (k)
implies that r(A) = a. naw

6. THEOREM 4. Let the operator T act from the Banach space E; into the Banach space E,, and let
T be partially ordered by the reproducing cone E, and satisfy the conditions

1) =Tx K, for every nonzero x in E;. -
2) T(tx) = | t| Tx.
Let the linear operator A with domain E; satisfy the following inequality analogues to {16):
TAz < BTz (z&£E),
where B is a poéitive linear operator acting in E,.

Then every characteristic value A of A satisfies the inequality [A|=(4A).

PROOF. Let A be a characteristic value of A corresponding to the characteristic vector x,:

A-Z[) = AZo (-’Eo (=3 E)_).
Then .
|M Txog=T (hx.) = T Ao < BTz,

We write yo=Tx,. Plainly =y, € Ky, vy = 0, and By, = |A] y,. We will prove that r(B) = IA]. "Assume
that this not so: r(B) < [A|. We write f for the difference By,— |A | y,. Clearly f = §. Two cases are
possible: 1) f=46, 2) f = 6. In the first case |A| is a characteristic value of B and so |A| =x(B); this
leads to a contradiction. Consider the second case: f = 6. Our assumption implies that the equation ||
X=DBx~ f has the single solution x=y, where

Yo = .__Z::=0B7‘f’
Since f € Ky, f= 0, and y; €K,, yg= 6. This contradicts the fact that y; € K,, and the theorem is proved.

The conditions of Theorem 4 are less restrictive than the conditions of Theorem 3. This is to be
expected, since the spectral radius can be larger than the supremum of the absolute values of all charac-
teristic values.
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