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D u a l  E x t r a c t i o n  o f  R - M o d e  and  Q - M o d e  

F a c t o r  S o l u t i o n s  ~ 

Di Zhou, 2 Theodore Chang, 3 and John C. Davis 4 

It ic mathematieally possible to extraet both R-mode and Q-mode factors simultaneously 
(RQ-mode factor analysis) by invoking the Eckhart-Young theorem. The resulting faetors 
will be expressed in measures determined by the form o f  the scalings that have been applied 
to the original data matrix. Unless the measures for both solutions are meaningful for the 
problem at hand, the factor results may be misleading or uninterpretable. Correspondence 
analysis uses a symmetrical scaling of  both rows and eolumns to aehieve measures o f  propor- 
tional similarity between objects and variables. In the literature, the resulting similarity is 
a X 2 distance appropriate for analysis o f  enumerated data, the original application ofcorre- 
spondenee analysis. Justification for the use o f  this measure with interval or ratio data is 
unconvincing, but a minor modification of  the sealing procedure yieMs the profile similarity, 
which is an appropriate measure. Symmetrical sealing o f  rows and columns is unnecessary 
for RQ-mode faetor analysis. I f  the data are scaled so the minor product W'W is the correla- 
tion matrix, the major produet WW' is expressed in the Euclidean distances between objects. 
Therefore, RQ-mode factor analysis can be performed so that the R mode is a principal 
components solution and the Q mode is a principal coordinates solution. For applications 
where the magnitudes o f  differences are important, this approach will yield more inter- 
pretable results than will correspondence analysis. 

KEY WORDS: scaling, correspondence analysis, principal components analysis, RQ-mode 
factor analysis. 

INTRODUCTION 

Correspondence analysis, since its introduction in geology by Teil (1975) and 
David, Dagbert, and Beauchemin (1977), has been used in a variety of  apptica- 
tions, particularly in geochemistry. The method is appealing because it makes 
possible the simultaneous extraction of both R-mode and Q-mode factors. The 
R- and Q-mode solutions are displayed on the same set of  diagrams, greatly fa- 
cilitating the interpretation of the factors. Unfortunately, few people have yet 
been concerned about the limitations of the applicability of correspondence 
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analysis, or have sought other techniques that have the same desirable features 
but which perform bettet for certain types o f  problems. 

Simultaneous extraction o f  R- and Q-mode factors, which may be called 
RQ-rnode factor analysis, is not  unique to correspondence analysis. It can be 
achieved in many ways, provided that a general constraint on the scaling o f  the 
data is satisfied. This paper discusses the general requirements for RQ-mode 
analysis, reviews the conditions under which various alternative procedures are 
appropriate, and suggests the consideration of  principal components analysis as 
an R Q-mode procedure. 

The term "factor analysis," as used here, includes the many versions of  
components analysis. "Principal components analysis" refers to the specific 
procedure proposed first by Hotelling (1933). Varimax and other rotational 
schemes are not considered, because at present they have not been incorporated 
into RQ-mode procedures and discussion of  their possible use is beyond the 
scope of  this paper. The notation, unless otherwise specified, is given in Table 1, 
where the definitions of  factor loadings and factor scores follow the usage o f  
Klovan and Imbrie (1971). The word "similarity" is used in a broad sense to 

Table 1. Mathematical Notation Used in This Paper a 

X 

W 

n 

m 

p 

A 

U 

V 

A R 

AQ 

F R 

FQ 

raw data matrix (n X m) 

scaled data matrix (n X m) 

number of objects 

number of variables 

number of factors extracted Ip ~< min (n, m)] 

diagonal matrix of eigenvalues for W'tg or WW', listed in descending order 

unit-orthogonal eigenvector matrix (m X p) of W'W 

unit-orthogonal eigenvector matrix (n X p) of WW' 

R-mode factor loading matrix (m X p), A R = UA 1/2 

Q-mode factor loading matrix (n X p), AQ = VA 1/2 

R-mode factor score matrix (n × p), F R = WARA -1 

Q-mode factor score matrix (ra X p), FQ = WMQA-1 
1 . x average value of variable/', 2] = n ~ i] 

I 

standarddeviationofvariable/,si=[l~i (xi]-2])2]l/2 

aA lower case character indicates an element of the matrix represented by the correspond- 
ing upper case eharacter. 
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indicate measures of  the relationships between variables or objects, including 

measures of  dissimilarity. 

THE IMPORTANCE OF SCALING 

As pointed out by  Miesch (1980), the alternative versions o f  factor analysis 
differ primarily in the way in which the data are scaled prior to factoring. Scal- 
ing determines the measure of  similarity and hence the nature of  the factor 
solution. 

