MEAN-VALUE THEOREM FOR THE MODULUS
OF MULTIPLE TRIGONOMETRIC SUMS

G. I. Arkhipov UDC 511

A two-dimensional analog of the Vinogradov mean-value theorem for the modulus of trigo-
nometric sums is proven.

The Vinogradov mean-value theorem is fundamental to this well-known method of trigonometric sums
(see [1, 2, 4, 6, 7]). Similarly, our theorem is fundamental to the method of multiple trigonometric sums,
which is a generalization of Vinogradov's method. For simplicity, we consider the case of double sums in
which the summation variables are equivalent. The case of sums of higher multiplicity differs only in tech-
nical details. The theorem to be proven can be simplified and generalized somewhat by making the proof
more complicated. The mean-value theorem will be proven by the p-adic method, using the procedure de-
veloped by Karatsuba (see [3, 5, 6]). The theorem yields estimates of multiple trigonometric Weyl sums
and from them, using well-known procedures (see [1, 2]), we obtain theorems for the distribution of the
fractions of a polynomial of several variables and some other results.

1. Formulation of the Theorem, Notation, and Auxiliary Assertions. We consider the set of pairs
of integers (m, t) with the condition 0 <t <m =< n, where n is natural, n > 4. In all there will be ((n+ 1) -
(n+ 2)/2)—1 such pairs, We number thesepairs 0, 1, .. ., ((n+ 1) (n+2)/2)—1 setting =7 (m, t)= (m(m+
1)/2)+ t. Obviously, if / is the number of the pair (m, t), then m is the largest integer such that m(m+ 1)/2
=7, and t=1 ~(m (m+ 1)/2),

THEOREM. Let K be natural and 7 be a nonnegative integer, K > 2rn® - n?t; N =n (n + 3)/2; oy, . . .
«y are real numbers; A is the (N+ 1)-dimensional vector, A = (ag «.., aNh

fa@y =2 _ 2 sy
We set

Sp(4) = Zle 211 exp (2tif 4 (z, ¥));
v=1/n; A, 1) = (1 —~)".

The symbol © denotes the (N + 1)-dimensional unit cube. Then for P > (2n)/2( " we have the estimate

ity g’y P 1)(42),3) (1= A7)

Jotn K, P)=\_[Sp(4)[Fda <K
Let Q > 0. We set

So(d) = Zy\,\\;Q 21<y<Q exp (2nif 4 (z, ¥))-

Furthermore, let A = (Ag, + .+, AN) be the (N + 1)-dimensional integral vector, and let (A -, A) be the scalar

product of the vectors A and A.
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We set

J(n, K, Q,0) = \_|Sq(4)* exp(—27i(4 -,4))d4,
Jo(n, K, Q) =J (n, K, Q,0).

We consider the system of equations

2K

Z,»;:l (_ 1)k ‘T?’;l—tyic = }‘flv l= O, '1, ey N. (1)

LEMMA 1. Let A be an arbitrary finite set of integral collections | (z, v), . . ., (z,K, v,K) |, and let
@ (A) be the number of solutions of system (1) belonging to the set A. Then

a) 2; exp (QM‘ZZ: (— 1) f4 (2, yk)) = ZA @ (A) exp (2mi (4 -,A)),

where Ja denotes summation over the collections belonging to A and X, denotes summation over all the

integral vectors A;by virtue of the finiteness of A the right-hand side a) contains a finite number of nonzero
terms;

2K
b) ¢(M)= KQ 2l exp (2ni Dy FA (oY) — 210 (4-,A)) dA;

¢) J(n, K, Q, A) equals the number of solutions of (1) under the condition that 1 < xy, Vk=Q k=1,2,
o eey 2K

d) | S (A)PE = D T (n. K, Q. \)exp (23 (4-,A).

The proof is similar to the proof of Lemma 1 in [6].

Moreover, we have trivially

[SeA) <@ T(n K.Q.A) < o (n, K, Q) <QFTy (n, K — Ky, Q) < QK

where 0 < K, < K; I'(n, K, Q. A) <I (n. K. Qp, A)if Q< Qs [ (. K, Q; A) = I (n, K, [Q], A),where [Q] is
the integer part of Q.

