INVESTIGATION OF REGIONS OF UNBOUNDED GROWTH OF THE
PARTICLE CONCENTRATION IN DISPERSE FLOWS
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Some examples of the motion of a disperse mixture in which regions of
unbounded growth of the particle concentration arise are considered.
It is shown that integrable and nonintegrable singularities of the
concentration can exist. The distribution function for the dis-
tances between the particles found by Chernyshenko [9] is used to
determine the conditions for the absence of interaction of the
particles. It is shown that in the case of integrable singularities
of the concentration the model of noninteracting particles is valid
in a wide range of the determining parameters, since, despite the
infinite value of the concentration, the distance between the par-
ticles remains much greater than the particle diameter.

To simulate the motion of disperse mixtures of the gas—particle type, wide use is
made of the approximation of interpenetrating continua [1]. In many applications, the
low value of the volume concentration of the particles makes it possible to simulate
the particle medium by a continuum devoid of self-stresses, and expressions valid for
a single particle in an unbounded fluid are used to determine the interphase force and
energy interaction [2]. 1In the solution of a number of problems of flow of a disperse
mixture past bodies [3-5] and the investigation of swirling flows of dusty gas [6] in
the framework of the model of [2] it was found that there develop in the flow lines
or surfaces on the approach to which the number concentration of the particles in-
creases unboundedly. In a number of cases (as noted earlier in [7-8]) the presence
of singularities of the concentration is due to the intersection of particle tra-
jectories.

In view of the growth of the particle concentration near the singularities, it is
necessary tocconsider the limits of applicability of the model of noninteracting par-
ticles and its possible modification by the introduction of '"sheet" type discontinuities

[s}.

1. Motions with Integrable Singularities of

the Particle Concentration

We adopt the usual assumptions of the model of a dusty gas [2], namely, the medium
of the particles consists of identical spheres of radius o, the volume concentration of
the particles is negligibly small, the drag of a test particle satisfies Stokes’'s law,
and Brownian motion and interaction of the particles are absent. Allowance for the
influence of the particles on the motion of the carrier phase is not a fundamental com-
plication for the exposition that follows, and therefore for simplicity we shall assume
that the velocity field of the carrier phase is given.

The equations of steady motion of the particle medium in dimensionless form are [4]

- (V V)V =B(V-V,), divn,V.=0 (1.1)

Here, V is the velocity of the carrier phase, and the parameters of the particles
are identified by the subscript s. As the scales for making the various quantities
dimensionless we have taken the characteristic linear dimension L of the problem, the
charac?eristic velocity v6 of the carrier phase, the characteristic particle concentra-
tion ngq (here and in what follows, the prime identifies the dimensional scales of the
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guantities), B = 6n0uL/mv6, m is the mass of a particle, and u is the viscosity of the
carrier phase.

Suppose the solution of (1.1) for ng (X) has a singularity at the point Xg (ng > o0
as x +~x0). We denote by S(X,, r) the sphere of radius r with center at Xq@- Suppose
that in the limit r + 0 the relation

N(xo )= j' ne dx=kr*+o (1) (1.2)

8
holds.

In (1.2), all the variables are dimensionless, as in (1.1); k and y are positive
constants.

We shall say that the exponent y is the order of the singularity of the particle
concentration. This definition is valid for integrable singularities of the particle
concentration; for nonintegrable singularities, the integral in (1.2) does not exist.
Below, we give three examples of motions that are typical elements of three-dimensional
motions of dusty gas in which integrable singularities of the particle concentration
arise.

A. We consider one-dimensional unsteady motion of a particle medium. For sim-
plicity, we suppose that over the considered time scale the drag of the carrier phase
can be ignored, i.e., the particles are characterized by a large inertia. Suppose
that at t = 0 the particles occupy the region 0 <§x0 < 1, have constant concentration,
and the velocity distribution

U (%, 0)=1—z,’

All the variables are dimensionless. As scales we have chosen the length L of the
region occupied by the particles at the initial time, the maximal velocity vSe of the
particles at the initial time, the initial concentration nsO’ and the time scale L/VSO
In Lagrangian coordinates, the law of motion of the particle medium and the continuity
eguation are

g=xt (1—z,*) ¢, n=1/|1—2xt| {(1.3)