This point  can be seen more clearly through a geometrical interpretat ion of  
factor analysis. In R-mode,  the scaled variables can be regarded as points or vec- 
tors in object  space; the configuration of  these points or vectors is a graphical 
representation of  the similarities between variables. Factoring essentially is a ro- 
tat ion of  the reference axes under some constraint  such as accounting for the 
maximum variance in the data. After factoring, while the configuration of  vari- 
able vectors remains unchanged, this configuration usually can be seen more 

clearly in a reduced dimensionali ty (Fig. 1). The preservation of  variable configu- 
ration during R-mode factoring can be expressed algebraically by  the equali ty 

W'W=ARA R' (1) 

c-i 

7 
0 V1 

~ ~  I~" / I \ /'~o~ 

ù" ! I ~ *  v2 

0 o~ii Obj ect l 

Fig. I. Schematl¢ representa£ion of R-mode factor anslysis. Conliguration of 
scaled variable vectors V1, V2, and V 3 remain invariant during factoring. Co- 
ordinates of V1 are co 11 and to 12 with respect to object axes or a 11 and a 12 
with respect to factor axes. Direction cosines of factor axes in object space 
are given by score matrix F R. For example, co s 011 = f l  1 and cos 0 a2 = f l  » 
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Table  2. Artificial Data Used to Show the Effects 
of Scaling 

Data matrix X Data matrix Y 

I II III 1 2 3 4 

1 4 16 16 I 4 1 2 1 
2 1 4 13 II 16 4 8 4 
3 2 8 14 III 16 13 14 13 
4 1 4 13 

The equality indicates that similarities between variables, represented by 
the matrix I4/W, are inherent in the dot product matrix of factor loadings, if no 
factors have been eliminated. Similar relationships hold for Q-mode factor anal- 
ysis, in which 

WW' =AQA e' (2) 

A. Principal eomponents anaiysis of matrix X 

Scaling Correlation coefficient F1 

I II III 

w ×i0 - 7i • = I 1.0 I .0 
10 s Y-G 

j Il 1.0 1.0 1.0 

III I .0 1.0 1.0 1.0 

A R 

I,II III 

F1 

B. Principal componenls analysis of matrix X 

A R 

Scaling Variance-covariance FI 

xj. "~~ 
w .... ~ I 2.0 1.4 
10 ¢~ 

Il 8.0 32.0 5.7 

III 2.0 8.0 2.0 1.4 

iI, III 
FI 

C. Principal coordinates analysis of matrix Y 

Euclidean distance of A Q 
Scaling standardized data F1 F2 

I Il Ill 

w. Yij - ffj .= ~ 0.0 -1.3 0.3 
~J sj~nn 

II 1.5 0.0 -0.1 -0.5 

III 2.7 1.6 0.0 1.4 0.2 

F2 

III 
Io • 

FI 
Il 

Fig. 2. Factor analysis of artificial data given in Table 2. 
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Therefore, the manner in which the data matrix X is scaled in order to produce 
R/determines the nature of the similarity measure in the factor solution. 

Two sets of  artificial data (Table 2), in which Y is the transpose of  X, can 
be used to show the effects of  scaling. The data are constructed so that vector Il 
is derived by multiplying vector I by 4, and vector III is derived by adding 12 to 
vector I. We are interested in the effects of  scaling ort the three vectors, I, II, and 
III; hence, all R-mode analyses are performed on the data matrix X, and all Q- 
mode analyses on matrix Y. 

Figure 2 shows various scaling equations, the resulting similarity matrices, 
and the corresponding factor solutions. Scalings which involve division only 
(E and F)  result in scale-invariant measures of  similarity, and vectors I and II 
coincide in the factor diagram. Measures of  this type, such as the cos 0 and pro- 
file distance, are proportional similarities and are insensitive to differences in 
magnitude. Scaling involving subtraction only (B) results in a location-invariant 
measure of  similarity and the coincidence of  vectors I and III in the factor dia- 
gram. Scaling involving both division and subtraction (A) yields a scale- and 

D. Principal coordinates analysis of matrix Y 

Euelidean disLanee of A Q 
Sealing raw data FI F2 

I II IIl 

w. Yij - 7 j  = I 0 . 0  - 8 . 5  1.7 
l J ~nn 

Il 10.0 0.0 0.0 -3.5 

I [ I  17.0 10.0 0.0 8.5 1.7 

F2 

I III 
Q • 

114 FI 

E. Imbrie Q-mode factor analysis of matrix Y 

A Q 
Scaling Cosine theta F1 F2 

I II Ill 

Ylj I 1°0 1.0 -0 .2  = 
/ ~2 wij Yik II  1.0 1.0 1°0 - 0 . 2  

I I I  0.9 0.5' 1,0 0.9 0.3 

F2 

III 
o 

+ FI 
I,ll 

F. Correspondence analysis of matrix X 

G 
5ealing Profile distance FI 

I II Ill 
×.. 
ij : I 0.0 -0.3 

wiJ= '/~ Xik/~ Xlj Il 0.0 0.0 -0.3 

[II 0.5 0.5 0.0 0.2 

I , I I  I I I  

F1 

Fig. 2. Continued 



586 Zhou, Chang, and Davis 

location-invariant measure of similarity, such as the correlation coefficient. 
Vectors I, II, and III all coincide in the resulting factor diagram. In C and D of 
Fig. 2, scaling is not performed along the three vectors, I, II, and III, but rather 
along vectors 1, 2, 3, and 4. The resulting similarity measure for vectors I, II, 
and III is the Euclidean distance and the three are distinct in the factor diagram. 