Let Ky be an arbitrary natural number. Say that the matrix H = ||hy k| having an N+ 1 row and a K,
column, corresponds to the collection of pairs of integers of unknowns | zk, vk|, where k=1, 2, ..., K, if
hz,k = zkm”tvi, where the number of the rowis { = 0, 1, ..., N and the number of the columnis k=1, 2, ...,
K;. The matrix corresponding to ||xp, ykll, k=1, 2, ..., 2K, the collection of unknowns in (1), is repre-
sented by D and its elements by d; k- The symbol E denotes the 2k-dimensional vector E = | (—1)k” k=1,
2, ..., 2K, Then system (1) can be written in the form of the matrix equality D*E = A. It then follows in
particular that Jy(n, K, Q) expresses the number of solutions of the system D-E = 0 under the condition that
lsxk k=@, k=1, ..., 2K.

D (a, b) =[d; & (a, b) | denotes the matrix corresponding to the collection ||xy + a, y+b|, k=1, 2,
.., K« Then for K; = 2K we have D(0, 0) = D.

LEMMA 2. Dla+ ay, b+ by} = Gla, b) - Dlay, by), where Gla, b) is a square matrix of order N+ 1, and
G (a, b) =] gn 4 (a, b) |, where the number of the row { and the number of the column k take the values 0, 1,

" —

t
«voy N if L=k < N, then g; (e, b) = 0 and if 0 <k =/, then g, x(a,b) =< t)(tl>amxbi!, where 0 < m; < m—t,

my
0 =ty =< t, and the numbers m,, t; are determined uniquely with respect to k from the relation (see the be-
ginning of Sec. 1): k = ((m~m;—t;) (m—m;~t;+ 1)/2) + t—t;.

Prog‘ f. We multiply the matrices G(a, b) and D(a4, by) according to the usual rules.

COROLLARIES of LEMMA 2. a) The matrices D(a, b) and D(0, 0) have the same rank in Zp— the field
of residues of the prime modulus p.
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Proof. According to Lemma 2, Dfa, b) = G(a, b) - D(0, 0), D(0, 0) = G{—a, —b)Dfa, b); this is a confirma
tion of a) since the rank of the matrix product is not higher than the rank of any of the cofactors.

b) From the equality D{a, b) - E = 0 it follows that D(0, 0) - E = 0 and vice versa.
Proof. It is sufficient to mulfiply the matrix equalities of a) by the vector E on the right.

2. First Fundamental Lemma (an analog of Linnik's theorem —see [4]). T(W) denotes the number of
solutions of the system of congruences in the ring of residues in mod p? (p is a prime):

Z,H( 1y* 27 vh =%, (mod p™),

where )y are fixed integers {=0,1,..., N, zg, v are unknowns, k=1, 2, ..., 2n’, and the rows of the
matrix B = | by, 1} by =2 Vi =01, ..., N,k =1,2, ..., 2n% i.e., B corresponds to the collection
| zks vic Il are linearly independent in Zy. Then we have the

FIRST FUNDAMENTAL LEMMA.

T (W) < nznlmen {n+1) (n+2)/8

Proof. Without loss of generality we can assume that 0 < zg, vk < PP—1 for all k, and also that p >n
(otherwise, the rank of B is always smaller than N+ 1; therefore T(W) = 0}). Furthermore, let

e

Zg = 2,‘____,1 Zp, o aH Uy = 2,___1 Yry 2L
and 0 = Xk ys Yk,r = P1 forallkandr. Fors=1,2, ..., n we set

