EXTENSIONS OF SYMMETRIC OPERATORS
AND SYMMETRIC BINARY RELATIONS

A. N. Kochubei UDC 513.88

Various classes of extensions of symmetric operators with equal (finite or infinite) defect
numbers are deseribed in terms of abstract boundary conditions. The dual problem of the
description of extensions of a symmetric binary relation is also considered.

1. Let A be a closed symmetric operator with dense domain of definition in a separable Hilbert space
H and with' equal defect numbers (n, n) (n = «). The problem of the description of all self-adjoint extensions
of A was sblved in the classical works of J. von Neumann. There is, however, interest in the question of
the description of extensions of A in terms which, in the case of differential operators, immediately reduce
to boundarj.r conditions. A series of results in this direction (in the case n< «) were obtained in [1-3].*

In thi“.s paper we propose a method of description of various classes of extensions of A (among them
self-adjoint, dissipative, accumulative), in terms of "abstract boundary conditions," which is applicable for
arbitrary R

2. Let us cite some results about binary relations in a Hilbert space H.

Let My be an arbitrary closed set in H @ H. One says that an ordered pair of elements x, x'€ H be-
longs to a binary relation g = 6 and one writes x0x', if {X, x'} € My. A binary relation 6, is called an exten-
sion of #(g; > #) if xg;x' follows from xgx'.

Definition 1. A binary relation g is called dissipative (accumulative, symmetric) if 1) the set My is
linear and 2) if xgx', then Im (x', x) 20 (Im(x', x) =0, Im (x', x) = 0). A dissipative (accumulative symmet-
ric) relatign is called maximal dissipative (accumulative, symmetric) if it does not have a proper dissipa-
tive (accumulative, symmetric) extension. A symmetric relation is called Hermitian if it is simultaneously
maximal dissipative and maximal accumulative.

The following theorem was proved in [4-5] (the assertion on Hermitian relations was proved in [6]).

TTHEU )REM 1, For any contraction K in H (i.e., {[K|l = 1), the binary relations defined by the equa-
tions

(K—E) @ +i(K + Ex =0, (1)
(K — E)x’ —i(K L+ Ez =0, (2)

are maximal dissipative and maximal accumulative, respectively. Conversely, each maximal dissipative
(accumulative) binary relation is representable in the form (1) [(2)], where the contraction K is uniquely
defined by the relation. A maximal dissipative (accumulative) relation is maximal symmetric precisely
when the operator K in (1) [(2)] is isometric. The general form of Hermitian operators is given by (1) or
(2), where K is a unitary operator in H. The general form of any (in general, not maximal) dissipative
(accumulative) binary relation in H is, respectively, given by the formulas

*The construction of A, V, Shtraus [3]is also suitable for an operator with a nondense domain of definition,

T E is the identity operator.
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K@ +ix)y=2 —iz, 2 +izc=D(K), {3)
K@ —ix) =2 +ir, £ —ire D (K), (4)

where K is a linear operator for which ||Kf{l <] 7] for all f€ D(K) [D(K) is the domain of definition of K],
A dissipative (accumulative) binary relation is symmetric if and only if the operator K in (3) [4)]is iso-
metric.

3. Let us introduce the concept of a space of boundary values of A.

Definition 2. The triple (#, I, T,), where % is a separable Hilbert space and T'; and T', are linear
transformations of D(A*) into #, is called a space of boundary values of A if

1) for any y, z€ D(A*)

A*y, u — (y, A*2)u = (I1y, Lo2)e — (Doys I'12)ies
2) for any Y,, Y, = % there exists a vector y€ D(A*) such that Tyy =y, Tyy = Yy
3) if y€ D(A), then Ty = T'yy = 0.

For various classes of differential operators, spaces of boundary values were constructed by many
authors (cf., for example, {6-8]).

Let (77, TI'\, T,) be an arbitrarily selected space of boundary values of A. Recall that a linear opera-
tor B in H is called dissipative (accumulative) if for all f€D(B) Im (Bf, fly =0 (Im (Bf, f)y=0). A dissi-
pative (accumulative) operator is called maximal dissipative (accumulative) if it does not have a proper
dissipative (accumulative) extension.

THEOREM 2. For any contraction K in # the restriction of A* to the set of vectors y € D(A*) satis-
fying the condition

(K —E)Ty + i (K +E)y =0 (5)

or
(K—~E) Ty —i(K +ET,y =0, )

is, respectively, a maximal dissipative (accumulative) extension of A. Conversely, each'maximal dissipa-
tive (accumulative) extension of A is the restriction of A* to the set of y€ D(A*) satisfying (5) [(6)], where
the contraction K is uniquely defined by the extension. Maximal symmetric extensions of A in H are char-
acterized by conditions (5) [(6)], in which K is an isometric operator. These conditions define self-adjoint
extensions if K is unitary. The general form of dissipative (accumulative) extensions of A is given by the

conditions

K (I +Ty) = Ty — iLy. Ty + il = D (K), )

KUy — hy) =Dy + iy, Dy ~ iy = D (K), @)

respectively, where K is a linear operator with [Kf|| =|if||, F€ D(K), and the genefal form of symmetric
extensions by formulas (7) and (8), where K is an isometric operator.

We shall carry out the proof for maximal dissipative extensions (the remaining cases are considered
in an analogous manner).

