
EXTENSIONS OF SYMMETRIC OPERATORS 

AND SYMMETRIC BINARY RELATIONS 

A. No K o c h u b e i  UDC 513.88 

Various c lasses  of extensions of symmet r i c  opera tors  with equal (finite or infinite) defect 
numbers are  descr ibed in t e rms  of abs t rac t  boundary conditions. The dual problem of the 
descr ipt ion of extensions of a symmet r i c  binary relat ion is also considered.  

1. Let A be a closed symmet r i c  operator  with dense domain of definition in a separable  Hilbert space 
H and withlequal defect numbers (n, n) (n _< r The problem of the descr ipt ion of all self-adjoint extensions 
of A was siglved in the c lass ica l  works of J. yon Neumann. There is, however,  in teres t  in the question of 
the descri~t ion of extensions of A in t e rms  which, in the case of differential opera tors ,  immediately reduce 
to boundarir conditions. A ser ies  of resul ts  in this direct ion (in the case n < ~) were obtained in [1-3].* 

In thi:s paper we propose a method of descr ipt ion of various c lasses  of extensions of A (among them 
self-adjoin{:, dissipative,  accumulative),  in t e rms  of "abs t rac t  boundary conditions," which is applicable for 

I 
a rb i t r a ry  n _< ~. 

I 

2. Let us cite some resul t s  about binary relat ions in a Hilbert space H. 

Let M 0 be an a rb i t r a ry  closed set  in H ~ H. One says that an ordered pair of elements x, x '  6 H be- 
longs to a binary relat ion O = 0M and one wri tes  x0x', if {x, x'} E M 0. A binary relation 01 is called an exten- 
sion of 0(0i ~ 0) if x01x' follows from x0x'.  

i 

Defirlition 1. A binary relat ion 0 is called dissipative (accumulative, symmetr ic)  if 1) the set  M 0 is 
l inear and 2) if x0x', then Im (x', x) >_0 (Im(x', x) _< 0, Im (x', x) = 0). A dissipative (accumulative symmet -  
ric) relaticin is called maximal  d iss ipat ive  (accumulative, symmetr ic)  if it does not have a proper  dissipa-  
tive (accumulative, symmetr ic)  extension. A symmet r i c  re lat ion is called Hermit ian if it is s imultaneously 
maximal  d{ssirmtive and maximal accumulative.  

The tiollowing theorem was proved in [4-5] (the asse r t ion  on Hermit ian relat ions was proved in [6]). 

THEOREM 1. For  any contract ion K in H (i.e., IIKll -<-< 1), the binary relations defined by the equa- 
tions ? 

(K - -  E) x' q- i (K  -}- E)x = O, (1) 

(K  --  E)x'  - -  i (K  + E)x = O, (2) 

are  maximal  dissipative and maximal  accumulative,  respect ively .  Conversely,  each maximal  dissipative 
(accumulative) binary relat ion is representable  in the form (1) [(2)], where the contract ion K is uniquely 
defined by the relation. A maximal  dissipative (accumulative) re lat ion is maximal  symmet r i c  prec ise ly  
when the operator  K in (1) [(2)] is i sometr ic .  The general  form of Hermit ian opera tors  is given by (1) or 
(2), where K is a unitary opera tor  in H. The general  form of any (in general ,  not maximal) dissipative 
(accumulative) binary relat ion in H is, respect ively,  given by the formulas 

*The construct ion of A. V. Shtraus [3 ] is also suitable for  an opera tor  with a nondens e domain of definition. 
t E is the identity operator~ 
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K (x' ~- ix) = x'  - -  ix, x '  q- ix ~ D (K),  

K (x' - -  ix) = x'  - t - ix ,  x'  - -  ix ~ D (K) ,  

(3) 

(4) 

where K is a l inear operator  for which l[ Kfll -< IIf]l for all fE  D(K) [D(K) is the domain of definition of K]. 
A dissipative {accumulative) binary relat ion is symmet r i c  if and only if the operator  K in (3) [{4)] is i so -  
met r ic .  