From this artificial example it can be appreciated that a scaling procedure 
should be selected which provides a measure of similarity relevant to the prob- 
lem being investigated. In many geological applications the correlation coeffi- 
cient, and more rarely the covariance, are appropriate measures of the similarity 
between variables. Therefore, principal components analysis is usually a safts- 
factory R-mode procedure. 

Q-mode analysis, however, is more complicated. For some applications, 
such as the "end member" problem (Jöreskog, Klovan, and Reyment, 1976, 
p. 86-100), proportional similarities are required because it is the proportions 
rather than the magnitudes of constituents which indicate the source of an ob- 
servation. In this situation, the cos 0 coefficient provides a good measure and 
Imbrie's Q-mode vector analysis may be preformed. However, in other applica- 
tions the magnitudes of the constituents are important. For example, in a study 
of trace elements in rocks, a specimen containing 100 ppm of Cu and 500 ppm 
of Pb is quite different than another containing 10 ppm of Cu and 50 ppm of Pb 
in terms of their significance as guides to mineralization, even though the ele- 
ments occur in the same proportions. In such an application, a distance measure 
should be used, and principal coordinate analysis is a suitable Q-mode procedure. 

If a scaling procedure results in W'W (or its specific transformation) being a 
similarity matrix of variables which is appropriate for the problem at hand, and 
at the same time WW' (or its specific transformation) is a meaningful measure of 
sirnilarity between the objects, then RQ-mode factor analysis can be achieved. 
Although it is always computationally possible to calculate a Q-mode solution 
from an R-mode solution, and vice versa, by invoking the Eckart-Young theo- 
rem (Eckart and Young, 1936; Johnson, 1963), the dual solutions may not be 
meaningful unless this requirement is met. Then, the R-mode and Q-mode solu- 
tions are related in the following manner 

F R A R R-mode solution 

W = ~V A x/2 U '~ 

AQ FQ (3) Q-mode solution 

CORRESPONDENCE ANALYSIS AS AN RQ-MODE PROCEDURE 

Correspondence analysis was first proposed by Benzecri (1969) for the 
factor analysis of contingency tables in which the elements represent frequen- 
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cies of occurrences. Hill (1974) equated the method to Fisher's canonical 
analysis and other earlier procedures. This paper focuses on the common geo- 
logical practice of applying correspondence analysis to measurement data in 
whicla entries in the data matrix represent interval- or ratio-scale measurements 
of variables on objects. 

The rationale of correspondence analysis is based on conditional probabili- 
ties. The distributional distance, or X 2 distance, is used as a similarity measure 
for both rows and columns (Benzecri, 1969; Benzecri et al., 1980; Teil, 1975; 
David, Dagbert, and Beauchemin, 1977; Jambu, 1980). Such a treatment is rea- 
sonable for contingency table data, because a contingency table divided by its 
gross sum can be regarded as a table of estimates of probabflities. Also, a con- 
tingency table is essentially a double classification of orte set of objects and hence 
the symmetrical treatment of rows and columns is logical. 

A table of measurements, however, has very different properties. Although 
a table containing nonnegative measurements can be divided by its gross sum, 
entries in the resulting transformed table can rarely be regarded as estimates of 
probabilities. Therefore, a rationale based on conditional probability, such as the 
orte given by David, Dagbert, and Beauchemin (1977), is not necessarily valid. 
In addition, the rows and columns of a table of measurements are not mutually 
symmetrical, so there is no reason to presume that a symmetrical similarity mea- 
sure must be used. Therefore, a symmetrical scaling procedure is not necessary 
for RQ-mode factor analysis of measurement data. 

This does not mean that correspondence analysis cannot be applied to mea- 
surement tables. It is possible to justify the use of correspondence analysis with- 
out invoking conditional probabilities, by the use of the "profile distance" mea- 
sure (Appendix, I). The profile distance corresponds to a scaling involving division 
only, and hence is a kind of proportional similarity and is not sensitive to differ- 
ences in magnitude. The measure is scale invariant but not location invariant, 
and differs from either the correlation coefficient or the Euclidean distance. In 
order to determine if correspondence analysis is appropriate for a given applica- 
tion, it is necessary to determine whether the profile distance is a suitable mea- 
sure of the similarities between variables and between objects in the problem. 