A diagram ¢f the motion: of the particles in the x, t plane is shown in Fig. 1.
At t = }, there is a "pile up" in the particle medium, and the velocity field is no
longer well defined. (We note that solutions of such type were already considered in
[7].) It follows from (1.3) that the concentration becomes infinite on the envelope
of the particle trajectories, the equation of which is

z=1/4t+t, t=1/,

In Eulerian coordinates in the region occupied by the particles we have for x < 1
and above the line t =

ny=1/(1—4axt+4t2)" (1.4)

In the remaining region occupied by the particles, ng = 2nsl. We assume that the
particles moving along the direction to the envelope of the trajectories and from it
belong to different noninteracting continua; this is true for only very rarefied sys-
tems. We determine the order of the singularity of the particle concentration on the
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envelope. From (1.4), we obtain
ne~1/thz, " z=A/4t+t—z

The function N(r) in (1.2) at the points of infinite concentration at small r takes

the form
N (r) ~8rr*+/5t", t='/,

We note that solutions for the particle concentration similar to those considered
above can be realized when damped shock waves pass through a dusty gas. For example,
Men'shov [10] has noted a tendency for "pile ups" to occur in a particle medium in the
case of a strong explosion in a dusty gas.

A similar type of concentration singularity develops on the envelope of the tra-
jectories of particles reflected from the surface of a blunt body in a dusty gas stream
[5, 9].

B. We congider the problem of the motion of particles in the neighborhood of a
stagnation point of an irrotational flow. Various studies have drawn attention to the
existence of singularities of the particle concentration at the stagnation point of the
flow of a gas suspension past a blunt body in the regime when there is no inertial
deposition of particles. Unbounded growth of the particle concentration at the
stagnation point was apparently established for the first time in [11]; a similar
result was obtained in [3, 5]. Below, we determine the order of the singularity in
the concentration of the solid phase in the neighborhood of a stagnation point. Sup-
pose that in the region y' <L, x' S L of the dimensional coordinates the velocity field

of the carrier phase has the form u' = §x', v' = —2J8y' (in the case of plane symmetry
j = 0, for axial symmetry j = 1). At y' = L we specify constant particle velocities
v;(x', L) = "Vb’ u;(x', L) = 0 and constant concentration n;o. To simplify the cal-

culations, we restrict ourselves to the case v6 = L6. As scales for making the co-
ordinates dimensionless we take L, for the velocity components vé, and for the con-~
centration néo. The equations of motion (1.1) of the particles in the form of rela-~
tions along the characteristics and the boundary conditions become in dimensionless
form

E+p(E—2) =0, z(0)=z,, £(0)=0, §+B(F+2%)=0, y(0)=1, j(0)=—1

Here, the coordinates x, y of the particles are functions of the dimensionless
time of motion t = t'vb/L of a particle along its trajectory. For B > 2J4, the par-
ticles do not reach the surface of the body in a finite time, and the solution has the
form

z=x,[b exp(at) +a exp (—bt) 1/ (a+b), y=[(d—1)exp(—ct)+(1—c)exp(—dt)}/(d—c)
1.5)

a=p (—1+V1+4/B) /2, b=p(1+V1+4/B)/2, c=p(1—TV1-2%4/p)/2, d=§(1+11—2"4/§)/2

The continuity equation of the particle medium can be conveniently writtemn down in
the Lagrangian coordinates x5, yq [12] (here, Xg, Yo are the initial coordinates of an
individualized point of the particle medium), from which for Yo = 1 we obtain a rela-
tion for determining the particle concentration along the trajectory:

= (1.6)
ot 0z, =0

Ty
The derivatives Jdy/3t and Bx/axo can be found from (1.5). It can be seen that the
particle concentration in the region of the flow depends only on y. We determine the
behavior of ng at small y. It follows from (1.5) that t »cas y >0, andy ~ (d — 1)
exp(—ct)/(d —~ ¢). From (1.6) we obtain in the limit

1 c(d=1) 1 b ¥
n(@)  d—c (a+b) exp[¢(2a—¢)]

Eliminating t, we obtain at small y the relation
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1 b 143 d_i gid.
i -5 P ez f e P,
1 (y) c(a-l—b ) ( d—c ) ¥ p=1-2a/c

Since B > 2j4, we obtain from (1.5) in the case of plane symmetry 0 S<p < 2 — V2
and in the case of axial symmetry O <p<3 — /6. Therefore, the singularity of the
particle concentration on the surface of the body is integrable, and with increasing
B the singularity becomes weaker, i.e., p decreases. To determine the order of the
singularity at points of the plane y = 0, we find the function N(r) introduced in (1.2):

1+3 . 2 afc
N(r)~kr, y=2+2a/c, & 2z ( “'H’) ( d c)

T Ya(@+2ale) \ b d—1

In the case of plane symmetry, we have the inequality 1 + V2 < Y < 3; in the case
of axial symmetry V6 < Y < 3.