3. Let us introduce the concept of a space of boundary values of A. 

Definition 2. The triple (~ ,  P~, r2), where ~ is a separable Hilbert space and r i  and r 2 are  l inear 
t ransformat ions  of D(A*) into ,:N, is called a space of boundary values of A if 

1) for any y, zE D(A*) 

( A ' y ,  z)u -- (q, 4*z)it = ( l ' l y ,  F2z)z  - -  (P~Y, l'lz)Je; 

2) for any Y .  Y2 ~ .~ there exists a vector  yE D(A*) such that I'lY = Yl, F2r = Y2; 

3) if yE D(A), then Fff  = FzY = 0. 

For  various c lasses  of differential operators ,  spaces of boundary values were constructed by many 
authors (cf., for example, [6-8]). 

Let (fd(, F,, r~) be an a rb i t r a r i ly  selected space of boundary values of A. Recall that a l inear opera-  
tor B in H is called dissipative {accumulative) if for all fED(B) Im (Bf, f )H -> 0 (Im (Bf, f )H -< 0). A dissi-  
pative {accumulative) opera tor  is called maximal  dissipative (accumulative) if it does not have a proper  
dissipative {accumulative) extension. 

THEOREM 2. For  any contraction K in ~ the res t r ic t ion  of A* to the set of vectors  yE D(A*) sa t i s -  
fying the condition 

(K  - -  E) F~y @ i (K  -~ E)F~y = 0 (5) 

o r  
( K  - -  E) P~y - -  i (K  -t- E)F~y = O, (6) 

is, respect ively ,  a maximal  dissipative (accumulative) extension of A. Conversely,  each 'maximal  dissipa- 
tive (accumulative) extension of A is the res t r i c t ion  of A* to the set of yE D(A*) satisfying (5) [(6)], where 
the contract ion K is uniquely defined by the extension. Maximal symmet r i c  extensions of A in H are  char-  
acter ized by conditions (5) [(6)], in which K is an i sometr ic  operator .  These conditions define Self-adjoint 
extensions if K is unitary.  The general  form of dissipative (accumulative) extensions of A is given by the 
co nditions 

K ( i r ly  ~-iY~y) ,= Fly  - .  iF2y, r~y ~ iF~.y ~ D (K),  (7) 

K (Fly -- tl?2y ) = l?ly -t- iF2y, I'lY -- iI'2Y (~= D ( K ) ,  (8) 

respect ively ,  where K is a l inear operator  with I! Kfl] ~ tlfll, f ~  D(K), and the general  form of symmet r i c  
extensions by formulas  (7) and (8), where K is an i somet r ic  operator .  

We shall ca r ry  out the proof for maximal  dissipative extensions (the remaining cases  are considered 
in an analogous manner) .  

Let  A be a maximal  dissipative extension of A. Then A ~ A* [9]. Let bin = {{Fly, F2y} ~ ,~ (~ J r  l!/ 
D (7t)} Then 0 is a dissipative binary relat ion in :7(. If ~D 0 and ~ i s  a dissipative binary relation, then 
the opera tor  A, defined as the res t r i c t ion  of A* to D (A) = { y ~ D  (A*)I {FLY, F2Y} ~ My}, is a dissipative 
extension of ~, i.e., A = ~ and ~ = 0. Consequently, 0 is a maximal dissipative relation, and the required 
resul t  follows f rom Theorem 1. 

vectors  yE D(A*) satisfying (5). One immediately Let ~ be the res t r i c t ion  of A* to the set D(A) o f  ~ 
verif ies that ~, is a dissipative extension of A. Let_ A be a dissipative extension of A~ Let us denote M0 = 
{{Fig, F2g}I g ~ D (iT)}, M~L= {{Fly, F2g} I g ~ D  (.4)}. Obviously, O-~ 0. But by Theorem 1, 0 is a maximal  
dissipative relation, i.e., 0 = 0, from which A = A. The theorem is proved. 
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S i m i l a r  r e s u l t s  a r e  con t a ined  in  [4--6] fo r  o p e r a t o r s  fo r  a s p e c i a l  f o r m  ( d i f f e r e n t i a l  o p e r a t o r s  in  a 
s p a c e  of v e c t o r  func t ions ) .  