PRINCIPAL COMPONENTS ANALYSIS AS AN RQ-MODE PROCEDURE 

Often the similarity between objects is more relevantly expressed by a dis- 
tance measure than by proportional similarity. Let H = WW' be a matrix of dot 
products of object vectors in variable space; the Eudidean distance between ob- 
ject points i and I is then determined by 

d~l = h i i  + h l l  - 2hil (4) 
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When W is formed by 

w ..= 1--~{xi]-~]~ for i = l , 2 , . . , n  (5) 
tl n l / 2 \  s/  1 '  ] = l , 2 , - ' - , m  

it can be shown algebraically that d i l  is 1/n ~/2 times the Euclidean distance of 
the standardized data 

z( / ~ 
dü = 1 __xi] - xl! (6) 

n i \  si I 

If 

1 
wc = ~ - F  (xii - 2]), for i = 1 , 2 , "  ", n (7) 

] = l , 2 , . - , m  

dil is 1In 112 times the Euclidean distance measured on the raw data 

d21 = L Z (Xi] - X1]) 2 (8) 
n i 

In both instances, H = WW' is the matrix that Gower (1967) defmed for princi- 
pal coordinates analysis 

h i l = e i l -  e i .  - e .  l + e ' ' ,  

where 

e . , = -  ~ a~l 

for i = l , 2 , " ' , n  (9) 
l= l , 2 ,  , . , n  

1 
ei" = - -  Z e i l  

17 l 

1 
e .  1 = - -  2..a e i l ,  and 

n i 

e.. = Z Z e,l 
i l 

(cf. Appendix, II). However, it is also true that the scaling in (5) and (7) are the 
same as those used in principal components analysis. This means that the scaling 
in (5) can give W'W, the correlation matrix of variables, and at the same time 
WW' = H, in which the Euclidean distances of objects are embedded. Therefore, 
this scaling procedure meets the requirements of RQ-factor analysis. The same 
conclusions can be drawn for the scaling procedure in (7). 
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Because of these relationships, principal components analysis can be used 
as an RQ-mode factor technique. All that is necessary is to add steps for calcu- 
lating A Q and F Q by 

A (2 = WU, and (10) 

F Q : U  (11) 

Since A R gives the coordinates of variable points in factor space and A ff 
gives the coordinates of object points in factor space, A n and A Q can be plotted 
with respect to the factor axes on the same set of diagrams. The similarities be- 
tween variables and the similarities between objects are represented by the con- 
figurations of their points. The associations between variables and objects can be 
examined in the following way. Equation (3) can be rewritten as 

That is, 

AQA-1/2A R'= W 

1 Q R  
aikajk  = wij ,  i = 1, 2, • • • ,  n (12) (Xk)'/2 

k / =  1 , 2 , ' " , m  

The left-hand side of (12) can be regarded as the dot product of the object vec- 
tor a f and the variable vector a f with a factor X~: 1/2. The magnitude of the 
product, wo, is inversely related to the distance between the object point i and 
the variable point / .  Thus, a cluster of object points can be interpreted as being 
characterized by the nearest variable points. 

The duality between principal components analysis and principal coordi- 
nates analysis using the Euclidean distance was first pointed out by Gower 
(1966). Unfortunately, this duality has not been utilized for RQ-mode factor 
analysis until now. Gabriel (1971) did use a biplot graphic display o fA R and 
F R to study the associations of objects to variables. Because AQ.A Q' preserves 
the similarities of objects and F R F  R'  does not, it seems more reasonable to plot 
A Q instead of F R for displaying the interrelationships between objects. 

For problems in which the similarities between variables can best be repre- 
sented by the correlation coefficient or the covariance, and the similarities be- 
tween objects by the Euclidean distance, principal components analysis is more 
relevant than correspondence analysis. In the literature, correspondence analysis 
commonly is applied to petrochemical data. For these data the profile distances 
between objects are close to their Euclidean distances because the rows of the 
data matrix sum to a constant. The differences between the results obtained by 
the two procedures are obscured. If, however, the data have variable row surns 
or column sums, the two procedures may produce remarkably different results. 
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APPLICATIONS OF RQ-MODE FACTOR PROCEDURES 

Two examples are presented to show the differences between corre- 
spondence analysis and principal components analysis as an RQ-mode factor pro- 
cedure. The first example was selected because the data have been extensively 
used to demonstrate a variety of multivariate techniques (Imbrie, 1963; Krum- 
bein and Imbrie, 1963; Manson and Imbrie, 1964; Lee, 1969; Howarth, 1973; 
David, Dagbert, and Beauchemin, 1977). The second example was chosen to 
show that principal components analysis yields a more geologically meaningful 
result than correspondence analysis when the interrelationships between objects 
are best represented by the Euclidean distance and similarities between variables 
by the correlation coefficient. 

W. T. Fox compiled the thicknesses of lithologic components in an Upper 
Permian stratigraphic unit as measured in 31 wells in southeastern Colorado and 
western Kansas, U.S.A. The data include the thicknesses (in feet) of sand, shale, 
carbonate, and evaporite (Fig. 3). Two derived variables, total thickness, and 
nonclastic thickness (carbonate plus evaporite), were added by Krumbein and 
Imbrie (1963). 