C. We consider the singularity of the concentration that develops on the rotation
axis in the case of motion of particles in the velocity field of a viscous carrier
phase given by the Burgers solution [13], which in dimensionless form in a cylindrical
‘coordinate system has the form

u==—p, v=rg[1—exp(—p*/2)}1/p, w=2z a.m

Here, u, v, w are, respectively, the p, ¥, z components of the velocity of the
carrier phase, and T, is a constant proporticnal to the dimensionless circulation of
the velocity. As characteristic scales for making the quantities dimensionless we
have chosen for the coordinates L = (v/A)l/z, for the velocity components AL (here,

v is the kinematic viscosity, A = du'/dp' (p' = 0), and the prime denotes the dimen-
sional quantities). The Burgers solution can always be represented in the form (1.7)
by choosing the above scales to go over to the dimensionless form. In [6], Zheleva
and Stulov studied a self-similar solution of the particle equations of motion (1.1)
of the form (the scale of the velocity components is AL)

u=fs(p*)/p, vs=T\(p?)/p, wi=2g.(p*) - (1.8)

Substituting (1.8) in Egs. (1.1) written down in cylindrical coordinates for
parameter values I,(w)=I., p>TI.’/4 we can obtain [6] a solution in the neighborhood
of the z axis that in our notation is

uy=—ap, v,=bp, b=[(B/2) (4—B+((4—B)*+4L.?)*) ]*/2
’ (1.9)

a=p(1-To/2b)/2, £.(0)=B[~1+(1+8/p)*1/2

As the z axis is approached, the particle concentration increases unboundedly [6].
We determine the order of the singularity of the particle concentration on the z axis.
From the continuity equation for the particle medium in the cylindrical coordinates in
the limit p >~ O we obtain the equation for the leading term in the expansion of ns(p):

. d c
P‘é;)‘[ln(pn:)]=';——1a Cc=§, (0)

Hence
In(pn,)=(c/a—1)In p-+B (1.10)
Here, B is a constant whose value must be found by solving the problem in the
entire region of the motion.
From (1.10) in the limit p =+ 0 we obtain
n~Blp?, p=2—cla

For B > r§/4 we obtain from (1.9) a/d>0, i.e., the singularity of the concentration
on the rotation axis is integrable. In the case of negligibly small swirling of the
flow (', = 0), the relations (1.9) simplify appreciably and become

b=0, a=[1—(1—4/p)"] p/2

381



In this case, a linear solution of the form ug; = —ap exists for 8 > 4, Calculat-
ing the integral of ng over the sphere of radius r with center on the rotation axis of
the flow, we obtain

‘ Br*I'(1—p/2)
N(r)~ v =1+
. (r) (3—p) r (3/’_p/2) ™ 1 Itola

Here, ' is the gamma function.
When there is no rotation (T, = 0) we obtain for B > 4 an inequality for y:
¥3<y<3

With increasing B, the singularity becomes weaker, i.e., Y > 3. Motions of dusty
gases similar to the one considered above can occur in separator devices, cyclone
apparatuses, and also in large-scale vortex phenomena in the atmosphere (tornados, water
spouts).

2. Example of a Nonintegrable Singularity

of the Particle Concentration

The nature of the singularity is determined by the prehistory of the motion of the
particles up to the points of infinite concentration. Under some conditions, nonintegrable
singularities can develop.

We consider the distribution of the particle concentration near the wall in the
two-phase boundary layer on a flat plate [4]. Suppose that for x 2> 0, y 2 0 the velocity
field of the carrier phase in dimensionless form is u(x, y) =y, v=0. On x = 0, the
particles have constant concentration n, = 1 and velocity ug = 1, vg = 0. We choose the

-]
length scale L on the basis of the condition B = 1; then Eqs. (1.1) take the form

du, anu, @.1
Us—— =Yl [——= .
oz y dz

The solution of (2.1) is
g=1—u,—y(ln|y—u,|—ln|y—1}]), n.=1/u,

For x > 1 when y - O we have y lnly —-usl + —c, where ¢ is a positive constant.