L e t  us  note one p a r t i c u l a r  c a s e  of the  "bounda ry  cond i t ion"  (5): 

Fig = BF2y,  (9) 

w h e r e  B i s  a bounded  d i s s i p a t i v e  o l~era to r  in  K .  In the e a s e  n< ~ N. A. T a l y u s h  [10] c o n s i d e r e d  the ex t en -  
s ion  AB e 0 r r e s p o n d i n g  to (9). In [10] i t  was  a s s u m e d  tha t  fo r  A t h e r e  e x i s t s  a s p a c e  of b o u n d a r y  v a l u e s  
(';f, F~, I',.) such tha t  dim ~ = n. Below i t  wi l l  be shown tha t  th i s  i s  a l w a y s  va l i d .  If dim :7~ _ ~ < c~, then  
a 2 n L d i m e n s i o n a l  L e b e s g u e  m e a s u r e  p i s  induced  in a n a t u r a l  way in the  s e t  of l i n e a r  o p e r a t o r s  in ,%"~ 
It was  p r o v e d  in  [10] tha t  for  a l m o s t  a l l  B in (9) (with r e s p e c t  to the m e a s u r e  #) the o p e r a t o r  AB i s  of d i a g -  
onal  type  (ef. [10]). M o r e o v e r ,  if  A i s  a c o m p l e t e l y  nonse l f - a d jo in t  o p e r a t o r  with s i n g u l a r  s p e c t r u m ,  then  
for  a l m o s t  a l l  B the o p e r a t o r  AB has  a c o m p l e t e  s y s t e m  of e i g e n v e c t o r s .  In r e a l i t y  t h e s e  r e s u l t s  a r e  va l id  
for  e x t e n s i o n s  of the g e n e r a l  f o r m  (5) fo r  a l m o s t  a l l  K. F o r  the p r o o f  one m u s t  note tha t  fo r  a l m o s t  a l l  K 
the o p e r a t o r  ( K - E )  i s  i n v e r t i b l e  (ef. [11]). F u r t h e r ,  the  i n v e r s e  i m a g e  of a s e t  of m e a s u r e  z e r o  under  the 
t r a n s f o r m a t i o n  

K ~ - -  i ( K - - Z )  - ~ ( K - I - E ) = -  i[l; {- 2 (K  - -  E ) - q  

h a s  m e a s u r e  ze ro~  This  fo l lows  f r o m  the u n i m o d u l a r i t y  of the g r o u p  GL (n, C) and the f ac t  tha t  Haa r  m e a -  
s u r e  on th i s  g r o u p  i s  e q u i v a l e n t  to p (of. [12]). 

4o The fo l lowing  t h e o r e m  g i v e s  an  a n s w e r  to the q u e s t i o n  of the e x i s t e n c e  of a s p a c e  of b o u n d a r y  v a l u e s .  

THEOREM 3. F o r  any s y m m e t r i c  o p e r a t o r  A with d e f e c t  i n d i c e s  (n, n) (a <_ ~) t h e r e  e x i s t s  a s p a c e  
of b o u n d a r y  v a l u e s  (=~(. P,, P2) with dim ,-~ = n. 

P r o o f .  As i s  known, D(A*) = D(A) q: N+ ~: N_, w h e r e  N+ and N_ a r e  the  e i g e n s u b s p a e e s  of A* which  
c o r r e s p o n d  to the e i g e n v a l u e s  i and - i o  S ince  d im N+ = d im N = n (-< ~), t h e r e  e x i s t s  an  i s o m e t r i c  t r a n s -  
f o r m a t i o n  f r o m  N_ to N+, which we sha l l  deno te  by U. Le t  P+ and P b e  the p r o j e c t i o n s  of D(A*) onto N+ 
and N ,  r e s p e c t i v e l y .  Le t  us put  ,~5 = A .  (with the s c a l a r  p r o d u c t  induced  f r o m  H), Fa = P+ + UP_, F 2 = 
- - iF+ + i U P _ .  