Correspondence analysis was applied to these data by David, Dagbert, and 

A B C 

0 4 0  ~ - - ~ I 0  40 ~.  ',. 0 4 0  ~ v f t t l  
, - Jm <~ • I / •  - , ..-~oo__1/ ' ' , ~ (  (. I 

,.t t  o-J Ix,\ ,;-1 Ix I 

I 0 0 , - \ - - . - -  
, , --~,Ca~ho~-~ ' ' , I - - ~ o  I c ° 1 ° "  ' 

No ~ , _ _ /  I 

D E F 
Fig. 3. lsopach and net thickness maps of four-component Upper Permian stratigraphic unit 
in Colorado and Kansas (from Krumbein, 1962). (A) Total thickness; (B) feet of sandstone; 
(C) feet of  shale; (D) feet of carbonates; (E) feet of evaporites; (F) index map. 
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t 
I 
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9 T e 14 

a,  124 2a 
3 5 ,6 r" 31 17 

O. o i l l  

ss ..... ;=--" | ~ ~a.... 
CA ..-- 11 ~ 

~~ " NC'..EV 

-0.2 I T i J I l r ~ • I'O 
-0.6 -0.4 -0.2 0.0 0.2 

Factor 1 

Fig. 4. Correspondence factors 1 and 2 from Fox data (after David, Dagbert, and 
Beauchemin, 1977). Numbers have been changed to correspond with Table 3. 

Beauchemin (1977). Only three factors are extracted because the rank of the 
data matrix is reduced by one by the effect of closure. Their results are shown 
in Figs. 4 and 5. RQ-mode principal components analysis was applied to these 
same data, with the results shown in Table 3 and Figs. 6 through 8. 

The two methods yield different configurations of variables (thicknesses of 
lithologies) and of objects (wells). Among the variables, the total thickness shows 
no association with any other variable in correspondence analysis, but does show 
strong correlations with shäle, nonclastic, and evaporite thickness in principal 
components analysis. These results are similar to the relationship between I and 
III in the artificial example (Fig. 2A, F), because total thickness is the sum of 
four other variables. The relationships between other variables are similar in the 
two procedures, if the closure effect in correspondenee anaiysis is taken into 
account. 

The differences in the configuration of objects are more notable. In princi- 
pal components analysis, the objects can be visuaily divided into seven clusters 
in the diagram of factors 1 and 2 (Fig. 6), which explains 83.4% of the total 
variance. The clusters do not appear in the plot of factors 3 and 4 (Fig. 7). 
Groups I to IV are differentiated along factor 1 by a decrease of shale and 
evaporite thicknesses. Group VII has the thinnest total section of sediments and 
especially of sand and carbonate. Group V is characterized by the thickest sand 
and carbonate. Group VI, containing only weil 31, is unique as it has the thick- 
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'_ . . . . .  30 . . . . .  " 0  
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27 
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Fig. 5. Correspondence factors 1 and 3 from Fox data (after David, Dagbert  and 
Beauehemin,  1977). Numbers  have been changed to correspond with Table 3. 

Table 3. RQ-Mode Principal Componen t s  Analysis of  Fox Data. (A) 
Matrix o f  Correlations Between Variables (T = total  thickness;  SS = 
thickness of  sandstone;  N C  = thickness of  nonclastics; CA = thickness 
of  carbonates;  E V  = thickness of  evaporites). (B) Eigenvalues o f  Corre- 
lation Matrix (~  = eigenvalue; % = percent  o f  trace; Is% = cumulat ive 
percent  o f  trace). (C) R-Mode Factor  Loadings. (D) Q-Mode Factor  

Loadings. 

(A) Correlation Matrix 

T SS  SH N C  CA E V 

T 1.00 . . . .  
SS  0.24 1.00 . . . .  
SH 0.89 - 0 . 1 2  1.00 - - - 
N C  0.84 - 0 . 0 3  0.69 1.00 - - 
CA 0.15 0.46 - 0 . 0 5  0.06 1.00 - 
E V  0.82 -0 .11  0.70 0.99 - 0 . 1 0  1.00 

(B) Eigenvalues 

Factors 

1 2 3 4 

X 3.47 1.54 0.56 0.44 
% 57.76 25.66 9.33 7.26 
1~% 57.76 83.42 92.74 100.00 
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(C) R-Mode Loadings 

Faetors 

1 2 3 4 

T 0.96 0.22 -0.13 -0.16 
SS -0.00 0.87 -0.49 0.08 
SH 0.87 -0.10 -0.01 -0.47 
NC 0.95 -0.01 0.I0 0.30 
CA 0.02 0.84 0.54 -0.04 
EV 0.94 -0.14 0.02 0.30 