Therefore, for x > 1, y - 0 we have u, -y, ng ~ 1/y, i.e., the singularity of the con-

centration on the surface of the plate is not integrable.

3. Calculation of the Distance Between the

Particles at Points of Infinite Concentration

The unbounded growth of the particle concentration in the examples considered above
indicates a decreasing distance between the particles near the singularities. In the case
of nonintegrable singularities, any finite volume containing points of infinite concentra-
tion contain infinitely many particles, and this means that there is an unlimited de-
crease in the distance between them. The assumption that there is no interaction be-
tween the particles, the basis of the model (1.1), cannot be satisfied in this case. The
model must be augmented by taking into account the interaction of the particles or
introducing a discontinuity surface of "sheet" type.

In the case of integrable singularities of the concentration, the distance between
the particles does not decrease to zero. The coordinates of the particles are not known
exactly, the distance between the particles is a random variable, and to determine it
the methods of probability theory must be used.

Suppose that a disperse mixture moves in the volume V. Suppose that at the time
tp we obtain from the continuity equation of the particle medium the concentration dis-
tribution né(x). Here and in what follows, the prime identifies the dimensional
quantities. Following [9], we determine the distance between the particles as follows.
Suppose a test particle arrives at the point X;. We take the random variable 1', which
is equal to the distance from the test particle to the particle nearest to it, the
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distance between the particles at the point xo. We construct the distribution function
F;(r') of the random variable 1'. We denote the P{A]} the probability of the event A. By
definition [14]

Fi(r)=P{l <r}=1-P{I'>1"}

Here, P{1' > r'} is the probability that in the sphere S(Xy, r') there is no other
particle except the test particle. In introducing the continuous medium of noninteract-
ing particles, we assumed the particles to be independent, i.e., (the coordinates of the
particles to be independent random variables). As a result, for the random variable n,
the number of particles (except the test ome) in S(Xy, r'), the binomial distribution
holds [14], the Poisson approximation of which for a large total number of particles
in V has the form

i
Pn=kj=——exp(-N), k=01,2..., N(r’)=j. ne dx’
: 8

Hence, for k = 0 we obtain

P{lr>rr}=p{n=0}=exp[—N(”) ]

The distribution function of the distance between the particles takes the form

Fy(r')=1—exp[~N ()] (3.1)

it is convenient to use the distribution function (3.1) to determine the limits
of applicability of the model of noninteracting particles at the points of integrablie
singularities of the concentration. 1If it is borne in mind that the particles interact
only in collisions, then the condition for absence of interaction at the point X is

P{l' <2¢}=1—exp[~N (20) ] <1

This is equivalent to the condition
N(20) <1 (3.2)

Introducing dimensionless variables and using the condition o/L « 1, we write (3.2)

in the form
kny' L3 (26/L)1< 4 (3.3)

Here, néo is the characteristic value of the number concentration of the particles
far from the points of singularity of the concentration, and k and vy are determined in
(1.2). It is convenient to introduce the characteristic value of the volume concentra-
tion of the particles: o g = néo4ﬂ03/3; then (3.3) becomes

Couo(L/0)*— 1«4, C=213k/4in (3.4)

We show that the condition (3.4) is satisfied in the examples considered in Sec. 1
of integrable singularities of the concentration in a wide range of the determining param-
eters. In example A, for all t 2 % the quantity k is bounded: k < 8ﬂ/§75. In example B,
for j = 0 and 1, respectively, we certainly have the inequalities

E<2V2n/(1+72), k<n/3

Therefore, in these examples the quantity C in (3.4) can be assumed to be a quantity
of order unity in almost the entire range t = % (A), B > 2J4 (B). Typical for gas
suspensions is the case 0gg 10'4, and therefore in examples A and B for L/o0 < 104
(for example, L = 100 cm, © 10-2 cm) the expression on the left-hand of (3.4) is
1072, 1In example C for T 0 there may be a stronger type of singularity (/§-< v <
1+ VE}, and therefore the model of noninteracting particles remains valid in a narrower
range of the parameters.