5 S

— " — r—1
2 s = Z,.=1 Ly rpr 1’ Upy s = Zr_—zl Ye, r0 -

We consider the system

2an2
(W) Dy (— 1) 280k, =y (mod p“or9),

where j =1, 2, ..., N, u = m, if 1 < l<s(s+3)/2ie.,m<s,ifss+3)/2<lie m>s,thenul,s=s;
moreover, the rows of the matrix Bg, which corresponds to the collection | zk ,SVk, slhhk=1,2, .. . 2n%,
are linearly independent in Zy. Let T(Wg) be the number of solutions of the system Ws Note that the sys-
tems Wy and W are equivalent (we assume that A, = 0); therefore T(W) = T(W). Furthermore, from the
definitions of zk,s, Vg, We have

-t t . ! . —f=1 t ~t s
";an SlLk s = Z}?, st—lvk, s~1 + P ! ((l’ﬂ - t) ZK: S—lluk. 5-1Tky s —1‘ tz?: 1Yk, s) (mOdp )'
Since uy g =8, the system Wg can be rewritten (/ = 1, ..., N the rank of Bg = N+ 1)

- 2t -t
}Jk 1 - 1)k 7};1 111 &, s~1 = P°” ! Zkzl ("‘ 1)k (( - t) Zl:n—s—‘lllik =1%p, s tzr;’:i-sl-LU;z—,ls-Lyk, s+ }‘l (mOd Pnl' s)- (1)
Obviously, u,s = = min (s—1, u, s) and for all s the matrices Bg have the same rank. Therefore, (1) implies
that zk, g1, Vk,s-1 Satisfy the system Wg—ye

We take some solution of Wg.q. Then it follows from (1) that for suitable p; we have the following re-
lations for the unknowns:

M~ M=

Zk_ (— 1) (on—t) 2k 5 S0k, 1Tty s+ L2 aeaVk, 51Uk, o) = P (0d D). @)

The relations (2} form a system of N+ 1—(s(s + 1)/2) linear congruences with respect to the unknowns xi,g,
Vk,s0 K=1, .00, 2n?, Let Tg be the number of solutions of this system. Then T(Wg) = Tg* T(Wg_y). We
estimate Tg. We consider those congruences (2) for which t = 0. The same applies to congruences with
subscripts I equal to s(s+1)/2, (s+1){(s+2)/2, . . ., n{n+1)/2, They form a system of n—s—1 linear con-
gruences with respect to the unknowns Xk, st
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an? .
S (— 12 mzi iy, =y (mod p). ()

We compare the row with number [/ = m(m + 1)/2 and the column with number k of the matrix of the coeffi~
cients of this system Hj to the row with number /; = m (m—1)/2 and the column with number k in the matrix
Bg_- We see that the indicated rows and columns of these matrices differ in the nonzero coefficients in
Zp (since p > n}. Therefore, the rows of H; are linearly independent in Zy and it then follows that the num-
ber of solutions of (3) does not exceed p¥v-1+L.

We now take some solution of (3). Then (2) transforms into a system of N+ 1—(s(s+ 1)/2)—n+s+1
linear congruences with respect to the unknowns yj g. As above, the linear independence of the rows of the
matrix of the coefficients of this system H, is established (in this case the row of H, with number /= (m(m +
1)/2) + t must be compared to the row of Bg_; with number {; = m(m—1)/2) + t—1). We then find that the num-
ber of solutions of the latter system does not exceed pr=-Y-is@moresi, Consequently, T, < pt¥-N-ixt (12),
from which T(W) = Tp* Tpey«.. Ty T(W)),

T (VV) < pmz(nq)—(u—n (nr1)(n+2)3 T (Wl) (4)
We estimate T(W,). It is clear that
5 p—1 Pfl R
TW) <P 2y Dayal Sp (A

where
.p p »
Sp(el) =2 2, exp (27tifa (z,)),
A=, ai/p,as/p,...,ax/p)-
From which
TW) <P [Sp ) 7 4 p™ 2, 1 Sp(4) P,

where ZA means that the summation is over all A for which 0 {a,; {p— 1, I=1,...,N and A= 0. Fur-
thermore, | Sp (0) |*" = p**. We estimate Sp(A) for A= 0. We find fi(x) for ¢=0, ..., n