(D) Q-Mode Loadings 

Factors 

1 2 3 4 

1 0.03 0.04 0.01 0.14 
2 -0.10 0.44 0.16 -0.12 
3 -0.27 0.49 -0.15 -0.05 
4 -0.57 0,00 -0.13 0.11 
5 0.10 0.13 -0.19 0.02 
6 0.08 0.19 0.12 0.02 
7 -0.63 0.01 0.05 0.08 
8 -0.40 0.18 -0.17 0.16 
9 -0.37 -0.09 -0.02 0.03 

10 -0.35 0.06 0.04 0,01 
11 0.11 0.23 0.12 0.16 
12 0.45 -0.13 0.08 -0.02 
13 -0,22 0,12 0.16 -0.03 
14 -0,36 -0,26 0.20 0.08 
15 0,51 -0.28 -0.06 0.16 
16 0,45 -0.14 -0.06 -0.20 
17 0,47 -0.04 -0.14 0.03 
18 0.39 0.02 -0.16 0.11 
19 0.10 0.12 -0.26 -0.07 
20 0.57 -0.26 0.11 0.05 
21 0.21 -0.04 0.02 -0.04 
22 -0.22 -0.10 -0.06 -0.09 
23 -0.21 0.02 0.06 -0.21 
24 0.18 0.05 -0.10 -0.00 
25 0.41 0.07 0.10 0.11 
26 0.07 0.05 -0,02 -0.07 
27 -0.29 -0.32 -0,02 0.14 
28 -0.26 -0.37 0.03 0.05 
29 0.02 -0.05 -0.19 -0.30 
30 -0.35 -0.51 0.13 -0.22 
31 0.33 0.39 0.34 -0.03 
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Fig. 6. Principal components analysis RQ-mode factors 1 and 2, from Fox data. 

1.0 

est carbonate and at the same time a very thick shale and evaporite sequence. 
These groups have a somewhat regular spatial distribution (Fig. 8), which is simi- 
lar to the distribution (Fig. 9) found by Howarth (1973) using nonünear mapping. 
The configuration obtained by correspondence analysis (Figs. 4 and 5)is dif- 
ferent from that in Fig. 6, but similar to the configuration produced by Imbrie's 
Q-mode factor analysis (Fig. 10). 

The second example is taken from a study by Sherman, Bunker, and Bush 
(1971) in the Berea area of Virginia, U.S.A., where a smaU, highly radioactive 
quartz monzonite pluton intrudes chlorite-actinolite schist and is overlapped by 
coastal plain sand and gravel deposits. A total of 22 auger samples were taken 
along a profile across all formations and analyzed for U, Th, and K. The ob- 
jective of the original study was to relate the concentrations of these elements to 
airbome radiometric measurements made along the profile. 

The measurements of U, Th, and K concentrations and airborne radiometry 
üsted in Table 4 and shown in Fig. 11 were analyzed by principal components 
analysis and correspondence analysis. The solution from principal components 
analysis (Table 5, Fig. 12) shows positive correlations among all of the four vari- 
ables which collectively form the first factor, accounting for 85% of the total 
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variation. Samples from different bedrock types are distributed in distinct areas 
along the first factor, in agreement with their distinct airborne measured radio- 
activity and concentrations of U, Th, and K. Note that sample 5 was taken from 
the contact zone between quartz monzonite and schist and is located in a middle 
position, reflecting a mixture of the two sources. 

Correspondence analysis yields a different pattern (Table 6, Fig. 13). The 
variable of  airborne radiometry appears at the center of  the diagram and is not 
associated with the compositional variables. Samples from different bedrocks 
tend to be clustered together. These results are inconsistent with the geologic 
interpretation of the relationships between the variables and between the sam- 
ples in this data set. The indiscriminant clustering of sample points is due to 
the fact that the distinctions between the three types of  bedrock are primarily 
expressed as differences in magnitudes of  the measurements, to which corre- 
spondence analysis is not sensitive. 
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Table 4. Measurements on Quartz Monzonite Pluton, Berea, Virginia a 

A B C D 

No. AERO U TH K 

1 240 0.63 2.05 0.13 
2 360 2.18 5.31 0.31 
3 420 2.26 5.61 0.34 
4 500 1.71 6.44 0.70 
5 580 2.38 7.99 1.73 
6 700 3.83 8.32 4.26 
7 600 3.79 9.46 1.53 
8 650 4.09 14.71 3.11 
9 770 4.21 12.00 1.90 

10 930 4.72 12.78 2.92 
11 1020 6.24 16.31 2.29 
12 1000 5.24 14.51 1.88 
13 1000 4.73 15.79 4.64 
14 1040 4.67 10.30 4.17 
15 1150 5.08 13.11 3.97 
16 1000 5.27 13.40 4.36 
17 960 5.61 10.31 2.05 
18 420 2.33 6.83 0.47 
19 370 2.64 9.88 0.58 
20 400 2.29 6.02 0.34 
21 480 2.32 6.14 0.32 
22 730 5.94 12.86 1.35 

a(A) Airborne radiometric measurements in counts per second; (B) 
uranium in parts per million; (C) thorium in ppm; (D) potassium in 
percent. 
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and airborne radiometrie intensity in the Berea area, Salem Church quadrangle, Virghaia. 
(A) Chlorite-actinolite schist; (B) quartz monzonite; (C) sand and gravel. (From Sherman, 
Bunker, and Bush, 1971.) 
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Table 5. RQ-Mode Principal Components Analysis of Berea Data. (A) 
Matrix of Correlations Between Variables (AERO = airborne radiometric 
measurement; U = uranium content; TH = thorium content; K = potas- 
sium content). (B) Eigenvalues of Correlation Matrix (K --- eigenvalue; 
% = percent of trace; 2% = cumulative percent of trace). (C)RQ-Mode 

Factor Loadings. (D) Q-Mode Factor Loadings. 