I

It is of interest to express the mean value M(!') and the dispersion D(I') of the
distance between the particles at the points of the singularities of the concentration
in terms of the characteristics k and y of the singularity. In accordance with the
definition of [14],
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M()= .E r ig—;—, dr'a.! exp[—N(r’) lar, D(l')= ‘{r"% dr’—M’(l’) =2 .5 ¥ exp[—N(r') 1dr—M2(l")

In this definition it is assumed that with increasing r' the number of particles

in the sphere S(xo, r') increases so rapidly that the integrals in (3.5) exist. If in
(3.5) we introduce the dimensionless variables r=r'/L, n,=n,'/n,’, then the arguments of

the exponentials in (3.5) become [—-N(r)/e], where e=1/n,'L’ is a parameter that is small

for

most problems associated with the motion of gas suspensions. If for small r we

have N(r) ~ krY, then in the limit ¢ > O the leading terms of the integrals in (3.5)

can be found by Laplace’s method [15] and we can obtain the expressions (to small terms

of higher order in ¢)

venient to express o/M(l') and YD(I')/M(l') in terms of ., 0/L, ¥, k.

of the particle concentration becomes of the order of the interaction range of the par-

M@)_ram ., DE) _(M(l'))z nren
L e T T\ r*(1/y) _]

Here, I' is the gamma function, and k and y are determined in (1.2). It is con-

een

T lae(3) ] e )"
M@ TAM) Lan '\ oM@ LT(n) ]

From (3.5), we obtain

(3.5)

(3.6)

In the region of parameter values for which M(I1') at the points of the singularities

ticles, it is necessary to modify the model of the particle medium by taking into
account the interactions of the particles or introducing a discontinuity surface of

"sheet" type [8].

If the unbounded growth of the particle concentrations is due to the
intersection of their trajectories and the development of nonuniqueness of the velocity

field (example A), the question of the collisions of particles moving along intersecting
trajectories must be considered separately.

Note also that a condition of the type (3.4) in the regions of unbounded growth

of the concentration is at least a sufficient condition of stability of the formations
of enhanced particle concentration, since with decreasing 1' collisions and interac-
tions of the particles can lead to the development of unsteady phenomena in the flow
region.

I thank V. P. Stulov and S. I. Chernyshenko for helpful discussions.
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INVESTIGATION OF TURBULENT VAPOB-~AIR JETS IN. THE PRESENCE
OF CONDENSATION AND THE INJECTION OF FOREIGN PARTICLES

A, B. Vatazhin, R. S. Valeev, V. A. Likhter, UDC 532.529:538.4
V. I. Shul'gin, and V. I. Yagodkin

A study is made of flow in turbulent jets when there is condensation of
the water vapor contained in them. A necessary condition for condensa-
tion in vapor—air jets is formulated. Relations are obtained for the
regime of equilibrium condensation. An experimental investigation was
made of the local characteristics of an isobaric turbulent vapor jet
exhausting into air at rest when condensation devélops in the jet and
foreign condensation nuclei (smoke particles) and charged particles
{ions produced in a corona discharge) are introduced into the flow.
Measurements were made of the local characteristics of the condensed
disperse phase — the Sauter diameter dgs of the drops and their volume
concentration cg; — using the optical method of an integrating diaphragm.
It is shown that dgp and cg increase downstream in the main section of
the jet. Specific features of temperature measurements using an end-
type microthermocouple were established. Quantitative data were
obtained about the influence on the condensation of the thermal condi-
tions and the presence of the foreign particles. The conditions under
which there is an intemnsification of the condensation in vapor--air

jets in the presence of ions were determined.

1. Basic Equations. Necessary Condition of Condensation

Processes of condensation of water vapor contained in an adiabatically expanding
medium have been investigated for many decades, and the results obtained in this direc-
tion have been presented systematically in many monographs (see, for example, [1-3}).
However, the mechanism of occurrence of regions of vapor supersaturation in turbulent
jet flows has certain specific features, and the questions of condensation in vapor-—
air jets have by no means been fully studied. Among the earlier publications on vapor—
air jets we mention the monograph [3], which gives data on the distributions of the
temperature and the velocity in jets and notes the influence of the pulsatory nature
of the motion on the development of the condensation. The paper [4] determined the
flow regions in vapor—air jets in which condensation can occur, estimated the possible
amount of the condensate, and gave the distributions of the temperature and the particle
diameters in a number of sections.

The present paper is devoted to analysis of the general features of flows in vapor—
air jets, the experimental determination of the characteristics of the condensed disperse
phase, and elucidation of the possibilities of controlling condensation by introducing
foreign particles into the flow.

We consider a two-phase medium consisting of a gaseous phase (air and water vapor)
and a condensed disperse phase (water droplets). We shall identify the parameters
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