P 4@y = Doy fo@) s

the degree of the polynomial fi(x) is not higher than n—t. Let m be the maximum value of t for which f(x)
is not congruent to zero in mod p identically. Using Weil's estimate (see [8],

|30 exp @nig (0/p)| <@ — D Vb,

where g(k) is a polynomial of degree d with integer coefficients and is not congruent to zero in mod p iden-
tically, we obtain

3 R
[Sp (A< Z’A\'Jmu-)so (],)\juzo exp (2nif 4 (x, y))l 4

» - _
S| St XD Qa7 ()| 0= m) e p o — 1) > <

Consequently, 7 (W)« n¥*pt“-Y, which instead of (4) gives a confirmation of the lemma.

3. Second Fundamental Lemma (see [6]and [7]). Letpbeprime, (2/3)Q" =p=QY,p =n%,Q,= Q/p) +1.
Then the following is true: :

SECOND FUNDAMENTAL LEMMA.

Jo (n7 K, Q)< K-Znﬂ‘zgnﬂ—l. 041\’—.1:L?H)13—-1z(n+1) (n+2)/3 Jo (n, K, “12’ Qo)-
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Proof. Let @ =Q if Q is an integer divisible by p, and let Q; = p ((Q/p] + 1) otherwise. Then Jy(n, K,
Q) = Jy(n, K, Qy). We estimate Jy(n, K, Q).

Let Dy =|dpp]y 1=0,1,.. N k=143.. 20— 1D,=|d;;|,!=0,1,...,N;k=2,4, ..., 2K,
and, as before, d; i = xf{n‘ yf{. Every solution of the system

D -E=0, 1<ap, 4o <Qp k=1,..., 2K,

generates its matrices Dy and D,. If for some solution the rows of each of the matrices are linearly inde-
pendent in Zp then this solution refers to the first class; all other solutions refer to the second class. Let
J4 be the number of solutions of the first class and J, be the number of solutions of the second. Then J;(n,
K, Q) = Jy+ Jy. We estimate J,. Henceforth, we assume that xi, yk, g, Ty 2k Vps Qs T satisfy the follow-
ing conditions (k =1, 2, ..., 2K): Xg = Qg+ PZg, Yk = Tk + PVgs L < Qe Tps @ T < D.

Furthermore, let

Qa1 Q:—1 . .
Q= Qu/p, S(g:r) = X D, exp(2nifa (g + pz, 7 + pv)).

Let J3 be the number of such solutions of system II for which the rows of D, are linearly independent.
Linear independence means the existence in Zp of the (N + 1)-dimensional vector C = |l¢yfl, {=0, ..., N

such that C+ D, =0 in Zyp. Let Fg(z,y) = Ejv_oc,zwfy’. The equality C - D, = 0 means that

F. (21 yp) = 0 (mod p) for & = 2, 4,. . ., 2K. (5)

We take some vector C= 0 in Zp. Let J;(C) be the number of solutions which satisfy the relations (5) for a
given C. Then

Lo = 3, 3, a4,
where
VK
Zl - (Z-r:y. 1Sy, y<p, Fo (v, y):O(p)S (=, y)) )
D - R— K
2’2 = (szl ZU:IS {z, y)) .

Since C= 0 in Zp the number of solutions of the congruence Fq(x, y) = 0(p) does not exceed np. Therefore,
using the Htlder inequality, we obtain

B D P
L <nitpia F S 18 (g, R da,
Using Corollary (b) of Lemma 2, we find that
\ IS (@r) pEdd =T, (n, K, Q)
from which, summing over all C#= 0 in Zy, we obtain
Jy S nI-1pRasicee Q;"'.JO (n, K — n%, Qy),
and since analysis of the case of the linear dependence of the rows of D; is exactly the same, then J, = 2J;
J2 < nKpN+3K+2 Q.m’ - T (n, K — n2’ Qz) (6)
We estimate J;. The collection | g, bi|, k=1, 2, ..., K, Ky >N is called proper if the rows of the
matrix corresponding to the collection | g, byll, k=1, 2, ..., N+ 1 are linearly independent in Zp. The
collection ||y, bills k=1, 2, ..., 2K; is called singular if each of the two collections | ay, bi|l, k=1, 3, 5,

evsy 2K4—1 and | ag, bkl|s k=2, 4, ..., 2K are proper. The solution of a system of equations (congruences)
which is a singular collection will also be called singular. Obviously
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< (CRMR T
where