(A) Correlation Matrix 

AERO U TH K 

AERO 1.00 
U 0.89 1.00 
TH 0.82 0.89 1.00 
K 0.82 0.67 0.69 1.00 

(B) Eigenvalues 

Factors 

1 2 3 4 

X 3.39 0.39 0.15 0.06 
% 84.81 9.76 3.87 1.55 
2% 84.81 94.57 98.45 100.00 

(C) R-Mode Loadings 

Factors 

1 2 3 4 

AERO 0.96 0.05 -0.22 - 0.16 
U 0.94 -0.27 -0.13 0.17 
TH 0.92 -0.25 0.28 -0.07 
K 0.86 0.51 0.09 0.07 

(D) Q-Mode Loadings 

Factors 

1 2 3 4 

1 -0.75 0.12 -0.03 -0.01 
2 -0.49 -0.02 -0.02 0.03 
3 -0.45 -0.02 -0.04 0.00 
4 -0.41 0.04 -0.00 -0.08 
5 -0.22 0.09 0.03 -0.05 
6 0.11 0.29 -0.00 0.12 
7 -0.08 -0.05 0.00 0.04 
8 0.21 Õ.00 0.23 0.03 
9 0.12 -0.08 0.02 -0.03 

10 0.31 0.00 -0.01 -0.03 
11 0.51 -0.23 0.00 -ô.01 
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Table 5. Continued 

(D) Q-Mode Loadings 

Factors 

1 2 3 4 

12 0.35 -0.18 -0.03 -0 .09 
13 0.53 0.14 0.14 -0 .04  
14 0.36 0.21 -0.11 -0 .00  
15 0.50 0.11 -0 .08 -0 .07 
16 0.49 0.13 0.01 0.03 
17 0.26 -0.09 -0.19 0.04 
18 -0 .40 -0.04 0.01 -0 .00  
19 -0.31 -0.11 0.15 0.01 
20 -0 .44 -0.03 -0.01 0.01 
21 -0.41 -0.03 -0.05 -0.03 
22 0.21 -0.26 -0.03 0.12 
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Table 6, Correspondence Analysis of Berea Data (A) Eigen- 
values of Profile Distance Similarity Matrix (X = eigenvalue; 
% = percent of trace; ~% = cumulative percent of trace). (B) 
Correspondence Analysis G Matfix (R Mode), (C) Corre- 

spondence Analysis F Matrix (Q Mode). 

(A) Eigenvalues 

Factors 

1 2 3 

0.0009 0.0007 0.0001 
% 52.84 40.86 6.30 
~% 52.84 93.70 100.00 

(B) G Matrix 

Factors 

1 2 3 

AERO -0.00 -0 .00 -0 .00 
U 0,13 0.02 0.13 
TH 0.22 0.07 -0.03 
K -0 .20 0.46 0.01 

(C) F Matrix 

Fäctors 

1 2 3 

1 -0.04 -0.06 -0.02 
2 0.02 -0.03 0.01 
3 0.01 -0.04 0.00 
4 -0.01 -0.03 -0 .02 
5 -0.01 0.00 -0.01 
6 -0 .04 0.05 0.01 
7 0.02 0,00 0.01 
8 0,05 0.05 -0.01 
9 0.01 -0 .00 -0 .00 

10 -0 .00 0.00 -0 .00 
11 0.02 -0.00 0.00 
12 0.01 -0 .02  -0 .00 
13 -0 .00 0.03 -0.01 
14 -0.04 0,01 0.00 
15 -0.03 0.00 -0 .00 
16 -0 .02 0.02 0.00 
17 -0.02 -0 .02 0.01 
18 0.03 -0 .02 -0 .00 
19 0.10 0.01 -0.01 
20 0.02 -0.03 0.0ô 
21 0.00 -0.04 -0 .00 
22 0.04 -0.01 0.03 
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CONCLUSlONS 

In factor analysis, the scaling performed prior to factoring is of critical 
importance, because it determines the measure of similarity and hence the 
nature of the factor solution. The scaling method selected should yield a simi- 
larity matrix which is appropriate for the data being analyzed. In RQ-mode 
procedures, it is necessary and sufficient that the scaling simultaneously pro- 
vides W'W and WW' (or their specific transformations) which are meaningful 
measures of similarities between variables and between objects, respectively. 
Row-column symmetrical scaling is not required, unless the rows and columns 
in the data matrix are inherently symmetrical. 