Let A be a maximal dissipative extension of A. Then AcA* A8l. Let any ={{Ty, Ty} A E H |y =
D (4} Thenze is a dissipative binary relation in 7. If 6= 6 and § is a dissipative binary relatmn, then
the operator A, defined as the restriction of A* to D ( ) (y=DA® | {Tw, Tw}< My}, is a dissipative
extension of A, i.e., A = Xand § = 6. Consequently, ¢ is a maximal dissipative relation, and the required
result follows from Theorem 1.

Let A be the restriction of A* to the set D(A) of vectors y € D(A*) satisfying (5). One immediately
verifies that A is a dissipative extension of A. Let A be a d1ss1pat1ve extension of A. Let us denote M, =
{Tw, Toylly e D (A)}, My = = {{Tyw, Ty} | v =3 D (A)} Obviously, § > §. But by Theorem 1, § is a maximal
dissipative relation, i.e., 9 = g, from which A A. The theorem is proved.
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Similar results are contained in [4-6] for operators for a special form {(differential operators in a
space of vector functions).

Let us note one particular case of the "boundary condition" (5):
Ty = Bly, ; 9)

where B is a bounded dissipative operator in % . In the case n< = N. A. Talyush [10] considered the exten-
sion KB corresponding to (9). In [10] it was assumed that for A there exists a space of boundary values
(7.7, T,) such that dim % = »n. Below it will be shown that this is always valid. If dim % - 2 << o, then
a 2n’-dimensional Lebesgue measure y is induced in a natural way in the set of linear operators in 7.

It was proved in [10] that for almost all B in (9) (with respect to the measure u) the operator Ag is of diag-
onal type (cf. [10]). Moreover, if A is a completely nonself-adjoint operator with singular spectrum, then
for almost all B the operator KB has a complete system of eigenvectors. In reality these results are valid
for extensions of the general form (5) for almost all K. For the proof one must note that for almost all K
the operator (K—E) is invertible (cf. [11]). Further, the inverse image of a set of measure zero under the
transformation

Ko —i(K—=E)" (K4+bk)=—illl -2(K — E)™Y
has measure zero. This follows from the unimodularity of the group GL (a, C) and the fact that Haar mea-~
sure on this group is equivalent to u (cf. [12]).

4. The following theorem gives an answer to the question of the existence of a space of boundary values.

THEOREM 3. For any symmetric operator A wi‘th defect indices (n, n) (n < =) there exists a space
of boundary values (#. I'), T,) with dim 7% = n.

Proof. As is known, D(A*) = D(A) + N + N_, where Ny and N_ are the eigensubspaces of A* which
correspond to the eigenvalues i and —i. Since dim Ny = dim N_=n (< =), there exists an isometric trans-
formation from N_ to N., which we shall denote by U. Let P, and P_be the projections of D(A*) onto N,
and N_, respectively. Let us put % = V. (with the scalar product induced from H), Ty = P, + UP_, Ty =
_‘1P+ + IUP_

The decomposition y = y,+ P,y + Py (y€ D(A*), y,€ D(A)) shows that for any y, z < D (4%) (4*y, 2)g —
(y, A*z)y =2 Py, P.2)p — (P_y, Pz)ul. On the other hand, as a consequence of the isometricity of U,

(T, Toz)or — Doy, Ti5)ie = 20 Py, Poa)y — (P_y, P_2)pl,
i.e., condition 1) of Definition 2 is satisfied.

I Yy, Y,=7,let us select y € D(A*) by putting y = y,+ y+ + y_, where y, is an arbitrary vector from
D(A), y.. = (1/2i) (1Y1 Yy) € N y_ = (1/21) U (1Y, + Y,) € N_. One immediately verifies that T'yy = Y, and
Ty =y, Finally, itis obvious that for y € D(A), T'yv = T'yy = 0. The theorem is proved.

5. Connections with the theory of spectral problems of the form Su = XTu (S and T are symmetric dif-
ferential operators). Bennewitz [13] and E. A. Coddington [14] posed the problem of the description of ex-
tensions of a symmetric binary relation. Symmetric and self-adjoint extensions are described in [13-14];
Theorem 1 formulated above also permits one to describe other classes of extensions.

Note that for symmetric relations representation (3) is equivalent to representation (4), in which K
is replaced by K.,

THEOREM 4. Let a symmetric binary relation fina separable Hilbert space H be represented by
Eq. (3). The general form of a symmetric extension § > g is given by the equation

Kz +iz) =2 —ir, 2 +iz=D (R), (10)
where K is an isometric extension of K. The relation 6 is maximal symmetric precisely when D(K) =H or
R(K) = H.* The relation § is Hermitian precisely when K is a unitary extension of K. The general form of
a dissipative extension of 6 is given by Eq. (10), in which XK D K, | K/ || /] for all fe D(K). This exten-

*R(K) is the range of K.
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sion is maximal dissipative if D(K) = H. The general form of an accumulative extension of g is given by the
equation
E' (@ —iz) =a +ix, 2z —ize=D (KD,

where K-t > K1, |KY |<|f|, /=D (K. This extension is maximal accumulative if D(K-1) = H

Proof. Note that

D (K) = {2’ 4 iz|z6z'}.
Indeed, if y € D(K), then, putting

1
r= oy — Ky), 2 T('/ + Ky),

we see that xgx' by virtue of (3). On the other hand,

Y=z iz

It is proved in an analogous manner that
DK™ =(z — iz|lxzOz'}.
Now all assertions of the theorem immediately follow from Theorem 1.

The author thanks M. L. Gorbachuk for useful observations.
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