2K—-2n?
’

Fo=S 808,44, 8 =3 2 S@n

na
Sy = zl@zky <P Hk———l IS (gera) [

k=1, 2,...,n?

and the symbol ' means that averaging is only over proper collections. Using Hilder's inequality, we ob-
tain J, < prfE-i2. g, where

» P .
Jo=\_ 82, 2_,18 @ r)peerda.

Using Corollary (b) of Lemma 2, we find that J; is the number of singular solutions of the system (=0, 1,
.oy N):

\2nl k t 2K k m-i_ ¢t
Zk=1(— Y (@e— @ (e — 1) + 2k=2n2+1 (— 1) prze v =0.
From which we conclude that

Joe = I (A)J (n, K — »% Q,, A),

where = p denotes averaging over all the integral (N + 1)-dimensional vectors, and J;{A) is the number of
singular solutions of the system of equations (for fixed A and the unknowns q, r, X}, y|):

21
D (=1 @ — @ (e —1) = hyp™,  1=0,1,...,N.
Since J(n, K—n?, Q,, A) = Jo(n, K—n?, Q,), then

J(i < JO (nv K — nzv Q2)'ZA\'J7(A)'
But the value of J;(A) equals the number of singular solutions of the system of congruences ({ =0, 1, ..., N):

n?

Zkzl (— D (zp — )™t (e — 1)t = 0 (mod p™). . (7)

We take arbitrary q, r.” Each of the other unknowns in (7) takes any preassigned value in mod p™ not more
than (Qi/pn) + 1 times. For the singular solution, the rows of B, which was considered in the first funda-
mental lemma, are linearly independent in Zy, since by virtue of Corollary (a) of Lemma 2, the matrices
corresponding to the collections || %y, yi|l and [|xg—q, y—rll, k=1, 2, ..., 2n? have the same rank in Zp-
Therefore, we use the first fundamental lemma to obtain '

T < PP ((Qu/p") + V- T (W) Jo (1, K — 12, Qo)

and T (W) n¥ptv-n{n-0 023 Recalling the conditions applied to n and p and (6), we then prove the second
fundamental lemma by means of trivial transformations.

4. Proof of the Theorem. When 7 = 0, the theorem is trivial. Let the theorem be valid for = m
and let its conditions be satisfied for 7= m + 1. Since in this case

P > (zn)‘znjA(n, mM+1) > (277,)2", To v > (2n)2 > 64’

therefore there exists a prime p such that 2/3) P¥ <p = P¥, p =n? and kJ; (n, K, P) can be applied to the
second fundamental lemma. Consequently,

To(n, K, P) < KW pri-sisam-ntimins J (n, K —n?, Py),

where Py = [P/p] + 1. Furthermore, P, > P > (@n)nanm | — n? > 2n% . mn?. Therefore the theorem is
applieable to Jy(n, K—n?, Py and 7= m. Then
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J() (n’ K, P) < KZm(m+1)23n!m23111-1 (1 -+ (p/P))“{ p4K‘4n’*(n(”+1)(n+2),fa)+bp4n!-b,

where b = (n(n+ 1) (n+ 2)/3) A(n, m),

JO (n’ K, P) < K2n2(1n+1).23nn(m+l).PiK—(n(nH)(M-z),a) {1-A(n, m+1), (8)

since (1+ (B/P))*8 < 2 or otherwise the theorem is trivial. Inequality (8) implies that the theorem is true
for 7= m+ 1 and therefore it is true for all natural 7. The proof is concluded.

The author expresses his gratitude fo Prof. A. A. Karatsuba for guidance and Prof. 8. B. Stechkin for

careful consideration of the paper and useful advice.
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