Correspondence analysis, as an RQ-mode factor procedure, was originally 
designed for analyzing contingency table data. Although the procedure can be 
applied to tables of measurement data, care should be taken because the result- 
ing measure of proportional similarity, the profile distance, may not suitably 
express the similarities between variables and between objects. 

Scaling in principal components analysis results in W'W being a correlation 
or covariance matrix of variables and WW' being the Euclidean distances be- 
tween objects. Therefore, principal components ana!ysis can be used as an RQ- 
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mode procedure and applied to the problems where the similarities between 
variables are bettet measured by the correlation coefficient or covariance, and 
the sirnilarities between objects are better measured by Euclidean distance. Such 
problems are common in geology and geochemistry, so principal components 
analysis should have broad applications as an R Q-mode pro cedure. 
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APPENDIX 

I. A Rationale for Correspondenee Analysis 
When Applied to Measurement Data 

Suppose the data set X consists of nonnegative measurements of m vari- 
ables on n objects. A profile distance between variable ] and k is defined as 

x . k / /  " 

where 

and 

x . j  = ~ Xq 
i 

Xi. = Z Xi] 
] 

Similarly, the profile distance between object i and l is defined by 

d~ 2 = xq  _ xl] "J 
x l • 

Let the ]th variable ( ]= 1,2 . . . .  ,m)  be represented by a point 
in object space with coordinates 

xq  for i = l , 2 , . . , n  
bi] = (xi. )ll2 x.],  

The Euclidean distances between these new variable points are equal to the pro- 
file distances between corresponding original variables. B'B represents the con- 
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figuration of these new variable points. Similarly, the/ th  object (i = 1, 2 , . . . ,  n) 
is represented by a point in the variable space with coordinates 

xi/ for ] = l , 2 , . . , n  
ci/ = xi .  (x.i) 1/2' 

The configuration of object points is represented by CC'. 
Because B'B 4= C'C and BB'  4= CC', neither B nor C can be used directly in 

RQ-mode factor analysis. A matrix le is defined as 

wii = xii (xi . ) l /2(X.l) l /2,  for i = 1 , 2 , . . ,  n 
/ ' = 1 , 2  . . . . .  m 

which is related to B by 

and related to C by 

w q = b q ( x . / )  1/2 

w o = c i / ( x i . )  1/~ 

Factoring W yields A R and A Q. Be cause ARA R' = W'W ~ B'B and A QA Q' = 
Wie' ~ CC', matrices G and F are formed by the transformation 

g/k =a~k/(x.l)l/2, for i = 1, 2 . . . . .  n 

f ik = a~ / ( x i . )  1/2 J = i ,  2 . . . . .  m 
k= 1 , 2 , . . , p  

Then GG' = B'B represents the configuration of variable points and FF'  = 
CC' represents the configuration of object points. In other words, G and Fgive, 
respectively, the coordinates of variable points and object points in the factor 
space. The Euclidean distances between these points are equal to the profile dis- 
tanees between eorresponding variables or objects. 

The relation between G and F is given by 

fikg]- ~ ~ k )  k = ieij Z k (Xi')I/2(X'])1/2 

which is similar to the relationship between A R and A Q in principal components 
analysis (Eq. 11). In th_is rnanner, the procedure of correspondence analysis, with 
a rninor modification, can be applied to measurement data. 

lI. Verification of the Equality H = Wie' 

When Ie is defined by (7), H is defined by (9), and da is def'med by (8). 
This can be verified in the following steps. 



Dual Extraetion of R-Mode and Q-Mode Faetor Solutions 605 

Y'~wqwq=lj n ~  ( x q - l n ~ u  Xu j ) (  x q -  1--£~u Xuj) 

1 ~ l ( z , ) ~  
1 E x i j x l /  - ~ E E x i j x u /  .wEEXui~,+jE xu 
n j  u j  u l  f l  • gt ] ~ td « 

1 d2 _ 1 1 - - x 2  1 S-' 1 
eil = - ~ il - - ~n E (xij - xtj) 2 = - - -  L ii - ~n T xb + -- Z XqXlj j 2 n j  . n j 

1 1 1 1 
el" =-- Z eil =-~n E x } -  2n 2 E Z x~j +~-~ E ~_,xijxtj 

n t j t j t j 

1 1 1 1 
e't = -  E ea=-~n2 E E x ~ -  ~n E x}  +-£ä ~ß_,Ex,jx,j 

n i z j j i j 

1 1 1 2 +  1 Xu" 2 

• t i j j u j \ u  I 

Hence,  hit = eil - e i. - e. 1 + e.. = Nj wi]wt] , or H = WW'. 
A similar ver i f icat ion holds  when  W, H, and dir are def ined by (5), (9), and 

(6), respect ively.  
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