The d e c o m p o s i t i o n  y = Y0+ P+Y + P_Y (yE D(A*),  Y0E D(AJ) shows  tha t  fo r  any y, z C D (A*) (A 'y ,  Z)H - -  
(g, A*z)~, ~- 2i [(P+y, P+z)u - -  (P_y, P z)~]. On the o t h e r  hand, a s  a c o n s e q u e n c e  of the i s o m e t r i c i t y  of U, 

(Fly, rez)~,. - -  (P2Y, I',:):~- --  2i [(P.g,  P+z),x - -  (P_g, P_z)n], 

i . e . ,  cond i t i on  1) of Def in i t ion  2 i s  s a t i s f i e d .  

If Y1, L_, ~ -7~, l e t  us s e l e c t  y E D(A*) by put t ing y = Y0 + Y+ + Y_, w h e r e  Y0 i s  an  a r b i t r a r y  v e c t o r  f r o m  
D(A), y+ (1/2i) ( iY1-y2)  ff N+, y_ = (1/2i) U -~ ( i y  1 + Y2) E N .  One i m m e d i a t e l y  v e r i f i e s  t ha t  FlY = YI and 
F ~  = y >  F i n a l l y ,  i t  i s  obv ious  tha t  fo r  yE D(A), F~y = FaY = 0. The t h e o r e m  i s  p r o v e d .  

5. Connec t ions  with the  t h e o r y  of s p e c t r a l  p r o b l e m s  of the f o r m  Su = XTu (S and T a r e  s y m m e t r i c  d i f -  
f e r e n t i a l  o p e r a t o r s ) .  Bennewi tz  [13] and E. A. Codding ton  [14] p o s e d  the  p r o b l e m  of the  d e s c r i p t i o n  of ex -  
t e n s i o n s  of a s y m m e t r i c  b i n a r y  r e l a t i o n .  8 y m m e t r i c  and s e l f - a d j o i n t  e x t e n s i o n s  a r e  d e s c r i b e d  in [18-14]; 
T h e o r e m  1= f o r m u l a t e d  above  a l s o  p e r m i t s  one to d e s c r i b e  o t h e r  c l a s s e s  of e x t e n s i o n s .  

Note tha t  fo r  s y m m e t r i c  r e l a t i o n s  r e p r e s e n t a t i o n  (3) i s  e qu iva l e n t  to r e p r e s e n t a t i o n  (4), in which  K 
i s  r e p l a c e  d by K -~. 

THEOREM 4. L e t  a s y m m e t r i c  b i n a r y  r e l a t i o n  0 in  a s e p a r a b l e  H i l b e r t  s p a c e  H be  r e p r e s e n t e d  by  
Eq.  (3). The g e n e r a l  f o r m  of a s y m m e t r i c  e x t e n s i o n  OD 0 i s  g iven  by the e q u a t i o n  

R ( x '  + i x ) = x ' - - i x ,  z'  + i x ~ D ( R ) ,  (lO) 

w h e r e  K is  an i s o m e t r i c  e x t e n s i o n  of K. The r e l a t i o n  O i s  m a x i m a l  s y m m e t r i c  p r e c i s e l y  when  D(K) = H o r  
R(K) = H.* The r e l a t i o n  O i s  H e r m i t i a n  p r e c i s e l y  when K i s  a u n i t a r y  e x t e n s i o n  of K. The g e n e r a l  f o r m  of 
a d i s s i p a t i v e  e x t e n s i o n  of 0 i s  g iven  by Eq. (10), in  which  K ~ K, II h:/ [] ~g []/]! f o r  a l l  f E  D(K). Th is  ex t en -  

*R(K) i s  the r a n g e  of K. 
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sion is max ima l  d iss ipa t ive  if D(K) = H. The genera l  f o rm of an accumula t ive  extension of 0 is  given by the 
equation 

K -1 (x' - -  ix) = x' ~- ix, x' - -  ix ~ D (K-l) ,  

where  K ~-1 ~ K -I, I] K~-I/ [h ~ [1 ]II, / ~ D (K~":~). This extension is max imal  accumula t ive  if D(t~ -l) = H. 

Proof .  Note that 

Indeed, if yE D(K), then, putting 

D (K) = {x' -}- ix I xOx' }. 

x = T (g - -  Kg), x'  - "T ('4 -~ Kg), 

we see that x0x'  by vir tue of (3). On the other hand, 

g x' ~ - i x .  

It is proved in an analogous manner  that 

D (Ii ~1) = ( x' - -  ix1 x Ox' }. 

Now all a s se r t i ons  of the theorem immedia te ly  follow f rom Theorem 1. 

The author thanks M. L. Gorbachuk for useful observa t ions .  

LITERATURE CITED 

I. J.W. Calkin, "Abstract symmetric boundary conditions," Trans. Amer. Math. Soc., 45___, No. 3, 369- 
442 (1939). 

2. N. Dunford and J. Schwartz, Linear Operators, Vol. 2, Interseienee (1958). 
3. A. V~ Shtraus, "Some questions of the theory of extensions of symmetric nonself-adjoint operators,' 

Transactions of the 2rid Scientific Conference, Kafedr Ped. Univ. Povolzh', No. i, Kuibyshev, 121- 

124 (1962), 
4. M.L. Gorbachuk, A. N. Kochubei, and M. A. Rybak, "Dissipative extensions of operators in a space 

of vector functions," Dokl. Akad. Nauk SSSR, 20_~5, No. 5, 1029-1032 (1972). 
5. M.L. Gorbuchuk, A. N. Kochubei, and M. A. Rybak, "Some classes of extensions of differential opera- 

tors in a space of vector functions," in: Application of Functional Analysis to Problems of Mathe- 
matical Physics [in Russian], Kiev (1973), pp. 56-82. 

6. F~ S. Rofe-Beketov, "Self-adjoint extensions of differential operators in a space of vector functions," 
Theory of Functions, Funktsional'. Analiz i Ego Frilozhen., No. 8, 3-24 (1969). 

7. M.I. Vishik, "General boundary value problems for elliptic differential equations," Tr. Moscow 
Matem. Ob., 1,  187-246 (1952). 

8. M . L .  Gorbachuk and A. N. Kochubei, "Self-adjoint boundary value p rob lems  for  ce r ta in  c l a s se s  of 
di f ferent ia l  opera to r  equations of second o rder , "  Dokl. Akad. Nauk SSSR, 201, No. 5, 1029-1032 (1971). 

9. A . V .  Shtraus,  "Extensions  and cha rac t e r i s t i c  functions of a s y m m e t r i c  ope ra to r , "  Izv. Akad. Nauk 
SSSR, Set .  Matem.,  32___, No. 1, 186-207 (1968). 

10. M . O .  Talyush,  "The typical  s t ruc tu re  of d iss ipat ive  ope ra to r s , "  Do~). Akad. Nauk URSR, No. 11, 993- 
996 (1973). 

11. R. Gunning and H. Rossi ,  Analytic Functions of Severa l  Complex Var iables ,  Prent ice-Hal l  (1965). 
12. H. Bourbaki ,  Integrat ion.  Vector  Integrat ion.  Haar  Measure ,  Convolutions, and Represen ta t ions ,  

Hermann,  Pa r i s  (1952). 
13. C. Bennewitz, "Symmet r i c  re la t ions  on a Hilber t  space ,"  Lec ture  Notes Math., 280, 212-218 (1972). 
14. E . A .  Coddington, "Extension theory of formal ly  normal  and s y m m e t r i c  s u b s o a c e s , '  Memoi r s  Amer .  

Math. Soc., 134, 1-80 (1973). 

28 


